
Automatically Generating Predicates and
Solutions for Configuration Troubleshooting

* Ya-Yunn Su
NEC Laboratories

America

Jason Flinn
University of

Michigan

Troubleshooting misconfigurations is hard!

•  Users may have to
–  Edit configuration files
–  Resolve library dependencies
–  Change environment variables

•  Automated troubleshooting tools can help
–  Chronus: finds when a misconfiguration entered
–  AutoBash: automatically resolves misconfigurations
–  Both assume test cases or solutions exist

2

Current method: manual predicate creation

•  Predicates
–  Test if an application works or not
–  Returns true/false if the test passes/fails

•  E.g. test if an Apache Web server is working

•  Manually writing predicates requires
–  Experts and time
–  Domain knowledge

•  Can we automatically generate predicates?
3

wget http://localhost

4

Limitations in existing approaches

•  Automatic test case generation requires
–  Program source code or specifications

•  Automatic solution generation requires
–  Golden state as a reference

•  Users already troubleshoot misconfigurations
–  They try potential solutions
–  They test if a solution works

Valuable source to generate
predicates/solutions for others to use

Generating predicates from user traces

•  Users troubleshoot using our modified shell
•  Our modified shell generates:

–  Which command is a predicate
–  If a predicate succeeds/fails
–  Which commands are solutions

5

% command A

% command B

% command C

% command D

Commands A & B
Predicate

True or False

Solution

Command D

 test result

Goals

•  Minimize false positives
–  A false positive is worse than a false negative
–  Aggregate across multiple user traces

•  Be as unobtrusive as possible
–  Users do not need to provide extra input

•  Generate complete predicates
–  Predicates may contain multiple steps

6

Minimizing false positives

•  Observation: troubleshooting pattern
–  Users test the system state multiple times
–  Users rely on output to know test outcome

•  Generate predicates following this pattern

7 System was not working
 System was working

Command C0 = False
 Command C1 = True
Time

Command C
 Command C

8

•  Predicates
–  Repeated commands
–  Differ in more than two out of three output features

•  Output features for a command:
–  exit code: the return value of a process
–  screen output contains error message
–  output set: kernel objects a command modifies

Our approach

Tracking output sets

•  Output set: kernel objects a command causally
affects

9

Command: echo hi > foo

echo

foo

create

Process echo

File metadata foo

File content foo

Directory entry foo

Output set = {file foo}

Output set

echo

exits

Process
forked

10

% cvs –d /home/cvsroot import test_project
cvs [import aborted]: /home/cvsroot/CVSROOT:

 No such file or directory

% cvs –d /home/cvsroot init

% cvs –d /home/cvsroot import test_project

N test_project/testfile

No conflicts created by this import

Example

 Problem: CVS repository not initialized

11

Example

exit code = 1

% cvs –d /home/cvsroot import test_project
cvs [import aborted]: /home/cvsroot/CVSROOT:

 No such file or directory

% cvs –d /home/cvsroot init

% cvs –d /home/cvsroot import test_project

N test_project/testfile

No conflicts created by this import

•  Find repeated commands

12

Example

% cvs –d /home/cvsroot import test_project
cvs [import aborted]: /home/cvsroot/CVSROOT:

 No such file or directory

% cvs –d /home/cvsroot init

% cvs –d /home/cvsroot import test_project

N test_project/testfile

No conflicts created by this import

•  Compare output features of repeated commands

13

Example

% cvs –d /home/cvsroot import test_project
cvs [import aborted]: /home/cvsroot/CVSROOT:

 No such file or directory

% cvs –d /home/cvsroot init

% cvs –d /home/cvsroot import test_project

N test_project/testfile

No conflicts created by this import

exit code = 0

exit code = 1

Output feature: exit codes differ

14

Example

% cvs –d /home/cvsroot import test_project
cvs [import aborted]: /home/cvsroot/CVSROOT:

 No such file or directory

% cvs –d /home/cvsroot init

% cvs –d /home/cvsroot import test_project

N test_project/testfile

No conflicts created by this import

No error message

•  Output feature: screen outputs differ

•  First execution prints error message

•  Second execution does not contain error msg

15

Example

% cvs –d /home/cvsroot import test_project
cvs [import aborted]: /home/cvsroot/CVSROOT:

 No such file or directory

% cvs –d /home/cvsroot init

% cvs –d /home/cvsroot import test_project

N test_project/testfile

No conflicts created by this import

•  Output feature: output sets differ

•  First execution: output set is empty

•  Second execution: output set contains created files

=> Output set = {}

=> Output set = {file:/home/cvsroot/
test_project, …}

16

Example

exit code = 1

% cvs –d /home/cvsroot import test_project
cvs [import aborted]: /home/cvsroot/CVSROOT:

 No such file or directory

% cvs –d /home/cvsroot init

% cvs –d /home/cvsroot import test_project

N test_project/testfile

No conflicts created by this import

•  Repeated commands differ in three output features

•  First execution considered to be a failed predicate

=> predicate succeeds

=> predicate fails

17

Generating complete predicates

•  Some predicates depend on preconditions to be
executed first to work correctly

user1 % cvs –d /home/cvsroot import test_project

user2 % cvs –d /home/cvsroot checkout test_project

root % usermod –G cvsgroup user2

user2 % cvs –d /home/cvsroot checkout test_project => Predicate
kkkksucceeds

=> Predicate fails

Problem: user2 is not in CVS group

Initial state: CVS repository is empty

Precondition

Solution

How?

Causal relationships between commands

18

foo

read

echo

exited
 Output set

% echo hi > foo

% cat foo

cat

File metadata foo

File content foo

Directory entry foo

echo hi > foo

Process cat

• “cat foo” causally depends on “echo”

 cat is in echoʼs output set

Output set

19

Applying causality to find preconditions

•  Candidate preconditions: find
–  All commands a predicate depends on
–  All commands whose output set a predicate is in

cvs co as
user2

succeeds

cvs co as
user2
fails

cvs import
as user1

Add user2 to
CVS group

modifies
 modifies

File:

test_project

File: /etc/

group

Time
We also find solution!

20

Heuristic to differentiate them

•  Solutions: occurred after all failed predicates
•  Preconditions:

–  occurred before any failed predicate

Time
cvs import
as user1

cvs co as
user2

succeeds

cvs co as
user2
fails

Add user2 to
CVS group

Solution
Precondition

File:
test_project

File: /etc/
group

21

Ranking solutions

•  Users solve the same problem differently

•  Goal: better solutions are ranked higher
–  Heuristic: solutions applied by more users are better
–  Aggregate solutions among traces and rank them

•  Ex. Apache not having search permission
–  chmod 777 /home/USERID
–  chmod 755 USERID/
–  chmod 755 /home/USERID

Different commands can be
used to do the same thing.

22

•  State delta: the difference in system state
caused by the execution of a command
–  Track output set for that command
–  Compute diff for each entity in the output set

•  Solution ranking results:

1. chmod 755 /home/USERID
2. chmod 755 USERID/ 1. chmod 777 /home/USERID

Group 1 (size = 2) Group 2 (size = 1)

Group solutions by state delta

23

Evaluation

•  Questions:
–  How well can we generate predicates?
–  How well does the solution ranking heuristic work?

•  Methodology
–  Conducted a user study of user troubleshooting
–  Generate predicates/solutions from traces
–  Manually verify predicate correctness

24

User study procedure

•  12 participants:
–  graduate students
–  system administrators

•  Each given four configuration problems
–  Two CVS and two Apache configuration problems
–  Each problem runs in a virtual machine

•  Collected traces of users troubleshooting
–  All commands a user typed
–  Collect exit code, screen output, and output set

Predicate result summary

25

CVS problem
1

CVS problem
2

Apache
problem 1

Apache
problem2

of correct
predicates

4 4 6 8

of wrong
predicates

0 0 1 1

Total # of
traces

10 10 11 11

•  All correct predicates are complete

•  Very few wrong predicates (false positives)

•  Both false positives come from traces of user not solving the problem

•  Why were no predicates generated for some traces?

26

Apache problem: predicate results

•  Problem: Apache process not having search
permission on /home/USERID

•  Solution: give /home/USERID search permission

Predicates Generated Number of traces

No predicate generated (User did not
use repeated commands) 3

No predicate generated (User did not
fix the problem) 2

Incorrect predicate (User did not fix
the problem) 1

•  To minimize FP, we compare current directory and user id

•  User executed commands in different directories

27

Apache problem: predicate results

•  Problem: Apache process not having search
permission on /home/USERID

•  Solution: give /home/USERID search permission

Predicates Generated Number of traces

No predicate generated (User did not
use repeated commands) 3

No predicate generated (User did not
fix the problem) 2

Incorrect predicate (User did not fix
the problem) 1

•  User did not fix the problem => output features did not differ

28

Apache problem: predicate results

•  Problem: Apache process not having search
permission on /home/USERID

•  Solution: give /home/USERID search permission

Predicates Generated Number of traces

No predicate generated (User did not
use repeated commands) 3

No predicate generated (User did not
fix the problem) 2

Incorrect predicate (User did not fix
the problem) 1

•  Predicate: open configuration file in an editor

•  Could be eliminated if we asked user whether problem was fixed

29

Apache problem: solution ranking results

Why is editing configuration file a solution?

•  Predicate: apachectl stop

•  User-introduced errors in conf file caused apachectl stop fail

Solution Number of Traces

chmod 755 /home/USERID 2

chmod –R 777 USERID/ 1

chmod o+rx /home/USERID 1

chmod 777 /home/USERID 1

vim /etc/httpd/conf/httpd.conf 1

Future work

•  Extend this work to handle GUI applications
•  Challenges:

–  identifying individual tasks, finding repeated tasks
–  exit code does not map to each task

•  Advantages: more semantic information

30

Conclusion

•  Automatically generate predicates and solutions
from user troubleshooting traces

•  Our approach
–  Minimizes false positives
–  Is unobtrusive to users
–  Generates complete predicates

31

Thank you!

