Automatically Generating Predicates and
Solutions for Configuration Troubleshooting

*Ya-Yunn Su Jason Flinn

NEC Laboratories University of
America Michigan

Troubleshooting misconfigurations is hard!

e Users may have to
— Edit configuration files
— Resolve library dependencies
— Change environment variables

e Automated troubleshooting tools can help
— Chronus: finds when a misconfiguration entered
— AutoBash: automatically resolves misconfigurations
— Both assume test cases or solutions exist

Current method: manual predicate creation

e Predicates

— Test if an application works or not
— Returns true/false if the test passes/fails

e E.g. test if an Apache Web server is working

wget http://localhost

e Manually writing predicates requires
— Experts and time
— Domain knowledge

e Can we automatically generate predicates?

Limitations in existing approaches

e Automatic test case generation requires
— Program source code or specifications

e Automatic solution generation requires
— Golden state as a reference

(e
(L)
______________ 2 1 {
Valuable source to generate
predicates/solutions for others to use ‘

Generating predicates from user traces

"I command A Predicate
9% command B i> Commands A & B

% command C

Solution
Command D

test result

:>True or False

e Users troubleshoot using our modified shell

e Our modified shell generates:
— Which command is a predicate
— If a predicate succeeds/fails
— Which commands are solutions

Goals

e Minimize false positives
— A false positive is worse than a false negative
— Aggregate across multiple user traces

e Be as unobtrusive as possible
— Users do not need to provide extra input

RIRKKKKIKIKIKIK

e Generate complete predicates
— Predicates may contain multiple steps

Minimizing false positives

e Observation: troubleshooting pattern

— Users test the system state multiple times
— Users rely on output to know test outcome

e Generate predicates following this pattern

Command C Command C

Time l Command C, = False l Command C, = True

| |
System was not working System was working

Our approach

e Predicates

— Repeated commands
— Differ in more than two out of three output features

e Qutput features for a command:
— exit code: the return value of a process
— screen output contains error message
— output set: kernel objects a command modifies

Tracking output sets

e Qutput set: kernel objects a command causally
affects

Command: echo hi > foo Output set = {file foo}
Process
forked exits /& Output set)
- —~—

create l File metadata foo

I File content foo

Directory entry foo

(Z p

Example

% cvs —d /home/cvsroot import test_project

cvs [import aborted]: /home/cvsroot/CVSROOT:

No such file or directory

% cvs —d /home/cvsroot init

% cvs —d /home/cvsroot import test_project

N test project/testfile

No conflicts created by this import

Problem: CVS repository not initialized

10

Example

% cvs —d /home/cvsroot import test_project

cvs [import aborted]: /home/cvsroot/CVSROOT:

No such file or directory

% cvs —d /home/cvsroot init

% cvs —d /home/cvsroot import test_project

N test project/testfile

No conflicts created by this import

 Find repeated commands

11

Example

% cvs —d /home/cvsroot import test_project
cvs [import aborted]: /home/cvsroot/CVSROOT:
No such file or directory

% cvs —d /home/cvsroot init

% cvs —d /home/cvsroot import test_project

N test project/testfile

No conflicts created by this import

« Compare output features of repeated commands

12

Example

% cvs —d /home/cvsroot import test_project exit code = 1
cvs [import aborted]: /home/cvsroot/CVSROOT:
No such file or directory

% cvs —d /home/cvsroot init

% cvs —d /home/cvsroot import test_project exit code = 0

N test project/testfile

No conflicts created by this import

Output feature: exit codes differ

13

% cvs —d /home/cvsroot import test_project

: /home/cvsroot/CVSROOT:

% cvs —d /home/cvsroot init

% cvs —d /home/cvsroot import test_project

N test project/testfile

No conflicts created by this import

« Output feature: screen outputs differ
e First execution prints error message

e Second execution does not contain error msg 14

Example

% cvs —d /home/cvsroot import test_project
cvs [import aborted]: /home/cvsroot/CVSROOT:
No such file or directory => Output set = {}

% cvs —d /home/cvsroot init

% cvs —d /home/cvsroot import test_project

N test_project/testfile => Qutput set = {file:/home/cvsroo

_ test_project, ...}
No conflicts created by this import

- QOutput feature: output sets differ
» First execution: output set is empty

- Second execution: output set contains created files .

Example

% cvs —d /home/cvsroot import test_project => predicate fails
cvs [import aborted]: /home/cvsroot/CVSROOT:
No such file or directory

% cvs —d /home/cvsroot init

% cvs —d /home/cvsroot import test_project => predicate succeeds

N test project/testfile

No conflicts created by this import

- Repeated commands differ in three output features
- First execution considered to be a failed predicate

16

Generating complete predicates

------ How?
e Some predlcates'depend on preconditions to be

executed first to work correctly

(0] —
userl % cvs —d /home/cvsroot import test_project

user2 % cvs —d /home/cvsroot checkout test_project => Predicate fails

root % usermod —G cvsgroup user2

user2 % cvs —d /home/cvsroot checkout test_project => Predicate
succeeds

Problem: user2 is not in CVS group

Initial state: CVS repository is empty
17

Causal relationships between commands

% echo hi > foo

% cat foo

File metadata foo

w \l,
File content foo

cat foo” causally depends on “echo” | LDirectory entry foo

cat is in echo’s output set @ Process cat

echo hi > foo
-
exited) Output set)

18

Applying causality to find preconditions

e Candidate preconditions: find
— All commands a predicate depends on
— All commands whose output set a predicate is in

We also find solution!

o >Time
cvs import CVS CO as Add user? to CVS CO as
as userl user2 CVS group user2
fails succeeds
modifies

modifies

F|Ie. File: /etc/

group

test_project

19

Heuristic to differentiate them

e Solutions: occurred after all failed predicates

e Preconditions:
— occurred before any failed predicate

Precondltlon Solution
. . ~Time
cvs import cvs co as Add user? to CVS CO as
as userl usér2 CVS group user2
fa|ls succeeds

F|Ie File: /etc/
test_project | group

20

Ranking solutions

e Users solve the same problem differently

e Goal: better solutions are ranked higher
— Heuristic: solutions applied by more users are better
— Aggregate solutions among traces and rank them

e EX. Apache not having search permission
— chmod Z77-/home/USERID

-

-="chmod 755 USERID/ " ~. Different commands can be

S~

-
= —
e e am omm omm mm == =

21

Group solutions by state delta

o State delta: the difference in system state
caused by the execution of a command
— Track output set for that command
— Compute diff for each entity in the output set

e Solution ranking results:
Group 1 (size = 2) Group 2 (size = 1)

1. chmod 755 /home/USERID 1. chmod 777 /home/USERID

2. chmod 755 USERID/

22

Evaluation

e Questions:
— How well can we generate predicates?
— How well does the solution ranking heuristic work?

e Methodology
— Conducted a user study of user troubleshooting
— Generate predicates/solutions from traces
— Manually verify predicate correctness

23

User study procedure

e 12 participants:
— graduate students
— system administrators

e Each given four configuration problems
— Two CVS and two Apache configuration problems
— Each problem runs in a virtual machine

o Collected traces of users troubleshooting
— All commands a user typed
— Collect exit code, screen output, and output set

24

Predicate result summary

CVS problem CVS problem Apache Apache
p problem 1 problem2

of_correct 4 4 6 3
predicates
of wrong —
predicates —0 ! 1 1>
Total # of 10 10 11 11
traces

* All correct predicates are complete
 Very few wrong predicates (false positives)

« Both false positives come from traces of user not solving the problem

« Why were no predicates generated for some traces?

25

Apache problem: predicate results

e Problem: Apache process not having search
permission on /home/USERID

e Solution: give /home/USERID search permission

Predicates Generated Number of traces
No predicate generated (User did not < 3 >
use repeated commands)
No predicate generated (User did not)

fix the problem)

Incorrect predicate (User did not fix 1
the problem)
« To minimize FP, we compare current directory and user id

» User executed commands in different directories 26

Apache problem: predicate results

e Problem: Apache process not having search
permission on /home/USERID

e Solution: give /home/USERID search permission

Predicates Generated Number of traces

No predicate generated (User did not
use repeated commands)

3
No predicate generated (User did not < 5 >
fix the problem)
Incorrect predicate (User did not fix 1

the problem)

» User did not fix the problem => output features did not differ
27

Apache problem: predicate results

e Problem: Apache process not having search
permission on /home/USERID

e Solution: give /home/USERID search permission

Predicates Generated Number of traces

No predicate generated (User did not 3
use repeated commands)

No predicate generated (User did not
fix the problem)

2
Incorrect predicate (User did not fix < 1 >
the problem)

* Predicate: open configuration file in an editor
2
e Could be eliminated if we asked user whether problem was fixed

8

Apache problem: solution ranking results

_______ Solution | Number of Traces

chmod 755 /home/USERID 2
chmod —R 777 USERID/ 1
chmod o+rx /home/USERID 1
chmod 777 /home/USERID 1
<vim /etc/httpd/conf/httpd.conf 1 >

Why is editing configuration file a solution?
e Predicate: apachect! stop

e User-introduced errors in conf file caused apachect! stop falil
29

Future work

o Extend this work to handle GUI applications

e Challenges:

— identifying individual tasks, finding repeated tasks
— exit code does not map to each task

e Advantages: more semantic information

ofile Help

F
l zf D & @ b ; :
New Edit Copy Delete Activate Deactivate NSIS Error

Devices |Hardware [IPsec | DNS [Hosts |

<& You may configure network devices associated with @ The installer you are trying to use is corrupted or incomplete.

ig 'O Physical hardware e Multiple logical devices can be This could be the result of a damaged disk, a failed download or a virus.
associated with a single piece of hardware.

You may want to contact the author of this installer to obtain a new copy.

& Active @ etho etho Ethernet It may be possible to skip this check using the NCRC command line switch
{(NOT RECOMMENDED).

Conclusion

o Automatically generate predicates and solutions
from user troubleshooting traces

e Our approach
— Minimizes false positives
— Is unobtrusive to users
— Generates complete predicates

Thank you!

31

