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▪ Introduction

▪ Word-Level Contexts in Sentences
▪ Learning from Prior Knowledge –

Knowledge-Guided Structural Attention Networks (K-SAN) [Chen et al., ‘16]

▪ Learning from Observations –

Modularizing Unsupervised Sense Embedding (MUSE) [Lee & Chen, ‘17]

▪ Sentence-Level Contexts in Dialogues
▪ Inference –

Leveraging Behavioral Patterns for Personalized Understanding [Chen et al., ‘15]

▪ Investigation of Understanding Impact –

Reinforcement Learning Based Neural Dialogue System [Li et al., ‘17]

Misunderstanding Impact [Li et al., ‘17]

▪ Conclusion
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▪ Dialogue systems are intelligent agents that are able to help users finish 
tasks more efficiently via conversational interactions.

▪ Dialogue systems are being incorporated into various devices (smart-
phones, smart TVs, in-car navigating system, etc).
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JARVIS – Iron Man’s Personal Assistant Baymax – Personal Healthcare Companion
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LU and DM significantly benefit from contexts in 
sentences and in dialogues 

Speech 
Recognition

Language Understanding (LU)
• Domain Identification
• User Intent Detection
• Slot Filling

Dialogue Management (DM)
• Dialogue State Tracking (DST)
• Dialogue Policy

Natural Language 
Generation (NLG)

Hypothesis
are there any action movies to 
see this weekend

Semantic Frame
request_movie
genre=action, date=this weekend

System Action/Policy
request_location

Text response
Where are you located?

Text Input
Are there any action movies to see this weekend?

Speech Signal

Backend Action / 
Knowledge Providers



▪ Word-level context
▪ Prior knowledge such as linguistic syntax

▪ Collocated words

▪ Sentence-level context
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Smartphone companies including apple, blueberry, and sony will be invited.

show me the flights from seattle to san francisco

(browsing movie reviews…)
Find me a good action movie this weekend

London Has Fallen is currently the number 1 action movie in America

request_movie
(genre=action, 
date=this weekend)

How misunderstanding influences the dialogue system performance

Contexts provide informative cues for better understanding

How behavioral contexts influences the user intent
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Knowledge-Guided Structural Attention Network (K-SAN)

Y.-N. Chen, D. Hakkani-Tur, G. Tur, A. Celikyilmaz, J. Gao, and L. Deng, “Knowledge as a Teacher: Knowledge-Guided 
Structural Attention Networks,” preprint arXiv: 1609.00777, 2016.



▪ Syntax (Dependency Tree) ▪ Semantics (AMR Graph)
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show

me

the

flights

from

seattle

to

san

francisco

ROOT

1.

3.

4.

2.

Sentence s show me the flights from seattle to san francisco

show

you

flight
I

1.

2.

4.

city

city

Seattle

San Francisco

3.
.

Y.-N. Chen, D. Hakkani-Tur, G. Tur, A. Celikyilmaz, J. Gao, and L. Deng, “Knowledge as a Teacher: Knowledge-Guided 
Structural Attention Networks,” preprint arXiv: 1609.00777, 2016.

Prior knowledge about syntax or semantics may guide understanding



▪ Prior knowledge as a teacher
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knowledge-guided structure {xi}

Knowledge 
Encoding

Sentence 
Encoding

Inner 
Product

u

mi

Knowledge Attention Distribution
pi

Encoded Knowledge Representation Weighted Sum

∑

h

o

Knowledge-Guided 
Representation

slot tagging sequence

s

y

show me the flights from seattle to san francisco

ROOT

Input Sentence

ht-1 ht+1ht
W W W W

wt-1

yt-1

U

wt

U

wt+1

U

V

yt

V

yt+1

V

RNN 
Tagger

Knowledge Encoding Module

CNNkg

CNNin NNout

Y.-N. Chen, D. Hakkani-Tur, G. Tur, A. Celikyilmaz, J. Gao, and L. Deng, “Knowledge as a Teacher: Knowledge-Guided 
Structural Attention Networks,” preprint arXiv: 1609.00777, 2016.

MMM



▪ Syntax (Dependency Tree) ▪ Semantics (AMR Graph)
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show

me

the

flights

from

seattle

to

san

francisco

ROOT

1.

3.

4.

2.

1. show me

2. show flights the

3. show flights from seattle

4. show flights to francisco san

Sentence sshow me the flights from seattle to san francisco

Knowledge-Guided Substructure xi

(s / show
:ARG0 (y / you)
:ARG1 (f / flight

:source (c / city
:name (d / name :op1 Seattle))

:destination (c2 / city
:name (s2 / name :op1 San :op2 Francisco)))

:ARG2 (i / I)
:mode imperative)

Knowledge-Guided Substructure xi

1. show you

2. show flight seattle

3. show flight san francisco

4. show i

show

you

flight
I

1.

2.

4.

city

city

Seattle

San Francisco

3.
.

Y.-N. Chen, D. Hakkani-Tur, G. Tur, A. Celikyilmaz, J. Gao, and L. Deng, “Knowledge as a Teacher: Knowledge-Guided 
Structural Attention Networks,” preprint arXiv: 1609.00777, 2016.



knowledge-guided structure {xi}

Knowledge 
Encoding

Sentence 
Encoding

Inner 
Product

u

mi

Knowledge Attention Distribution
pi

Encoded Knowledge Representation Weighted Sum

∑

h

o

Knowledge-Guided 
Representation

slot tagging sequence

s

y

show me the flights from seattle to san francisco

ROOT

Input Sentence

ht-1 ht+1ht
W W W W

wt-1

yt-1

U

Mwt

U

wt+1

U

V

yt

V

yt+1

V

MM

RNN 
Tagger

Knowledge Encoding Module

CNNkg

CNNin NNout

11Y.-N. Chen, D. Hakkani-Tur, G. Tur, A. Celikyilmaz, J. Gao, and L. Deng, “Knowledge as a Teacher: Knowledge-Guided 
Structural Attention Networks,” preprint arXiv: 1609.00777, 2016.

The model will pay more attention to more important substructures that may be crucial for slot tagging.
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ATIS Dataset
(F1 slot filling)

Small
(1/40)

Medium 
(1/10)

Large

Tagger (GRU) 73.83 85.55 93.11

Encoder-Tagger (GRU) 72.79 88.26 94.75

Y.-N. Chen, D. Hakkani-Tur, G. Tur, A. Celikyilmaz, J. Gao, and L. Deng, “Knowledge as a Teacher: Knowledge-Guided 
Structural Attention Networks,” preprint arXiv: 1609.00777, 2016.
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ATIS Dataset
(F1 slot filling)

Small
(1/40)

Medium 
(1/10)

Large

Tagger (GRU) 73.83 85.55 93.11

Encoder-Tagger (GRU) 72.79 88.26 94.75

K-SAN (Stanford dep) 74.60+ 87.99 94.86+

K-SAN (Syntaxnet dep) 74.35+ 88.40+ 95.00+

Syntax provides richer knowledge and more general guidance when less training data.

Y.-N. Chen, D. Hakkani-Tur, G. Tur, A. Celikyilmaz, J. Gao, and L. Deng, “Knowledge as a Teacher: Knowledge-Guided 
Structural Attention Networks,” preprint arXiv: 1609.00777, 2016.
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ATIS Dataset
(F1 slot filling)

Small
(1/40)

Medium 
(1/10)

Large

Tagger (GRU) 73.83 85.55 93.11

Encoder-Tagger (GRU) 72.79 88.26 94.75

K-SAN (Stanford dep) 74.60+ 87.99 94.86+

K-SAN (Syntaxnet dep) 74.35+ 88.40+ 95.00+

K-SAN (AMR) 74.32+ 88.14 94.85+

K-SAN (JAMR) 74.27+ 88.27+ 94.89+

Syntax provides richer knowledge and more general guidance when less training data.

Semantics captures the most salient info so it achieves similar performance with much 
less substructures

Y.-N. Chen, D. Hakkani-Tur, G. Tur, A. Celikyilmaz, J. Gao, and L. Deng, “Knowledge as a Teacher: Knowledge-Guided 
Structural Attention Networks,” preprint arXiv: 1609.00777, 2016.



▪ Joint Intent Prediction and Slot Filling

15Y.-N. Chen, D. Hakkani-Tur, G. Tur, A. Celikyilmaz, J. Gao, and L. Deng, “Knowledge as a Teacher: Knowledge-Guided 
Structural Attention Networks,” preprint arXiv: 1609.00777, 2016.

knowledge-guided structure {xi}

Knowledge 
Encoding

Sentence 
Encoding

Inner 
Product

u

mi

Knowledge Attention Distribution
pi

Encoded Knowledge Representation Weighted Sum

∑

h

o

Knowledge-Guided 
Representation

s

show me the flights from seattle to san francisco

ROOT

Input Sentence

RNN 
Tagger

Knowledge Encoding Module

CNNkg

CNNin NNout

slot tagging sequence y

ht

-1

ht+

1

h
tW W W W

wt-

1

yt-1

U

Mwt

U

wt+1

U

V

yt

V

yt+1

V

MM EOS

U

Intent

V

ht+1

Extend the K-SAN model for joint semantic frame parsing by outputting the user intent at 
last timestamp (Hakkani-Tur et al.).
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ATIS Dataset
(train: 4478/dev: 

500/test: 893)

Small (1/40) Medium (1/10) Large

Slot (Indep) Slot (Joint) Frame Slot (Indep) Slot (Joint) Frame Slot (Indep) Slot (Joint) Frame

Tagger 73.8 73.0 85.6 86.4 93.1 93.4
Encoder-Tagger 72.8 71.9 88.3 87.5 94.8 93.1
K-SAN (Syntax) 74.4+ 74.6+ 88.4+ 88.2+ 95.0+ 95.4+

K-SAN (Semantics) 74.3+ 73.4+ 88.3 88.1+ 94.9+ 95.1+

Communication
(train: 10479/dev: 
1000/test: 2300)

Small (1/40) Medium (1/10) Large

Slot (Indep) Slot (Joint) Frame Slot (Indep) Slot (Joint) Frame Slot (Indep) Slot (Joint) Frame

Tagger 45.5 50.3 69.0 69.8 80.4 79.8
Encoder-Tagger 45.5 47.7 69.4 73.1 85.7 86.0
K-SAN (Syntax) 45.0 55.1+ 69.5+ 75.3+ 85.0 84.5
K-SAN (Semantics) 45.1 55.0 69.1 74.3+ 85.3 85.2

Y.-N. Chen, D. Hakkani-Tur, G. Tur, A. Celikyilmaz, J. Gao, and L. Deng, “Knowledge as a Teacher: Knowledge-Guided 
Structural Attention Networks,” preprint arXiv: 1609.00777, 2016.
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When data is scare, K-SAN with joint parsing significantly improves the performance (slot & frame)

ATIS Dataset
(train: 4478/dev: 

500/test: 893)

Small (1/40) Medium (1/10) Large

Slot (Indep) Slot (Joint) Frame Slot (Indep) Slot (Joint) Frame Slot (Indep) Slot (Joint) Frame

Tagger 73.8 73.0 33.5 85.6 86.4 58.5 93.1 93.4 79.7
Encoder-Tagger 72.8 71.9 35.2 88.3 87.5 61.9 94.8 93.1 82.5
K-SAN (Syntax) 74.4+ 74.6+ 37.6+ 88.4+ 88.2+ 63.5+ 95.0+ 95.4+ 84.3+

K-SAN (Semantics) 74.3+ 73.4+ 37.1+ 88.3 88.1+ 63.6+ 94.9+ 95.1+ 83.8+

Communication
(train: 10479/dev: 
1000/test: 2300)

Small (1/40) Medium (1/10) Large

Slot (Indep) Slot (Joint) Frame Slot (Indep) Slot (Joint) Frame Slot (Indep) Slot (Joint) Frame

Tagger 45.5 50.3 48.9 69.0 69.8 68.2 80.4 79.8 79.5
Encoder-Tagger 45.5 47.7 52.7 69.4 73.1 71.4 85.7 86.0 83.9
K-SAN (Syntax) 45.0 55.1+ 57.2+ 69.5+ 75.3+ 73.5+ 85.0 84.5 84.5
K-SAN (Semantics) 45.1 55.0 54.1+ 69.1 74.3+ 73.8+ 85.3 85.2 83.4

Y.-N. Chen, D. Hakkani-Tur, G. Tur, A. Celikyilmaz, J. Gao, and L. Deng, “Knowledge as a Teacher: Knowledge-Guided 
Structural Attention Networks,” preprint arXiv: 1609.00777, 2016.



▪ Darker blocks and lines correspond to higher attention weights

18Y.-N. Chen, D. Hakkani-Tur, G. Tur, A. Celikyilmaz, J. Gao, and L. Deng, “Knowledge as a Teacher: Knowledge-Guided 
Structural Attention Networks,” preprint arXiv: 1609.00777, 2016.



▪ Darker blocks and lines correspond to higher attention weights

Using less training data with K-SAN allows the model pay the similar attention to 
the salient substructures that are important for tagging.

19Y.-N. Chen, D. Hakkani-Tur, G. Tur, A. Celikyilmaz, J. Gao, and L. Deng, “Knowledge as a Teacher: Knowledge-Guided 
Structural Attention Networks,” preprint arXiv: 1609.00777, 2016.
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Modularizing Unsupervised Sense Embeddings (MUSE)

G.-H. Lee and Y.-N. Chen, “MUSE: Modularizing Unsupervised Sense Embeddings,” preprint arXiv: 1704.04601, 2017.



▪ Word embeddings are trained on a corpus in an unsupervised manner

▪ Using the same embeddings for different senses for NLP tasks, e.g. 
NLU, POS tagging

21

Finally I chose Google instead of Apple.

Can you buy me a bag of apples, oranges, and bananas?

G.-H. Lee and Y.-N. Chen, “MUSE: Modularizing Unsupervised Sense Embeddings,” preprint arXiv: 1704.04601, 2017.

Words with different senses should correspond different embeddings



Smartphone companies including             blackberry, and sony will be invited.

▪ Input: unannotated text corpus

▪ Two key mechanisms
▪ Sense selection given a text context

▪ Sense representation to embed statistical characteristics of sense identity

G.-H. Lee and Y.-N. Chen, “MUSE: Modularizing Unsupervised Sense Embeddings,” preprint arXiv: 1704.04601, 2017.

apple

apple-1 apple-2

sense selection

sense embedding

22



▪ Efficient sense selection 
[Neelakantan et al., 2014; Li and 
Jurafsky, 2015]
▪ Use word embeddings as input to 

update the sense posterior given 
words

▪ Introduce ambiguity

▪ Purely sense-level embedding 
[Qiu et al., 2016]
▪ Inefficient sense selection 

exponential time complexity

23
G.-H. Lee and Y.-N. Chen, “MUSE: Modularizing Unsupervised Sense Embeddings,” preprint arXiv: 1704.04601, 2017.

The prior approaches have disadvantages about either ambiguity or inefficiency



▪ Sense selection
▪ Policy-based

▪ Value-based

24

Corpus: { Smartphone companies including apple blackberry, and sony will be invited.}

sense selection ←

re
w

ard
 sign

al ←

sen
se selectio

n
 →

sample collocation1

2

2

3

Sense selection for collocated word 𝐶𝑡′

Sense Selection Module

…𝐶𝑡′ = 𝑤𝑗𝐶𝑡′−1

𝑞(𝑧𝑗1|𝐶𝑡′) 𝑞(𝑧𝑗2|𝐶𝑡′) 𝑞(𝑧𝑗3|𝐶𝑡′)

matrix 𝑄𝑗

matrix 𝑃

… 𝐶𝑡′+1
apple andincluding sonyblackberry

𝑧𝑖1

Sense Representation Module

…𝑃(𝑧𝑗2|𝑧𝑖1) 𝑃(𝑧𝑢𝑣|𝑧𝑖1)

negative sampling

matrix 𝑉

matrix 𝑈

▪ Sense representation learning

▪ Skip-gram approximation

Sense Selection Module

…𝐶𝑡 = 𝑤𝑖𝐶𝑡−1

𝑞(𝑧𝑖1| ഥ𝐶𝑡) 𝑞(𝑧𝑖2| ഥ𝐶𝑡) 𝑞(𝑧𝑖3| ഥ𝐶𝑡)

Sense selection for target word 𝐶𝑡

matrix 𝑄𝑖

matrix 𝑃

… 𝐶𝑡+1
including apple blackberrycompanies and

Collocated likelihood serves as a reward signal to optimize the sense selection module.



▪ Learning algorithm

▪ Sense selection strategy
▪ Stochastic policy: selects the sense based on the probability distribution

▪ Greedy: selects the sense with the largest Q-value (no exploration)

▪ ε-Greedy: selects a random sense with ε probability, and adopts the greedy strategy

▪ Boltzmann: samples the sense based on the Boltzmann distribution modeled by Q-
value

25

𝑧𝑖1

Sense Representation Module

…𝑃(𝑧𝑗2|𝑧𝑖1) 𝑃(𝑧𝑢𝑣|𝑧𝑖1)

matrix 𝑈

matrix 𝑉

Sense Selection Module

…𝐶𝑡 = 𝑤𝑖𝐶𝑡−1

𝑞(𝑧𝑖1| ഥ𝐶𝑡) 𝑞(𝑧𝑖2| ഥ𝐶𝑡) 𝑞(𝑧𝑖3| ഥ𝐶𝑡)

Sense selection for target word 𝐶𝑡

matrix 𝑄𝑖

matrix 𝑃

… 𝐶𝑡+1
including apple blackberrycompanies and



Approach MaxSimC AvgSimC

Huang et al., 2012 26.1 65.7

Neelakantan et al., 2014 60.1 69.3

Tian et al., 2014 63.6 65.4

Li & Jurafsky, 2015 66.6 66.8

Bartunov et al., 2016 53.8 61.2

Qiu et al., 2016 64.9 66.1

▪ Dataset: SCWS for multi-sense embedding evaluation

26

He borrowed the money from banks. I live near to a river. correlation=?

Baseline

bank

bank-1 bank-2

0.6 0.4
He borrowed the money from 

0.6 x + 0.4 x
MaxSimC

AvgSimC



▪ Dataset: SCWS for multi-sense embedding evaluation
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Approach MaxSimC AvgSimC

Huang et al., 2012 26.1 65.7

Neelakantan et al., 2014 60.1 69.3

Tian et al., 2014 63.6 65.4

Li & Jurafsky, 2015 66.6 66.8

Bartunov et al., 2016 53.8 61.2

Qiu et al., 2016 64.9 66.1

MUSE-Policy 66.1 67.4

He borrowed the money from banks. I live near to a river. correlation=?



▪ Dataset: SCWS for multi-sense embedding evaluation
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Approach MaxSimC AvgSimC

Huang et al., 2012 26.1 65.7

Neelakantan et al., 2014 60.1 69.3

Tian et al., 2014 63.6 65.4

Li & Jurafsky, 2015 66.6 66.8

Bartunov et al., 2016 53.8 61.2

Qiu et al., 2016 64.9 66.1

MUSE-Policy 66.1 67.4

MUSE-Greedy 66.3 68.3

He borrowed the money from banks. I live near to a river. correlation=?



▪ Dataset: SCWS for multi-sense embedding evaluation
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Approach MaxSimC AvgSimC

Huang et al., 2012 26.1 65.7

Neelakantan et al., 2014 60.1 69.3

Tian et al., 2014 63.6 65.4

Li & Jurafsky, 2015 66.6 66.8

Bartunov et al., 2016 53.8 61.2

Qiu et al., 2016 64.9 66.1

MUSE-Policy 66.1 67.4

MUSE-Greedy 66.3 68.3

MUSE-ε-Greedy 67.4+ 68.6

He borrowed the money from banks. I live near to a river. correlation=?



▪ Dataset: SCWS for multi-sense embedding evaluation
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Approach MaxSimC AvgSimC

Huang et al., 2012 26.1 65.7

Neelakantan et al., 2014 60.1 69.3

Tian et al., 2014 63.6 65.4

Li & Jurafsky, 2015 66.6 66.8

Bartunov et al., 2016 53.8 61.2

Qiu et al., 2016 64.9 66.1

MUSE-Policy 66.1 67.4

MUSE-Greedy 66.3 68.3

MUSE-ε-Greedy 67.4+ 68.6

MUSE-Boltzmann 67.9+ 68.7

He borrowed the money from banks. I live near to a river. correlation=?

MUSE with exploration achieves the best sense embeddings in MaxSimC.
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Approach ESL-50 RD-300 TOEFL-80

Global Context 47.73 45.07 60.87

SkipGram 52.08 55.66 66.67

IMS+SkipGram 41.67 53.77 66.67

EM 27.08 33.96 40.00

MSSG (Neelakantan et al., 2014) 57.14 58.93 78.26

CRP (Li & Jurafsky, 2015) 50.00 55.36 82.61

MUSE-Policy 52.38 51.79 79.71

MUSE-Greedy 57.14 58.93 79.71

MUSE-ε-Greedy 61.90+ 62.50+ 84.06+

MUSE-Boltzmann 64.29+ 66.07+ 88.41+

Retro-GlobalContext 63.64 66.20 71.01

Retro-SkipGram 56.25 65.09 73.33

Conventional Word 
Embedding

Word Sense 
Disambiguation

Unsupervised Sense 
Embedding

Supervised Sense 
Embedding

MUSE with exploration achieves the state-of-the-art results for synonym selection.



▪ KNN senses sorted by collocation likelihood
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Context KNN Senses

… braves finish the season in tie with the los angeles dodgers … scoreless otl shootout 6-6 hingis 3-3 7-7 0-0 

… his later years proudly wore tie with the chinese characters for … pants trousers shirt juventus blazer socks anfield

… of the mulberry or the blackberry and minos sent him to … cranberries maple vaccinium apricot apple

… of the large number of blackberry users in the us federal … smartphones sap microsoft ipv6 smartphone

… ladies wore extravagant head ornaments combs pearl necklaces face … venter thorax neck spear millimeters fusiform

… appoint john pope republican as head of the new army of … multi-party appoints unicameral beria appointed 

MUSE learns sense embeddings in an unsupervised way and achieves the first 
purely sense-level representation learning system with linear-time sense selection
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Leveraging Behavior Patterns of Mobile Apps for 
Personalized Spoken Language Understanding

Y.-N. Chen, S. Ming, A. I Rudnicky, and A. Gershman, "Leveraging Behavioral Patterns of Mobile Applications for Personalized Spoken 
Language Understanding," in Proc. of ICMI, pages 83-86, 2015. ACM.



▪ Task: user intent prediction

▪ Challenge: language ambiguity

 User preference

✓ Some people prefer “Message” to “Email”

✓ Some people prefer “Outlook” to “Gmail”

 App-level contexts

✓ “Message” is more likely to follow “Camera”

✓ “Email” is more likely to follow “Excel”

34

send to vivian
v.s.

Email? Message?
Communication

Considering behavioral patterns in history to model SLU for intent prediction.

Y.-N. Chen, S. Ming, A. I Rudnicky, and A. Gershman, "Leveraging Behavioral Patterns of Mobile Applications for 
Personalized Spoken Language Understanding," in Proc. of ICMI, pages 83-86, 2015. ACM.



▪ Subjects’ app invocation is logged on a daily basis

▪ Subjects annotate their app activities with
▪ Task Structure: link applications that serve a common goal

▪ Task Description: briefly describe the goal or intention of the task

▪ Subjects use a wizard system to perform the annotated task by speech 

35

TASK59; 20150203; 1; Tuesday; 10:48

play music via bluetooth speaker

com.android.settings com.lge.music

Meta

Desc

App

:  Ready.

:  Connect my phone to bluetooth speaker.

:  Connected to bluetooth speaker.

:  And play music.

:  What music would you like to play?

:  Shuffle playlist.

:  I will play the music for you.

W1

U1

W2

U2

W3

U3

W4

Dialogue
SETTINGS

MUSIC

MUSIC

Y.-N. Chen, S. Ming, A. I Rudnicky, and A. Gershman, "Leveraging Behavioral Patterns of Mobile Applications for 
Personalized Spoken Language Understanding," in Proc. of ICMI, pages 83-86, 2015. ACM.
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1

Lexical Intended App

photo check CAMERA IMtell

take this photo
tell vivian this is me in the lab

CAMERA

IM

Train
check my grades on website
send an email to professor

…

CHROME

EMAIL

send

Behavioral

NULL CAMERA

.85

take a photo of this
send it to alice

CAMERA

IM

…

email

1

1

1 1

1

1 .70

CHROME

1

1

1

1

1

1

CHROME EMAIL

1

1

1

1

.95

.80 .55

User Utterance
Intended 

App

Test
take a photo of this
send it to alex

…

hidden semantics

Issue: unobserved hidden semantics may benefit understanding

Solution: use matrix factorization to complete a partially-missing matrix based on a low-
rank latent semantics assumption.

Y.-N. Chen, S. Ming, A. I Rudnicky, and A. Gershman, "Leveraging Behavioral Patterns of Mobile Applications for 
Personalized Spoken Language Understanding," in Proc. of ICMI, pages 83-86, 2015. ACM.



▪ The decomposed matrices represent low-rank latent semantics for 
utterances and words/histories/apps respectively

▪ The product of two matrices fills the probability of hidden semantics

37

1

Lexical Intended App

photo check CAMERA IMtell send

Behavioral

NULL CAMERA

.85

email

1

1

1 1

1

1 .70

CHROME

1

1

1

1

1

1

CHROME EMAIL

1

1

1

1

.95

.80 .55

𝑼

𝑾 + 𝑯 + 𝑨

≈ 𝑼 × 𝒅 𝒅 × 𝑾 + 𝑯 + 𝑨

Y.-N. Chen, S. Ming, A. I Rudnicky, and A. Gershman, "Leveraging Behavioral Patterns of Mobile Applications for 
Personalized Spoken Language Understanding," in Proc. of ICMI, pages 83-86, 2015. ACM.



▪ Model implicit feedback by completing the matrix
▪ not treat unobserved facts as negative samples (true or false)

▪ give observed facts higher scores than unobserved facts

▪ Objective:

▪ the model can be achieved by SGD updates with fact pairs

38

1

𝑓+ 𝑓− 𝑓−

𝑢

𝑥

The objective is to learn a set of well-ranked apps per utterance.

Y.-N. Chen, S. Ming, A. I Rudnicky, and A. Gershman, "Leveraging Behavioral Patterns of Mobile Applications for 
Personalized Spoken Language Understanding," in Proc. of ICMI, pages 83-86, 2015. ACM.
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1

Lexical Intended App

photo check CAMERA IMtell

take this photo
tell vivian this is me in the lab

CAMERA

IM

Train
check my grades on website
send an email to professor

…

CHROME

EMAIL

send

Behavioral

NULL CAMERA

.85

take a photo of this
send it to alice

CAMERA

IM

…

email

1

1

1 1

1

1 .70

CHROME

1

1

1

1

1

1

CHROME EMAIL

1

1

1

1

.95

.80 .55

User Utterance
Intended 

App

Reasoning with Matrix Factorization for Implicit Intents

Test
take a photo of this
send it to alex

…

Y.-N. Chen, S. Ming, A. I Rudnicky, and A. Gershman, "Leveraging Behavioral Patterns of Mobile Applications for 
Personalized Spoken Language Understanding," in Proc. of ICMI, pages 83-86, 2015. ACM.



▪ Dataset: 533 dialogues (1,607 utterances); 455 multi-turn dialogues

▪ Google recognized transcripts (word error rate = 25%)

▪ Evaluation metric: accuracy of user intent prediction (ACC)
mean average precision of ranked intents (MAP)

▪ Baseline: Maximum Likelihood Estimation (MLE)
Multinomial Logistic Regression (MLR)
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Approach Lexical Behavioral All

(a)
MLE

User-Indep 13.5 / 19.6

(b) User-Dep 20.2 / 27.9

The user-dependent model is better than the user-independent model.

Y.-N. Chen, S. Ming, A. I Rudnicky, and A. Gershman, "Leveraging Behavioral Patterns of Mobile Applications for 
Personalized Spoken Language Understanding," in Proc. of ICMI, pages 83-86, 2015. ACM.



▪ Dataset: 533 dialogues (1,607 utterances); 455 multi-turn dialogues

▪ Google recognized transcripts (word error rate = 25%)

▪ Evaluation metric: accuracy of user intent prediction (ACC)
mean average precision of ranked intents (MAP)

▪ Baseline: Maximum Likelihood Estimation (MLE)
Multinomial Logistic Regression (MLR)
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Approach Lexical Behavioral All

(a)
MLE

User-Indep 13.5 / 19.6

(b) User-Dep 20.2 / 27.9

(c)
MLR

User-Indep 42.8 / 46.4 14.9 / 18.7

(d) User-Dep 48.2 / 52.1 19.3 / 25.2

Lexical features are useful to predict intended apps for both user-independent and user-
dependent models.

Y.-N. Chen, S. Ming, A. I Rudnicky, and A. Gershman, "Leveraging Behavioral Patterns of Mobile Applications for 
Personalized Spoken Language Understanding," in Proc. of ICMI, pages 83-86, 2015. ACM.



▪ Dataset: 533 dialogues (1,607 utterances); 455 multi-turn dialogues

▪ Google recognized transcripts (word error rate = 25%)

▪ Evaluation metric: accuracy of user intent prediction (ACC)
mean average precision of ranked intents (MAP)

▪ Baseline: Maximum Likelihood Estimation (MLE)
Multinomial Logistic Regression (MLR)

42

Approach Lexical Behavioral All

(a)
MLE

User-Indep 13.5 / 19.6

(b) User-Dep 20.2 / 27.9

(c)
MLR

User-Indep 42.8 / 46.4 14.9 / 18.7 46.2+ / 50.1+ 

(d) User-Dep 48.2 / 52.1 19.3 / 25.2 50.1+ / 53.9+

Combining lexical and behavioral features improves MLR performance, which models 
explicit information from observations.

Y.-N. Chen, S. Ming, A. I Rudnicky, and A. Gershman, "Leveraging Behavioral Patterns of Mobile Applications for 
Personalized Spoken Language Understanding," in Proc. of ICMI, pages 83-86, 2015. ACM.
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Personalized Spoken Language Understanding," in Proc. of ICMI, pages 83-86, 2015. ACM.

▪ Dataset: 533 dialogues (1,607 utterances); 455 multi-turn dialogues

▪ Google recognized transcripts (word error rate = 25%)

▪ Evaluation metric: accuracy of user intent prediction (ACC)
mean average precision of ranked intents (MAP)

▪ Baseline: Maximum Likelihood Estimation (MLE)
Multinomial Logistic Regression (MLR)
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Approach Lexical Behavioral All

(a)
MLE

User-Indep 13.5 / 19.6

(b) User-Dep 20.2 / 27.9

(c)
MLR

User-Indep 42.8 / 46.4 14.9 / 18.7 46.2+ / 50.1+ 

(d) User-Dep 48.2 / 52.1 19.3 / 25.2 50.1+ / 53.9+

(e) (c) + Personalized MF 47.6 / 51.1 16.4 / 20.3 50.3+* / 54.2+*

(f) (d) + Personalized MF 48.3 / 52.7 20.6 / 26.7 51.9+* / 55.7+*

Personalized MF significantly improves MLR results by considering hidden semantics.



▪ App functionality modeling
▪ Learning app embeddings

44Y.-N. Chen, S. Ming, A. I Rudnicky, and A. Gershman, "Leveraging Behavioral Patterns of Mobile Applications for 
Personalized Spoken Language Understanding," in Proc. of ICMI, pages 83-86, 2015. ACM.

App embeddings encoding functionality help user-independent understanding
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Investigation of Language Understanding Impact for 
Reinforcement Learning Based Dialogue Systems

X. Li, Y.-N. Chen, L. Li, and J. Gao, “End-to-End Task-Completion Neural Dialogue Systems,” preprint arXiv: 1703.01008, 2017.
X. Li, Y.-N. Chen, L. Li, J. Gao, and A. Celikyilmaz, “Investigation of Language Understanding Impact for Reinforcement 
Learning Based Dialogue Systems,” preprint arXiv: 1703.07055, 2017.



▪ Dialogue management is framed as a reinforcement learning task

▪ Agent learns to select actions to maximize the expected reward

46

Environment

Observation

Action

Reward

If booking a right ticket, reward = +30

If failing, reward = -30

Otherwise, reward = -1

Agent

X. Li, Y.-N. Chen, L. Li, and J. Gao, “End-to-End Task-Completion Neural Dialogue Systems,” preprint arXiv: 1703.01008, 
2017.



▪ Dialogue management is framed as a reinforcement learning task

▪ Agent learns to select actions to maximize the expected reward
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Environment

Observation

Action

Agent

Natural Language Generation

User Agenda Modeling

User Simulator

Language Understanding

Dialogue Management

Neural Dialogue System

Text Input: Are there any action movies to see this weekend?

Dialogue Policy: request_location

X. Li, Y.-N. Chen, L. Li, and J. Gao, “End-to-End Task-Completion Neural Dialogue Systems,” preprint arXiv: 1703.01008, 
2017.



▪ NLU and NLG are trained in a supervised manner

▪ DM is trained in a reinforcement learning framework (NLU and NLG can 
be fine tuned)
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wi

B-
type

wi+

1

wi+2

O O

EO
S

<intent>

wi

B-
type

wi+

1

wi+2

O O

EO
S

<intent>

Dialogue Policy
request_location

User Dialogue Action
Inform(location=San Francisco)

Time t-1

wi

<slot>

wi+

1

wi+2

O O

EO
S

<intent
>

Language Understanding

Time t-2

Time t

Dialogue 
Management

w
0

w1 w2

Natural Language Generation 
EO
S

User 
Goal

User Agenda Modeling

User Simulator End-to-End Neural Dialogue System

Text Input
Are there any action 
movies to see this 
weekend?

Semantic Frame
request_movie
genre=action, 
date=this weekend

X. Li, Y.-N. Chen, L. Li, and J. Gao, “End-to-End Task-Completion Neural Dialogue Systems,” preprint arXiv: 1703.01008, 
2017.



▪ DM receives frame-level information
▪ No error model: perfect recognizer and LU

▪ Error model: simulate the possible errors

49

Error Model
• Recognition error
• LU error

Dialogue State 
Tracking (DST)

system dialogue acts

Dialogue Policy 
Optimization

Dialogue Management (DM)

User Model

User Simulation
user dialogue acts 
(semantic frames)

X. Li, Y.-N. Chen, L. Li, and J. Gao, “End-to-End Task-Completion Neural Dialogue Systems,” preprint arXiv: 1703.01008, 
2017.



▪ User simulator sends natural language
▪ No recognition error

▪ Errors from NLG or LU

50

Natural Language 
Generation (NLG)

Dialogue State 
Tracking (DST)

system dialogue acts

Dialogue Policy 
Optimization

Dialogue Management (DM)

User Model

User Simulation

NL
Language 

Understanding 
(LU)

X. Li, Y.-N. Chen, L. Li, and J. Gao, “End-to-End Task-Completion Neural Dialogue Systems,” preprint arXiv: 1703.01008, 
2017.



▪ Frame-level semantics

51

▪ Natural language

The RL agent is able to learn how to interact with users to complete tasks more 
efficiently and effectively, and outperforms the rule-based agent.

X. Li, Y.-N. Chen, L. Li, and J. Gao, “End-to-End Task-Completion Neural Dialogue Systems,” preprint arXiv: 1703.01008, 
2017.



X. Li, Y.-N. Chen, L. Li, J. Gao, and A. Celikyilmaz, “Investigation of Language Understanding Impact for Reinforcement 
Learning Based Dialogue Systems,” preprint arXiv: 1703.07055, 2017.
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X. Li, Y.-N. Chen, L. Li, J. Gao, and A. Celikyilmaz, “Investigation of Language Understanding Impact for Reinforcement 
Learning Based Dialogue Systems,” preprint arXiv: 1703.07055, 2017.
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The system performance is sensitive to LU errors (sentence-level contexts), for both 
rule-based and RL agents.



▪ Intent error type
▪ I0: random

▪ I1: within group

▪ I2: between group

▪ Intent error rate
▪ I3: 0.00

▪ I4: 0.10

▪ I5: 0.20

54

Intent errors slightly influence the RL system performance

Group 1: greeting(), thanks(), etc
Group 2: inform(xx)
Group 3: request(xx)

Between-group intent errors degrade the system performance more

request_moviename(actor=Robert Downey Jr)

request_year



▪ Slot error type
▪ I0: random

▪ I1: slot deletion

▪ I2: value substitution

▪ I3: slot substitution

▪ Slot error rate
▪ S4: 0.00

▪ S5: 0.10

▪ S6: 0.20

55

Slot errors significantly degrade the RL system performance

Value substitution has the largest impact on the system performance

request_moviename
(actor=Robert Downey Jr)

director Robert Downey Sr



▪ Intent error rate ▪ Slot error rate

56

The RL agent has better robustness to intent errors in terms of dialogue-level performance

Slot filling is more important than intent detection in language understanding



▪ Word-level contexts in sentences help understand word meanings
▪ Learning from Prior Knowledge –

K-SAN achieves better LU via known knowledge [Chen et al., ‘16]

▪ Learning from Observations –

MUSE learns sense embeddings with efficient sense selection [Lee & Chen, ‘17]

▪ Sentence-level contexts have different impacts on dialogue performance
▪ Inference –

App contexts improve personalized understanding via inference [Chen et al., ‘15]

▪ Investigation of Understanding Impact –

Slot errors degrade system performance more than intent errors  [Li et al., ‘17]

▪ Contexts from different levels provide cues for better understanding in 
supervised and unsupervised ways
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