
1

AutoBash: Improving Configuration Management
with Operating System Causality Analysis

Ya-Yunn Su, Mona Attariyan, and Jason Flinn
University of Michigan

2

Motivation

• Configuration management is frustrating!
• Users may have to

– Change environment variables
– Edit configuration files
– Manage inter-application dependencies

• Current approach:
– Ask friends, search on-line, read manual, …
– Try potential solutions
– Carefully undo wrong solutions

3

AutoBash solves these problemsProblems with current approach

• Applying solutions is time-consuming

• Undoing a wrong solution can be hard

• Hard to know how a problem was solved

• A “solution” may cause new problems

Automatically tries many solutions

Provides undo capability

Explains solution to user

Automatically runs regression tests

4

-(
•• -)

•••

AutoBash overview

Health Monitoring Mode

Periodically tests
system health

Problem

Detected

Replay Mode

Automatically searches
for a solution

Least user
effort

Observation Mode

Helps user fix the
problem

Substantial user
involvement

5

Outline

• Motivation
• AutoBash design and implementation

– Observation mode
– Replay mode
– Health monitoring mode

• Evaluation
• Conclusion

6

Observation mode

• A modified bash shell
– User types in commands to solve the problem

% command 1

% test if app works

% undo testing

% undo command 1

% command 2

7

Verifying a solution is tedious

• AutoBash automatically tests using predicates
• Predicate:

– Tests if an application functions correctly
– Returns true/false if the test passes/fails

wget http://localhost/~$USER

Predicate example for a web server

% command 1

% test if app works

% undo testing

% rollback command 1

% command 2

http://localhost/�

8

Undoing testing is tedious

• Predicate testing has no side effects
– Executed speculatively and rolled back

• Speculator [SOSP ‘05]
– Process-level speculative execution

• Speculative execution makes predicate testing safe

% command 1

% test if app works

% undo testing

% rollback command 1

% command 2

9

Undo can be hard

• AutoBash speculatively executes each action
– Light-weight checkpoint and rollback

• Speculative execution makes undo easy

% command 1

% test if app works

% undo testing

% undo command 1

% command 2

% rollback command 1

10

Regression testing is hard

• AutoBash automatically runs regression tests
– Executes predicates in the predicate database
– Ensures all predicates pass

Predicate Database

P0 P1 P2

P3 P4 P5

CVS predicates

GCC cross-compiler
predicates

Web server
predicates

P6 P7 P8

11

Regression tests can be slow

• Problem: running all predicates can be slow

• Only need to run predicates affected by an action
– Uses causality tracking to find affected predicates

12

Tracking causality

• Output set
– kernel objects an action causally affects

• Input set
– kernel objects a predicate causally depends on

Predicate: grep “test” bar

Output set = {file foo}

Action: touch foo

Input set = {file bar}

13

Analyzing causality

• AutoBash calculates the intersection
– Determines which predicates to run

Action:
touch

foo

file: foo file: bar

Predicate:
grep “test” bar

Do not run predicate

14

shsh
exit

touch

fork & exec

touch
exit

Tracking output sets

• An output set is tracked for each action

Process sh

Output set

file foo

create

Process touch

File metadata foo

File content foo

Directory entry foo
Action: sh create_file.sh

create_file.sh: touch foo

15

shshPredicate: sh testfile.sh

testfile.sh: grep “test” bar

Process grep

Process sh

File metadata bar

File content bar

Directory entry bar

Process grep’s input set

Process grep

Process sh

grep

fork & exec

grep
exit

Tracking input sets

• An input set is tracked for each predicate

Predicate’s input set

file bar
read

Process grep

File metadata bar

File content bar

Directory entry bar

Process sh

File metadata bar

File content bar

Directory entry bar

16

Understanding solutions can be hard

• AutoBash generates causal explanation
– Analyzes input and output sets

17

Causal explanation

ls –l
/home/$USER

metadata:
/home/$USER/

public_html

wget
index.html

metadata:
/home/$USER

chmod +x
/home/$USER

chmod +x
/home/$USER/

public_html

wget
~$USER/cgi-bin/test.pl

wget
~$USER/index.html

Actions

Kernel
objects

Predicates

18

Outline

• Motivation
• AutoBash design and implementation

– Observation mode
– Replay mode
– Health monitoring mode

• Evaluation
• Conclusion

19

Replay mode

• Problem: finding a solution is time-consuming

• Automatically searches for a solution
– No user input needed

• Speculative execution provides isolation
– User continues foreground task
– AutoBash runs replay mode in background

20

(1) Initial predicate testing:

• Tracks input set for each predicate

• Determines passed/failed predicates

S2S1S0

How replay mode works

P0 P1 P2

P3 P4

Predicate DatabaseSolution Database

S0 S1 S2

S3 S4 S5

P0 P1 P2

P3 P4

P0 P1 P2

P3 P4

21

(2) Solution execution:

• Speculatively executes a solution

• Tracks solution output set

S2S1S0

How replay mode works

P0 P1 P2

P3 P4

Predicate DatabaseSolution Database

S0 S1 S2

S3 S4 S5

P0 P1 P2

P3 P4

22

S0
(3) Verifying solution:

• Calculates intersection

• Runs predicates with intersection

P0

P2

S2S1

How replay mode works

P0 P1 P2

P3 P4

Predicate DatabaseSolution Database

S0 S1 S2

S3 S4 S5

P0 P1 P2

P3 P4

Predicate fails

23

P0

P2

S2S1S0

How replay mode works

P0 P1 P2

P3 P4

Predicate DatabaseSolution Database

S0 S1 S2

S3 S4 S5

P0 P1 P2

P3 P4

Discards solution with no intersection

24

P1

P3

P4

P0

P2

P0

P2

(4) Regression tests:

• Calculates intersection

• Runs predicates affected by solution

S2S1S0

How replay mode works

P0 P1 P2

P3 P4

Predicate DatabaseSolution Database

S0 S1 S2

S3 S4 S5

P0 P1 P2

P3 P4

P0 P1 P2

P3 P4

Predicates passPredicate passes

25

• Speculative execution provides safety

• Causality analysis provides speed

S2S1S0

P0

P2

How replay mode works

P0 P1 P2

P3 P4

Predicate DatabaseSolution Database

S0 S1 S2

S3 S4 S5

P0 P1 P2

P3 P4

P1

P3

P4

P0 P1 P2

P3 P4

Predicate passesS2

26

Health monitoring mode

• Periodically executes all predicates

• If any predicate fails, AutoBash
– Runs replay mode to search for a solution
– Reports to the user to run observation mode

27

Outline

• Motivation
• AutoBash Design and Implementation

– Observation mode
– Replay mode
– Health monitoring mode

• Evaluation
• Conclusion

28

Evaluation

• Questions:
– What is the overhead of speculative execution?
– How effective is causality analysis?

• Methodology:
– Evaluated CVS, gcc cross compiler, web server
– Manually created 10 bugs and 10 solutions
– Manually created 5-8 predicates

29

0

20

40

60

Bug

Ti
m

e
(s

ec
on

ds
)

Predicate re-testing
Solution execution
Initial predicate testing

Total replay time (GCC)

Without speculative execution

With speculative execution

 Speculative execution overhead is negligible

1 2 3 4 5 6 7 8 9 10

30

0

20

40

60

Bug

T
im

e
(s

ec
o

n
d

s)

Predicate re-testing
Solution execution
Initial predicate testing

Total replay time (GCC)

 Causal analysis improves predicate re-testing time by 67-99%

Without causality analysis

With causality analysis

1 2 3 4 5 6 7 8 9 10

31

Conclusion

• Configuration management is frustrating

• AutoBash automates most tedious parts

• Speculative execution makes AutoBash safe

• Causality analysis makes AutoBash fast

32

Questions?

• Supported by

	AutoBash: Improving Configuration Management with Operating System Causality Analysis
	Motivation
	Problems with current approach
	AutoBash overview
	Outline
	Observation mode
	Verifying a solution is tedious
	Undoing testing is tedious
	Undo can be hard
	Regression testing is hard
	Regression tests can be slow
	Tracking causality
	Analyzing causality
	Tracking output sets
	Tracking input sets
	Understanding solutions can be hard
	Causal explanation
	Outline
	Replay mode
	How replay mode works
	How replay mode works
	How replay mode works
	How replay mode works
	How replay mode works
	How replay mode works
	Health monitoring mode
	Outline
	Evaluation
	Total replay time (GCC)
	Total replay time (GCC)
	Conclusion
	Questions?

