If Content is King, UNITARPY PEOPLE In A MARKING, UNITARPY INTARPY IN A MARKI

How the Context Matters Language & Interaction in Dialogues YUN-NUNG (VIVIAN) CHEN

HTTP://VIVIANCHEN.IDV.TW

Outline

- Introduction
- Word-Level Contexts in Sentences
 - Learning from Prior Knowledge
 - Knowledge-Guided Structural Attention Networks (K-SAN) [Chen et al., '16]
 - Learning from Observations –

Modularizing Unsupervised Sense Embedding (MUSE) [Lee & Chen, '17]

- Sentence-Level Contexts in Dialogues
 - Inference –

Leveraging Behavioral Patterns for Personalized Understanding [Chen et al., '15]

Investigation of Understanding Impact –

Reinforcement Learning Based Neural Dialogue System [Li et al., '17]

Misunderstanding Impact [Li et al., '17]

Conclusion

Task-Oriented Dialogue System

- Dialogue systems are intelligent agents that are able to help users finish tasks more efficiently via <u>conversational interactions</u>.
- Dialogue systems are being incorporated into various devices (smartphones, smart TVs, in-car navigating system, etc).

JARVIS – Iron Man's Personal Assistant

Baymax – Personal Healthcare Companion

Dialogue System Framework

Context in Language

- Word-level context
 - Prior knowledge such as linguistic syntax

show me the flights from seattle to san francisco

Collocated words

Smartphone companies including apple blueberry, and sony will be invited.

Contexts provide informative cues for better understanding

Sentence-level context

(browsing movie reviews...) Find me a good action movie this weekend (genre=

request_movie (genre=action, date=this weekend)

London Has Fallen is currently the number 1 action movie in America

How behavioral contexts influences the user intent

How misunderstanding influences the dialogue system performance

Knowledge-Guided Structural Attention Network (K-SAN)

Prior Structural Knowledge

Sentence *s* show me the flights from seattle to san francisco

Syntax (Dependency Tree)

Semantics (AMR Graph)

K-SAN: Knowledge-Guided Structural Attention Networks

Prior knowledge as a teacher

Sentence Structural Knowledge

Syntax (Dependency Tree)
 Semantics (AMR Graph)

Sentence *s* show me the flights from seattle to san francisco

Knowledge-Guided Structures

The model will pay more attention to more important <u>substructures</u> that may be crucial for slot tagging.

K-SAN Experiments (Chen et al., 2016)

ATIS Dataset (F1 slot filling)	Small (1/40)	Medium (1/10)	Large
Tagger (GRU)	73.83	85.55	93.11
Encoder-Tagger (GRU)	72.79	88.26	94.75

K-SAN Experiments (Chen et al., 2016)

ATIS Dataset (F1 slot filling)	Small (1/40)	Medium (1/10)	Large
Tagger (GRU)	73.83	85.55	93.11
Encoder-Tagger (GRU)	72.79	88.26	94.75
K-SAN (Stanford dep)	74.60 +	87.99	94.86 <mark>+</mark>
K-SAN (Syntaxnet dep)	74.35 +	88.40 ⁺	95.00 ⁺

Syntax provides richer knowledge and more general guidance when less training data.

K-SAN Experiments (Chen et al., 2016)

ATIS Dataset (F1 slot filling)	Small (1/40)	Medium (1/10)	Large
Tagger (GRU)	73.83	85.55	93.11
Encoder-Tagger (GRU)	72.79	88.26	94.75
K-SAN (Stanford dep)	74.60 ⁺	87.99	94.86 <mark>+</mark>
K-SAN (Syntaxnet dep)	74.35 <mark>+</mark>	88.40 ⁺	95.00 ⁺
K-SAN (AMR)	74.32 +	88.14	94.85 <mark>+</mark>
K-SAN (JAMR)	74.27 <mark>+</mark>	88.27 <mark>+</mark>	94.89 <mark>+</mark>

Syntax provides richer knowledge and more general guidance when less training data.

Semantics captures the most salient info so it achieves similar performance with much less substructures

K-SAN for Joint Semantic Frame Parsing

Joint Intent Prediction and Slot Filling

Extend the K-SAN model for joint semantic frame parsing by outputting the user intent at last timestamp (Hakkani-Tur et al.).

Joint K-SAN Parsing Experiments

ATIS Dataset	S	mall (1/40)		Me	edium (1/1	0)		Large	
(train: 4478/dev: 500/test: 893)	Slot (Indep)	Slot (Joint)	Frame	Slot (Indep)	Slot (Joint)	Frame	Slot (Indep)	Slot (Joint)	Frame
Tagger	73.8	73.0		85.6	86.4		93.1	93.4	
Encoder-Tagger	72.8	71.9		88.3	87.5		94.8	93.1	
K-SAN (Syntax)	74.4 *	74.6 ⁺		88.4+	88.2 +		95.0 +	95.4 *	
K-SAN (Semantics)	74.3 <mark>+</mark>	73.4 <mark>+</mark>		88.3	88.1 <mark>+</mark>		94.9 +	95.1 +	
Communication	S	mall (1/40)		Me	edium (1/1	0)		Large	
(train: 10479/dev: 1000/test: 2300)	Slot (Indep)	Slot (Joint)	Frame	Slot (Indep)	Slot (Joint)	Frame	Slot (Indep)	Slot (Joint)	Frame
Tagger	45.5	50.3		69.0	69.8		80.4	79.8	
Encoder-Tagger	45.5	47.7		69.4	73.1		85.7	86.0	
K-SAN (Syntax)	45.0	55.1 ⁺		69.5 ⁺	75.3 ⁺		85.0	84.5	
K-SAN (Semantics)	45.1	55.0		69.1	74.3 <mark>+</mark>		85.3	85.2	

Joint K-SAN Parsing Experiments

ATIS Dataset	S	mall (1/40))	Me	edium (1/1	0)		Large	
(train: 4478/dev: 500/test: 893)	Slot (Indep)	Slot (Joint)	Frame	Slot (Indep)	Slot (Joint)	Frame	Slot (Indep)	Slot (Joint)	Frame
Tagger	73.8	73.0	33.5	85.6	86.4	58.5	93.1	93.4	79.7
Encoder-Tagger	72.8	71.9	35.2	88.3	87.5	61.9	94.8	93.1	82.5
K-SAN (Syntax)	74.4 *	74.6 ⁺	37.6 +	88.4+	88.2 +	63.5 +	95.0 *	95.4 ⁺	84.3 ⁺
K-SAN (Semantics)	74.3 <mark>+</mark>	73.4 <mark>+</mark>	37.1 <mark>+</mark>	88.3	88.1 <mark>+</mark>	63.6 ⁺	94.9 <mark>+</mark>	95.1 <mark>+</mark>	83.8 <mark>+</mark>
Communication	c	$m_{2} = \frac{1}{40}$)		ndium (1/1	0)		Largo	
Communication		man (1/40)			2010111 (1/1	0)		Large	
(train: 10479/dev: 1000/test: 2300)	Slot (Indep)	Slot (Joint)	Frame	Slot (Indep)	Slot (Joint)	Frame	Slot (Indep)	Slot (Joint)	Frame
Tagger	45.5	50.3	48.9	69.0	69.8	68.2	80.4	79.8	79.5
Encoder-Tagger	45.5	47.7	52.7	69.4	73.1	71.4	85.7	86.0	83.9
K-SAN (Syntax)	45.0	55.1 ⁺	57.2 ⁺	69.5 ⁺	75.3 ⁺	73.5 ⁺	85.0	84.5	84.5
K-SAN (Semantics)	45.1	55.0	54.1 ⁺	69.1	74.3 <mark>+</mark>	73.8 ⁺	85.3	85.2	83.4

When data is scare, K-SAN with joint parsing significantly improves the performance (slot & frame)

Attention Analysis

Darker blocks and lines correspond to higher attention weights

Attention Analysis

Darker blocks and lines correspond to higher attention weights

Modularizing Unsupervised Sense Embeddings (MUSE)

G.-H. Lee and Y.-N. Chen, "MUSE: Modularizing Unsupervised Sense Embeddings" preprint arXiv: 1704.04601, 2017.

Word Embedding

• Word embeddings are trained on a corpus in an unsupervised manner

 Using the same embeddings for different senses for NLP tasks, e.g. NLU, POS tagging

Words with different senses should correspond different embeddings

Task – Unsupervised Sense Embeddings

- Input: unannotated text corpus
- Two key mechanisms
 - Sense selection given a text context
 - Sense representation to embed statistical characteristics of sense identity

Smartphone companies including <u>apple</u> blackberry, and sony will be invited.

Prior Approaches

- Efficient sense selection
 [Neelakantan et al., 2014; Li and Jurafsky, 2015]
 - Use word embeddings as input to update the sense posterior given words
 - Introduce ambiguity

 Inefficient sense selection → exponential time complexity

loaned

money

Chase

Figure 1: Context-Dependent Sense Embedding Model with window size k = 1

The prior approaches have disadvantages about either ambiguity or inefficiency

Context word

(observed)

23

G.-H. Lee and Y.-N. Chen, "MUSE: Modularizing Unsupervised Sense Embeddings," preprint arXiv: 1704.04601, 201

MUSE: Modularizing Unsupervised Sense Embeddings

(1) sample collocation Corpus: { Smartphone companies including apple blackberry, and sony will be invited.}

Joint Learning

Learning algorithm

Sense Selection Module

Algorithm 1: Learning Algorithm

for $w_i = C_t \in C$ do sample $w_j = C_{t'}(0 < |t' - t| \le m);$ $z_{ik} = \text{select}(C_t, w_i);$ $z_{jl} = \text{select}(C_{t'}, w_j);$ optimize U, V by (4) for the sense representation module; optimize P, Q by (5) or (7) for the sense selection module;

- Sense selection strategy
 - Stochastic policy: selects the sense based on the probability distribution
 - Greedy: selects the sense with the largest Q-value (no exploration)
 - ε-Greedy: selects a random sense with ε probability, and adopts the greedy strategy
 - Boltzmann: samples the sense based on the Boltzmann distribution modeled by Q-value

	He borrowed the money from	I live near	to a <mark>river</mark> .	correlati	on=?	
	Approach	Max	SimC	AvgSi	mC	
	Huang et al., 2012	26	5.1	65.	7	
	Neelakantan et al., 2014	60	0.1	<u>69.3</u>		
Baseline	Tian et al., 2014	63.6		65.4	4	
	Li & Jurafsky, 2015	<u>66</u>	<u>5.6</u>	66.8	8	
	Bartunov et al., 2016	53	3.8	61.2	2	
	Qiu et al., 2016	64	4.9	66.3	1	

He borrowed the money from	l live nea	r to a <mark>river</mark> .	correlati	ion=?	
Approach	Max	SimC	AvgSi	mC	
Huang et al., 2012	26	5.1	65.	7	
Neelakantan et al., 2014	60).1	<u>69.</u>	<u>3</u>	
Tian et al., 2014	63	3.6	65.	4	
Li & Jurafsky, 2015	<u>6</u>	5.6	66.	8	
Bartunov et al., 2016	53	3.8	61.	2	
Qiu et al., 2016	64	4.9	66.	1	
MUSE-Policy	66	5.1	67.	4	

He borrowed the money from ba	inks.	l live nea	r to a river .	correlati	ion=?
Approach	Max	SimC	AvgSi	mC	
Huang et al., 2012	20	5.1	65.	7	
Neelakantan et al., 2014	60	0.1	<u>69.</u>	<u>3</u>	
Tian et al., 2014	63	3.6	65.4	4	
Li & Jurafsky, 2015	<u>6</u>	<u>5.6</u>	66.	8	
Bartunov et al., 2016	53	3.8	61.	2	
Qiu et al., 2016	64	4.9	66.	1	
MUSE-Policy	60	5.1	67.4	4	
MUSE-Greedy	6	5.3	68.	3	

He borrowed the money from	banks.	l live nea	r to a river .	correlati	on=?
Approach	Max	SimC	AvgSi	mC	
Huang et al., 2012	20	5.1	65.	7	
Neelakantan et al., 2014	60	D.1	<u>69.</u>	<u>3</u>	
Tian et al., 2014	63.6		65.4		
Li & Jurafsky, 2015	<u>60</u>	5.6	66.8		
Bartunov et al., 2016	53	3.8	61.2		
Qiu et al., 2016	64	4.9	66.1		
MUSE-Policy	66.1		67.	4	
MUSE-Greedy	60	5.3	68.	3	
MUSE-ε-Greedy	67	'.4 ⁺	68.	6	

Dataset: SCWS for multi-sense embedding evaluation

He borrowed the money from	banks.	I live near	to a <mark>river</mark> .	correlati	on=?
Approach	Max	SimC	AvgSi	mC	
Huang et al., 2012	26	5.1	65.	7	
Neelakantan et al., 2014	60).1	<u>69.</u>	<u>3</u>	
Tian et al., 2014	63	3.6	65.4	4	
Li & Jurafsky, 2015	<u>66</u>	5. <u>6</u>	66.	8	
Bartunov et al., 2016	53	3.8	61.	2	
Qiu et al., 2016	64	1.9	66.	1	
MUSE-Policy	66	5.1	67.4	4	
MUSE-Greedy	66	5.3	68.	3	
MUSE-ɛ-Greedy	67	.4+	68.	6	
MUSE-Boltzmann	67	.9+	68.	7	

MUSE with exploration achieves the best sense embeddings in MaxSimC.

Synonym Selection Experiments

	Approach	ESL-50	RD-300	TOEFL-80
Conventional Word	Global Context	47.73	45.07	60.87
Embedding	SkipGram	52.08	55.66	66.67
Word Sense	IMS+SkipGram	41.67	53.77	66.67
Disambiguation	EM	27.08	33.96	40.00
Unsupervised Sense	MSSG (Neelakantan et al., 2014)	<u>57.14</u>	<u>58.93</u>	78.26
Embedding	CRP (Li & Jurafsky, 2015)	50.00	55.36	<u>82.61</u>
	MUSE-Policy	52.38	51.79	79.71
	MUSE-Greedy	57.14	58.93	79.71
	MUSE-E-Greedy	61.90+	62.50+	84.06 ⁺
	MUSE-Boltzmann	64 . 29 ⁺	66 . 07 ⁺	88.41 +
Supervised Sense	Retro-GlobalContext	63.64	66.20	71.01
Embedding	Retro-SkipGram	56.25	65.09	73.33

MUSE with exploration achieves the state-of-the-art results for synonym selection.

Qualitative Analysis

KNN senses sorted by collocation likelihood

Context	KNN Senses
braves finish the season in tie with the los angeles dodgers	scoreless otl shootout 6-6 hingis 3-3 7-7 0-0
his later years proudly wore tie with the chinese characters for	pants trousers shirt juventus blazer socks anfield
of the mulberry or the blackberry and minos sent him to	cranberries maple vaccinium apricot apple
of the large number of blackberry users in the us federal	smartphones sap microsoft ipv6 smartphone
ladies wore extravagant head ornaments combs pearl necklaces face	venter thorax neck spear millimeters fusiform
appoint john pope republican as head of the new army of	multi-party appoints unicameral beria appointed

MUSE learns sense embeddings in an *unsupervised* way and achieves the first *purely sense-level* representation learning system with *linear-time sense selection*

Y.-N. Chen, S. Ming, A. I Rudnicky, and A. Gershman, "Leveraging Behavioral Patterns of Mobile Applications for Personalized Spoken Language Understanding," in *Proc. of ICMI*, pages 83-86, 2015. ACM.

Leveraging Behavior Patterns of Mobile Apps for Personalized Spoken Language Understanding

Introduction

- Task: user intent prediction
- Challenge: language ambiguity

- ① User preference
- ✓ Some people prefer "Message" to "Email"
- Some people prefer "Outlook" to "Gmail"
- ② App-level contexts
- ✓ "Message" is more likely to follow "Camera"
- "Email" is more likely to follow "Excel"

Considering behavioral patterns in history to model SLU for intent prediction.

Data Collection

- Subjects' app invocation is logged on a daily basis
- Subjects annotate their app activities with
 - Task Structure: link applications that serve a common goal
 - Task Description: briefly describe the goal or intention of the task

Subjects use a wizard system to perform the annotated task by speech

- Dialogue W_1 : Ready.
 - U_1 : Connect my phone to bluetooth speaker.
 - **W**₂: Connected to bluetooth speaker.
 - U₂ : And play music.
 - **W**₃: What music would you like to play?
 - U₃ : Shuffle playlist.
 - W_4 : I will play the music for you.

SLU for Intent Prediction

Issue: unobserved hidden semantics may benefit understanding

Solution: use matrix factorization to complete a partially-missing matrix based on a low-rank latent semantics assumption.

36

Matrix Factorization (MF)

- The decomposed matrices represent low-rank latent semantics for utterances and words/histories/apps respectively
- The product of two matrices fills the probability of hidden semantics

Y.-N. Chen, S. Ming, A. I Rudnicky, and A. Gershman, "Leveraging Behavioral Patterns of Mobile Applications for Personalized Spoken Language Understanding," in *Proc. of ICMI*, pages 83-86, 2015. ACM.

37

Parameter Estimation

- Model implicit feedback by completing the matrix
 - not treat unobserved facts as negative samples (true or false)
 - give observed facts higher scores than unobserved facts

$$f^{+} = \langle u, x^{+} \rangle$$
$$f^{-} = \langle u, x^{-} \rangle$$
$$p(f^{+}) > p(f^{-})$$
$$p(M_{u,x} = 1 \mid \theta_{u,x}) = \sigma(\theta_{u,x}) = \frac{1}{1 + \exp(-\theta_{u,x})}$$

Objective:

$$\sum_{f^+ \in \mathcal{O}} \sum_{f^- \notin \mathcal{O}} \ln \sigma(\theta_{f^+} - \theta_{f^-})$$

the model can be achieved by SGD updates with fact pairs

The objective is to learn a set of well-ranked apps per utterance.

SLU Modeling by MF

- Dataset: 533 dialogues (1,607 utterances); 455 multi-turn dialogues
- Google recognized transcripts (word error rate = 25%)
- Evaluation metric: accuracy of user intent prediction (ACC) mean average precision of ranked intents (MAP)
- Baseline: Maximum Likelihood Estimation (MLE)

Approach			Lexical	Behavioral	All
(a)	MLE	User-Indep		13.5 / 19.6	
(b)		User-Dep		20.2 / 27.9	

The user-dependent model is better than the user-independent model.

- Dataset: 533 dialogues (1,607 utterances); 455 multi-turn dialogues
- Google recognized transcripts (word error rate = 25%)
- Evaluation metric: accuracy of user intent prediction (ACC) mean average precision of ranked intents (MAP)
- Baseline: Maximum Likelihood Estimation (MLE) Multinomial Logistic Regression (MLR)

Approach			Lexical	Behavioral	All
(a)	MLE	User-Indep		13.5 / 19.6	
(b)		User-Dep		20.2 / 27.9	
(c)	MLR	User-Indep	42.8 / 46.4	14.9 / 18.7	
(d)		User-Dep	48.2 / 52.1	19.3 / 25.2	

Lexical features are useful to predict intended apps for both user-independent and userdependent models.

- Dataset: 533 dialogues (1,607 utterances); 455 multi-turn dialogues
- Google recognized transcripts (word error rate = 25%)
- Evaluation metric: accuracy of user intent prediction (ACC) mean average precision of ranked intents (MAP)
- Baseline: Maximum Likelihood Estimation (MLE) Multinomial Logistic Regression (MLR)

Approach			Lexical	Behavioral	All
(a)	MLE	User-Indep		13.5 / 19.6	
(b)		User-Dep		20.2 / 27.9	
(c)	MLR	User-Indep	42.8 / 46.4	14.9 / 18.7	46.2 ⁺ / 50.1 ⁺
(d)		User-Dep	48.2 / 52.1	19.3 / 25.2	50.1 ⁺ / 53.9 ⁺

Combining lexical and behavioral features improves MLR performance, which models explicit information from observations.

- Dataset: 533 dialogues (1,607 utterances); 455 multi-turn dialogues
- Google recognized transcripts (word error rate = 25%)
- Evaluation metric: accuracy of user intent prediction (ACC) mean average precision of ranked intents (MAP)
- Baseline: Maximum Likelihood Estimation (MLE) Multinomial Logistic Regression (MLR)

Approach			Lexical	Behavioral	All
(a)	MLE	User-Indep		13.5 / 19.6	
(b)		User-Dep		20.2 / 27.9	
(c)		User-Indep	42.8 / 46.4	14.9 / 18.7	46.2+/50.1+
(d)	IVILK	User-Dep	48.2 / 52.1	19.3 / 25.2	50.1+/53.9+
(e)	(c) + Personalized MF		47.6 / 51.1	16.4 / 20.3	50.3** / 54.2**
(f)	(d) + Personalized MF		48.3 / 52.7	20.6 / 26.7	51.9** / 55.7**

Personalized MF significantly improves MLR results by considering hidden semantics.

Extension

Google Play

🚔 Apps

My apps Shop

Games

Family

Account Redeem

My wishlist

My Play activity

Parent Guide

Editors' Choice

Search

Categories 🗸

Home

App functionality modeling Learning app embeddings

Top Charts New Releases

12+

Contains ads

App embeddings encoding functionality help user-independent understanding

Miscommunication leads to misunderstanding, which rarely leads to anything good.

Investigation of Language Understanding Impact for Reinforcement Learning Based Dialogue Systems

X. Li, Y.-N. Chen, L. Li, and J. Gao, "End-to-End Task-Completion Neural Dialogue Systems," preprint arXiv: 1703.01008, 2017. X. Li, Y.-N. Chen, L. Li, J. Gao, and A. Celikylimaz, "Investigation of Language Inderstanding Impact for Reinforcement Learning Based Dialogue Systems," preprint arXiv: 1703.07055, 2017.

E2E Neural Dialogue System

- Dialogue management is framed as a reinforcement learning task
- Agent learns to select actions to maximize the expected reward

Observation

Action

X. Li, Y.-N. Chen, L. Li, and J. Gao, "End-to-End Task-Completion Neural Dialogue Systems," preprint arXiv: 1703.010 [46 2017.

E2E Neural Dialogue System

- Dialogue management is framed as a reinforcement learning task
- Agent learns to select actions to maximize the expected reward

Observation

X. Li, Y.-N. Chen, L. Li, and J. Gao, "End-to-End Task-Completion Neural Dialogue Systems," preprint arXiv: 1703.010 2017.

E2E Neural Dialogue System

- NLU and NLG are trained in a supervised manner
- DM is trained in a reinforcement learning framework (NLU and NLG can be fine tuned)

X. Li, Y.-N. Chen, L. Li, and J. Gao, "End-to-End Task-Completion Neural Dialogue Systems," preprint arXiv: 1703.010 2017.

Frame-Level Interaction

- DM receives frame-level information
 - No error model: perfect recognizer and LU
 - Error model: simulate the possible errors

X. Li, Y.-N. Chen, L. Li, and J. Gao, "End-to-End Task-Completion Neural Dialogue Systems," preprint arXiv: 1703.010 [49 2017.

Natural Language Level Interaction

- User simulator sends natural language
 - No recognition error
 - Errors from NLG or LU

X. Li, Y.-N. Chen, L. Li, and J. Gao, "End-to-End Task-Completion Neural Dialogue Systems," preprint arXiv: 1703.010 2017.

End-to-End Reinforcement Learning

Frame-level semantics

Natural language

The RL agent is able to learn how to interact with users to complete tasks more **efficiently** and **effectively**, and outperforms the rule-based agent.

X. Li, Y.-N. Chen, L. Li, and J. Gao, "End-to-End Task-Completion Neural Dialogue Systems," preprint arXiv: 1703.010 2017.

Why is LU so important?

X. Li, Y.-N. Chen, L. Li, J. Gao, and A. Celikyilmaz, "Investigation of Language Understanding Impact for Reinforceme Learning Based Dialogue Systems," preprint arXiv: 1703.07055, 2017.

Why is LU so important?

Intent Error Analysis

- Intent error rate
 - **I3: 0.00**
 - I4: 0.10
 - I5: 0.20

request_year

request_moviename(actor=Robert Downey Jr)

Group 1: greeting(), thanks(), etc Group 2: inform(xx) Group 3: request(xx)

- Intent error type
 - I0: random
 - I1: within group
 - I2: between group

Between-group intent errors degrade the system performance more

Slot Error Analysis

- Slot error rate
 - S4: 0.00
 - S5: 0.10
 - S6: 0.20

- Slot error type
 - I0: random
 - I1: slot deletion
 - I2: value substitution

director

request_moviename (actor=Robert Downey Jr)

Robert Downey Sr

Error Comparison

Intent error rate

Slot error rate

The RL agent has better robustness to intent errors in terms of dialogue-level performance

Slot filling is more important than intent detection in language understanding

Conclusion

- Word-level contexts in sentences help understand word meanings
 - Learning from Prior Knowledge
 - K-SAN achieves better LU via known knowledge [Chen et al., '16]
 - Learning from Observations –

MUSE learns sense embeddings with efficient sense selection [Lee & Chen, '17]

- Sentence-level contexts have different impacts on dialogue performance
 - Inference
 - App contexts improve personalized understanding via inference [Chen et al., '15]
 - Investigation of Understanding Impact
 - Slot errors degrade system performance more than intent errors [Li et al., '17]
- Contexts from different levels provide cues for better understanding in supervised and unsupervised ways

Thanks for Attention!