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Context is God!

’_____—

N I N . A N S o = N ]

How the Context Matters Language & Interaction

in Dialogues
YUN-NUNG (VIVIAN) CHEN HTTP://VIVIANCHEN.IDV




Outline

= Introduction

= Word-Level Contexts in Sentences
= Learning from Prior Knowledge —
Knowledge-Guided Structural Attention Networks (K-SAN) [Chen et al., ‘16]
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Task-Oriented Dialogue System

= Dialogue systems are intelligent agents that are able to help users finish
tasks more efficiently via conversational interactions.

= Dialogue systems are being incorporated into various devices (smart-
phones, smart TVs, in-car navigating system, etc).
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Dialogue System Framework

Speech Signal Hypothesis
are there any action movies to
see this weekend

Language Understanding (LU)

Speech * Domain Identification
Recognition * User Intent Detection
Text Input  Slot Filling
ﬁAre there any action movies to see this weekend? Semantic Frame
Ny request_movie
genre=action, date=this weekend
Y
Dialogue Management (DM
( Natural Language .g : .( )
. * Dialogue State Tracking (DST)
Text response L Generation (NLG) . .
* Dialogue Policy

Where are you located?

System Action/Policy A
request_location \

. ,——————S L G- i - b , Backend Action /
- LU and DM significantly benefit from contexts in

==t Knowledge Providers ]
sentences and in dialogues | Q’e}




Context in Language

= Word-level context
= Prior knowledge such as linguistic syntax

show me the flights from|seattle tolsan francisco

= Collocated words

Smartphone companies includinglapple queberryI and sony will be invited.

_______________________________________________________________________________________________

= Sentence-level context

: : : request_movie
‘ (browsing movie reviews...) 9 -

Find me a good action movie this weekend (genre=§ct|on,
date=this weekend)

m

London Has Fallen is currently the number 1 action movie in America

__________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________________________________



Donald 's understand

trying

very hard

to

plant | |doubts about

Knowledge-Guided Structural Attention Network (K-SAN)

Y.-N. Chen, D. Hakkani-Tur, G. Tur, A. Celikyilmaz, J. Gao, and L. Deng, “Knowledge as a Teacher: Knowledge-Guided
Structural Attention Networks,” preprint arXiv: 1609.00777, 2016.



Prior Structural Knowledge

Sentence S show me the flights from seattle to san francisco

= Syntax (Dependency Tree) = Semantics (AMR Graph)
ROOT
y show
show
1.
me flights
m flight \
> [the from to city -\
3. v *. C'ty Seattle
seattle francisco 3.
. ¥ San Francisco
san

________________________________________________________________________________________________________

Y.-N. Chen, D. Hakkani-Tur, G. Tur, A. Celikyilmaz, J. Gao, and L. Deng, “Knowledge as a Teacher: Knowledge—Guided;;e)
Structural Attention Networks,” preprint arXiv: 1609.00777, 2016.



K-SAN: Knowledge-Guided Structural
Attention Networks

= Prior knowledge as a teacher

ROOT

show me the flights from seattle to sanfrancisco » CNN.

________________________________________________________

________________________________________________________
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Y.-N. Chen, D. Hakkani-Tur, G. Tur, A. Celikyilmaz, J. Gao, and L. Deng, “Knowledge as a Teacher: Knowledge—Guidedz:e}
Structural Attention Networks,” preprint arXiv: 1609.00777, 2016.



Sentence Structural Knowledge

= Syntax (Dependency Tree) = Semantics (AMR Graph)

Sentence Sshow me the flights from seattle to san francisco

} Knowledge-Guided Substructure X; Knowledge-Guided Substructure X;
show 1. show me 1. show you
L /\ 2. show flights the 2. show flight seattle
me flights flight \ _ _
‘/i\‘ 3. show flights from seattle city \‘ 3. show flight san francisco
2 the from to 4. show flights to francisco san C|ty 2. 4. show i

3. )
seattle francisco ARGO (y/y.ou)
‘ :ARG1 (f / flight

4. :source (c / city
2 :name (d / name :op1 Seattle))
:destination (c2 / city
:name (s2 / name :0p1 San :0p2 Francisco)))
:ARG2 (i / )
:mode imperative)

San Francisco

Y.-N. Chen, D. Hakkani-Tur, G. Tur, A. Celikyilmaz, J. Gao, and L. Deng, “Knowledge as a Teacher: Knowledge—Guidedi@)
Structural Attention Networks,” preprint arXiv: 1609.00777, 2016.



Knowledge-Guided Structures

Input Sentence S

Knowledge Encoding Module Knowledge-Guided
ROOT Sentence Representation
1/-\ NN /\/\ Encoding
show me the flights from seattle to sanfrancisco +» CNN. >
J IR R R
knowledge-guided structure {x:} E Inner [
"""""" ' T TTTTTTTTTmTTTTTTTTTTTIIIIIIII I Product i
l Knowledge Attention Distribution | i
p;(C—m - ] I i
CNN,, i
| m; - :.
Knowledge h
: \!
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Y.-N. Chen, D. Hakkani-Tur, G. Tur, A. Celikyilmaz, J. Gao, and L. Deng, “Knowledge as a Teacher: Knowledge—Guidedi@}
Structural Attention Networks,” preprint arXiv: 1609.00777, 2016.



K-SAN Experiments (crenetal, 2016)

ATIS Dataset Small Medium

(F1 slot filling) (1/40) (1/10) Large
Tagger (GRU) 73.83 85.55 93.11
Encoder-Tagger (GRU) 72.79 88.26 94.75

Y.-N. Chen, D. Hakkani-Tur, G. Tur, A. Celikyilmaz, J. Gao, and L. Deng, “Knowledge as a Teacher: Knowledge—Guided{@)
Structural Attention Networks,” preprint arXiv: 1609.00777, 2016.



K-SAN Experiments (crenetal, 2016)

ATIS Dat.a.set Small Medium Large

(F1 slot filling) (1/40) (1/10)
Tagger (GRU) 73.83 85.55 93.11
Encoder-Tagger (GRU) 72.79 88.26 94.75
K-SAN (Stanford dep) 74.60* 87.99 94.86*
K-SAN (Syntaxnet dep) 74.35% 88.40* 95.00*

___________________________________________________________________________________________________________________________________

Y.-N. Chen, D. Hakkani-Tur, G. Tur, A. Celikyilmaz, J. Gao, and L. Deng, “Knowledge as a Teacher: Knowledge—Guided{@}
Structural Attention Networks,” preprint arXiv: 1609.00777, 2016.



K-SAN Experiments (crenetal, 2016)

ATIS Dat_a.set Small Medium Large

(F1 slot filling) (1/40) (1/10)
Tagger (GRU) 73.83 85.55 93.11
Encoder-Tagger (GRU) 72.79 88.26 94.75
K-SAN (Stanford dep) 74.60* 87.99 94.86*
K-SAN (Syntaxnet dep) 74.35% 88.40* 95.00*
K-SAN (AMR) 74.32+ 88.14 94.85*
K-SAN (JAMR) 74.27* 88.27+ 94.89+

___________________________________________________________________________________________________________________________________

. Semantics captures the most salient info so it achieves similar performance with much
| less substructures

Y.-N. Chen, D. Hakkani-Tur, G. Tur, A. Celikyilmaz, J. Gao, and L. Deng, “Knowledge as a Teacher: Knowledge—Guided,:@)
Structural Attention Networks,” preprint arXiv: 1609.00777, 2016.



K-SAN for Joint Semantic Frame Parsing

= Joint Intent Prediction and Slot Filling

ROOT

show me the flights from seattle to sanfrancisco » CNN,

________________________________________________________

Knowledge Encoding Module l Knowledge-Guided

Sentence Representation
lmmm EnCOding*H‘Q
Z I\INout
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Extend the K-SAN model for joint semantic frame parsing by outputting the user intent at

last timestamp (Hakkani-Tur et al.).



Joint K-SAN Parsing Experiments

ATIS Dataset Small (1/40)

Medium (1/10)

La rge

(train: 4478/dev:

500/test; 893)  ~\°t (Indep) Slot (Joint)

Slot (Indep) Slot (Joint)  Frame

Slot (Indep) Slot (Joint)  Frame

Tagger 73.8 73.0 85.6 86.4 93.1 93.4
Encoder-Tagger 72.8 71.9 88.3 87.5 94.8 93.1
K-SAN (Syntax) 74.4% 74.6% 88.4* 88.2* 95.0* 95.4+
K-SAN (Semantics) 74.3* 73.4* 88.3 88.1* 94.9+* 95.1+

Communication Small (1/40) Medium (1/10) Large

(train: 10479/dev:

1000/test: 2300) Slot (Indep) Slot (Joint)

Slot (Indep) Slot (Joint)  Frame

Slot (Indep) Slot (Joint)  Frame

Tagger 45.5 50.3 69.0 69.8 80.4 79.8
Encoder-Tagger 45.5 47.7 69.4 73.1 85.7 86.0
K-SAN (Syntax) 45.0 55.1* 69.5* 75.3* 85.0 84.5
K-SAN (Semantics) 45.1 55.0 69.1 74.3* 85.3 85.2

Y.-N. Chen, D. Hakkani-Tur, G. Tur, A. Celikyilmaz, J. Gao, and L. Deng, “Knowledge as a Teacher: Knowledge—Guidedi@}

Structural Attention Networks,” preprint arXiv: 1609.00777, 2016.



Joint K-SAN Parsing Experiments

ATIS Dataset Small (1/40) Medium (1/10) Large
(tg?jlg/:tiizgg/g:)v: Slot (Indep) Slot (Joint)  Frame [Slot (Indep) Slot (Joint)  Frame |Slot (Indep) Slot (Joint)  Frame
Tagger 73.8 73.0 33.5 85.6 86.4 58.5 93.1 934 79.7
Encoder-Tagger 72.8 71.9 35.2 88.3 87.5 61.9 94.8 93.1 82.5
K-SAN (Syntax) 74.4* 74.6% 37.6% 88.4* 88.2* 63.5* 95.0* 95.4+ 84.3*
K-SAN (Semantics) 74.3* 73.4* 37.1* 88.3 88.1* 63.6* 94.9* 95.1* 83.8*

Communication Small (1/40) Medium (1/10) Large
(ilgé)r(])/’igsi?é%%\; Slot (Indep) Slot (Joint)  Frame |Slot (Indep) Slot (Joint)  Frame |Slot (Indep) Slot (Joint)  Frame
Tagger 45.5 50.3 48.9 69.0 69.8 68.2 80.4 79.8 79.5
Encoder-Tagger 45.5 47.7 52.7 69.4 73.1 71.4 85.7 86.0 83.9
K-SAN (Syntax) 45.0 55.1* 57.2* 69.5*% 75.3* 73.5*% 85.0 84.5 84.5
K-SAN (Semantics) 45.1 55.0 54.1* 69.1 74.3* 73.8* 85.3 85.2 83.4

____________________________________________________________________________________________________________________________________

Y.-N. Chen, D. Hakkani-Tur, G. Tur, A. Celikyilmaz, J. Gao, and L. Deng, “Knowledge as a Teacher: Knowledge—Guidedi@}
Structural Attention Networks,” preprint arXiv: 1609.00777, 2016.



Attention Analysis

= Darker blocks and lines correspond to higher attention weights

Dataset 3 —
(Large) -nonstOpﬂlghts from salt Iake-to new _ apri

flight_sto fromloc.city_name toIoc.atv_name depart_date. depart_date. depart_date.
day_name month_name day_number

Y.-N. Chen, D. Hakkani-Tur, G. Tur, A. Celikyilmaz, J. Gao, and L. Deng, “Knowledge as a Teacher: Knowledge—Guided{@)
Structural Attention Networks,” preprint arXiv: 1609.00777, 2016.



Attention Analysis

= Darker blocks and lines correspond to higher attention weights

Dataset 1 — , 3
(Small) -nonstOprightsfrom salt lake to new on saturday april ninth

Dataset 2 — .
(Medium)-nonstopflights from salt Iake-to new-on saturday  april

Dataset 3 / .
(Large) -nonstopfllghts from salt Iake- to new april
flight_stop fromloc.city_name toloc.city_name depart date. depart_date. depart_date.

day_name month_name day_number

Using less training data with K-SAN allows the model pay the similar attention to
the salient substructures that are important for tagging.

Y.-N. Chen, D. Hakkani-Tur, G. Tur, A. Celikyilmaz, J. Gao, and L. Deng, “Knowledge as a Teacher: Knowledge—Guided{@)
Structural Attention Networks,” preprint arXiv: 1609.00777, 2016.






Word Embedding

= Word embeddings are trained on a corpus in an unsupervised manner

man walked
o @
AT woman ¢
.. = :L. O swam
king &
R walking ®
queen /\
/ swimming

%[ Finally | chose Google instead of Apple. ]

:i Can you buy me a bag of apples, oranges, and bananas? ]

= Using the same embeddings for different senses for NLP tasks, e.g.
NLU, POS tagging

{
G.-H. Lee and Y.-N. Chen, “MUSE: Modularizing Unsupervised Sense Embeddings,” preprint arXiv: 1704.04601, 201@



Task — Unsupervised Sense Embeddings

= |nput: unannotated text corpus

= Two key mechanisms
= Sense selection given a text context
= Sense representation to embed statistical characteristics of sense identity

sense embedding e T
apple-1 apple-2

sense selection \/

Smartphone companies including apple blackberry, and sony will be invited.

{
G.-H. Lee and Y.-N. Chen, “MUSE: Modularizing Unsupervised Sense Embeddings,” preprint arXiv: 1704.04601, 201@



Prior Approaches

= Efficient sense selection

Context word

(observed)
= Use word embeddings as input to Sense
update the sense posterior given (latent)
words Word
(observed)

= Introduce ambiguity

= Purely sense-level embedding

Chase
ple] 8)
ban
i
p(s | w) L
bank

loaned

money

= |nefficient sense selection = Senses | S

Sz

S3

S4

S5

exponential time complexity I

Words W,

w3

|

w3

Wy

(Y YN )

Figure 1: Context-Dependent Sense Embedding Model with window size k = 1

The prior approaches have disadvantages about either ambiguity or inefficiency

G.-H. Lee and Y.-N. Chen, “MUSE: Modularizing Unsupervised Sense Embeddings,” preprint arXiv: 1704.04601, 201@

{




MUSE: Modularizing Unsupervised
Sense Embeddings

@ sample collocation Corpus: { Smartphone companies includin

gapplgblackberry, and sony will be invited.}

[ Sense selection for target word (; T '---»{ Sense selection for collocated word C,
(@ sense selection « /\_/\/\
@ f \/ negative samplin@
) ‘ ol — - — -
— — — Zi1|Cy, Zio|Cy, Zi3|Cy,
[aGult ] (a1t ) (a@s1t) )| 2|5 | PGalz))PEglzn)] (960 &) ) (021G ) (a61Ce)
(%) o .
matrixw Tle matrix Q;
als
. . ‘ g QTL trix P
matrix P l matrix U ma [IX ][ ][ ]
v || Cr— Cey = Wi Cy,
) ) =w ) e - Zix e o L Ce 20 N e i
| companies including apple blackberry andJ . J \ y
Sense Selection Module Sense Representation Module Sense Selection Module
= Sense selection = Sense representation learning
: UL Vz)
= Policy-based ) — XUz Ve
y N (QT ZJECf PJ) logﬁ(zﬂ | Z%k) = log Z~ - p(UT " )
m(zi | Ct) = : ik~ Fue
Zkfez exp(QF Y icq, Pi) = Skip-gram apprOX|mat|on
= Value-based 5
log £(zj; | zir) = log o (U2, Vz))
a(zik | Co) = o (Qjy Z Pj) S 1 U,
. ieCy T Z "~ Zuw™~Pneg 2 )[Ogg( __________ ‘E‘_)_]____



P Clz)P Cuglzi) ()
matrix
Joint Learning |...+
\ [ﬂ] J
= Learni Ng a IgO rithm Sense Representation Module

Algorithm 1: Learning Algorithm

for w; = C; € C do

sample w; = Cp (0 < [t/ — t| < m);

zir = select(Cy, w;);

zj1 = select(Cy, w;);

optimize U, V' by (4) for the sense
representation module;

optimize P, () by (5) or (7) for the sense
selection module;

= Sense selection strategy

[ R

Sense selection for target word (;

[N

(44l | [a@2lCD) | [ a@slt) |

matrix Q;

matrix P
G [ G=wi G -
Lcompanies including apple blackberry andJ

Sense Selection Module

= Stochastic policy: selects the sense based on the probability distribution

= Greedy: selects the sense with the largest Q-value (no exploration)

= g-Greedy: selects a random sense with € probability, and adopts the greedy strategy
= Boltzmann: samples the sense based on the Boltzmann distribution modeled by Q-

value

©



Contextual Word Similarity Experiments

= Dataset: SCWS for multi-sense embedding evaluation

He borrowed the money from banks. || | live near to a river. | correlation="?
Approach MaxSimC AvgSimC
Huang et al., 2012 26.1 65.7
Neelakantan et al., 2014 60.1 69.3
Baseline | Tian et al., 2014 63.6 65.4
Li & Jurafsky, 2015 66.6 66.8
Bartunov et al., 2016 53.8 61.2
Qiu et al., 2016 64.9 66.1

MaxSimC | N |
bank-1 bank-2 0.6 x nn + 0.4 x D

AveSimC
06 " 04 &

He borrowed the money from bank
e




Contextual Word Similarity Experiments

= Dataset: SCWS for multi-sense embedding evaluation

He borrowed the money from banks. || | live near to a river. | correlation="?
Approach MaxSimC AvgSimC

Huang et al., 2012 26.1 65.7

Neelakantan et al., 2014 60.1 69.3

Tian et al., 2014 63.6 65.4

Li & Jurafsky, 2015 66.6 66.8

Bartunov et al., 2016 53.8 61.2

Qiu et al., 2016 64.9 66.1

MUSE-Policy 66.1 67.4




Contextual Word Similarity Experiments

= Dataset: SCWS for multi-sense embedding evaluation

He borrowed the money from banks. || | live near to a river. | correlation="?
Approach MaxSimC AvgSimC

Huang et al., 2012 26.1 65.7

Neelakantan et al., 2014 60.1 69.3

Tian et al., 2014 63.6 65.4

Li & Jurafsky, 2015 66.6 66.8

Bartunov et al., 2016 53.8 61.2

Qiu et al., 2016 64.9 66.1

MUSE-Policy 66.1 67.4
MUSE-Greedy 66.3 68.3




Contextual Word Similarity Experiments

= Dataset: SCWS for multi-sense embedding evaluation

He borrowed the money from banks. || | live near to a river. | correlation="?
Approach MaxSimC AvgSimC
Huang et al., 2012 26.1 65.7
Neelakantan et al., 2014 60.1 69.3
Tian et al., 2014 63.6 65.4

Li & Jurafsky, 2015 66.6 66.8
Bartunov et al., 2016 53.8 61.2
Qiu et al., 2016 64.9 66.1
MUSE-Policy 66.1 67.4
MUSE-Greedy 66.3 68.3
MUSE-e-Greedy 67.4* 68.6




Contextual Word Similarity Experiments

= Dataset: SCWS for multi-sense embedding evaluation

He borrowed the money from banks. || | live near to a river. | correlation="?
Approach MaxSimC AvgSimC
Huang et al., 2012 26.1 65.7
Neelakantan et al., 2014 60.1 69.3
Tian et al., 2014 63.6 65.4

Li & Jurafsky, 2015 66.6 66.8
Bartunov et al., 2016 53.8 61.2
Qiu et al., 2016 64.9 66.1
MUSE-Policy 66.1 67.4
MUSE-Greedy 66.3 68.3
MUSE-e-Greedy 67.4* 68.6
MUSE-Boltzmann 67.9* 68.7

_______________________________________________________________________________________________________________



Synonym Selection Experiments

Approach ESL-50 RD-300 TOEFL-80
Conventional Word | Global Context 47.73 45.07 60.87
Embedding SkipGram 52.08 55.66 66.67
Word Sense IMS+SkipGram 41.67 53.77 66.67
Disambiguation EM 27.08 33.96 40.00
Unsupervised Sense| MSSG (Neelakantan et al., 2014) 57.14 58.93 78.26
Embedding CRP (Li & Jurafsky, 2015) 50.00 55.36 82.61
MUSE-Policy 52.38 51.79 79.71
MUSE-Greedy 57.14 58.93 79.71
MUSE-e-Greedy 61.90* 62.50* 84.06*
MUSE-Boltzmann 64.29* 66.07* 88.41*
Supervised Sense | Retro-GlobalContext 63.64 66.20 71.01
Embedding Retro-SkipGram 56.25 65.09 73.33

_____________________________________________________________________________________________________________________________



Qualitative Analysis

= KNN senses sorted by collocation likelihood

Context KNN Senses

... braves finish the season in tie with the los angeles dodgers ... scoreless otl shootout 6-6 hingis 3-3 7-7 0-0

... his later years proudly wore tie with the chinese characters for ... pants trousers shirt juventus blazer socks anfield
... of the mulberry or the blackberry and minos sent him to ... cranberries maple vaccinium apricot apple

... of the large number of blackberry users in the us federal ... smartphones sap microsoft ipv6 smartphone

... ladies wore extravagant head ornaments combs pearl necklaces face ... venter thorax neck spear millimeters fusiform

... appoint john pope republican as head of the new army of ... multi-party appoints unicameral beria appointed

. MUSE learns sense embeddings in an unsupervised way and achieves the first |
. purely sense-level representation learning system with linear-time sense selection |

____________________________________________________________________________________________________________________________
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Leveraging Behavior Patterns of Mobile Apps for
Personalized Spoken Language Understanding



Introduction

= Task: user intent prediction

= Challenge: language ambiguity

Communication

O
V.S.

Email? Message?

@ User preference
v Some people prefer “Message” to “Emai

|II

v Some people prefer “Outlook” to “Gmail”

@ App-level contexts
v “Message” is more likely to follow “Camera”
v “Email” is more likely to follow “Excel”

Y.-N. Chen, S. Ming, A. | Rudnicky, and A. Gershman, "Leveraging Behavioral Patterns of Mobile Applications for
Personalized Spoken Language Understanding," in Proc. of ICMI, pages 83-86, 2015. ACM.



Data Collection

= Subjects’ app invocation is logged on a daily basis

= Subjects annotate their app activities with
= Task Structure: link applications that serve a common goal

= Task Description: briefly describe the goal or intention of the task

Meta  TASK59; 20150203; 1; Tuesday; 10:48

App com.android.settings = com.lge.music

Desc \ play music via bluetooth speaker \

= Subjects use a wizard system to perform the annotated task by speech
Dialogue W, : Ready.

U, : Connect my phone to bluetooth speaker. SETTINGS
W, : Connected to bluetooth speaker.

U, : And play music. Music
W, : What music would you like to play?

U, : Shuffle playlist. Music

W, : | will play the music for you.
Y.-N. Chen, S. Ming, A. | Rudnicky, and A. Gershman, "Leveraging Behavioral Patterns of Mobile Applications for !le}
Personalized Spoken Language Understanding," in Proc. of ICMI, pages 83-86, 2015. ACM.



SLU for Intent Prediction

————— Lexical ——— Behavioral —||— Intended App —]

User Utterance Intended photo  tell check send email  nNulL CAMERA CHROME CAMERA |M CHROME EMAIL

= App .
take this photo CAMERA @ @ @
tell vivian this is me in the lab IM @ @ @
Train : |
Y '
check my grades on website CHROME @ g @ @
send an email to professor  EmalL @ @ § @ @
Test take q photo of this CA;\AMERA @ ) ) @ 957
send it to alex \ ) 3_5)' @ 70 i @ "l\:?_(,):"' {15—5,>

- Solution: use matrix factorization to complete a partially-missing matrix based on a low-

| rank latent semantics assumption. |
Y.-N. Chen, S. Ming, A. | Rudnicky, and A. Gershman, “Leveraging Behavioral Patterns of Mobile Applications for | «@}
Personalized Spoken Language Understanding," in Proc. of ICMI, pages 83-86, 2015. ACM.



Matrix Factorization (MF)

= The decomposed matrices represent low-rank latent semantics for
utterances and words/histories/apps respectively

= The product of two matrices fills the probability of hidden semantics

——— Lexica ——J— Behavioral —|— Intended App —]

photo  tell check send email NulL CAMERA CHROME  CAMERA IMCHROME EMAIL

ol ®e@ Yo |Yo
€ ) @ ~||U|xd||dx(W|+|H|+|A|)
X ® @
@ O @O e OO
WOl @w ©@ 0w
< >

W[+ [H| + |A]

Y.-N. Chen, S. Ming, A. | Rudnicky, and A. Gershman, "Leveraging Behavioral Patterns of Mobile Applications for ge’
Personalized Spoken Language Understanding," in Proc. of ICMI, pages 83-86, 2015. ACM.



Parameter Estimation

= Model implicit feedback by completing the matrix
= not treat unobserved facts as negative samples (true or false)

+ — —
= give observed facts higher scores than unobserved facts § =7
fT=(u,z™) _ u @7
T e () > () @ 1
fm=(u,z7)
1
(M | Ou,a) (Ouz) 1+ exp (—0uz)
= Objective:
> Y Ino(fp —60;)
fTe0 f~¢0
= the model can be achieved by SGD updates with fact pairs

Y.-N. Chen, S. Ming, A. | Rudnicky, and A. Gershman, "Leveraging Behavioral Patterns of Mobile Applications for g@}
Personalized Spoken Language Understanding," in Proc. of ICMI, pages 83-86, 2015. ACM.



SLU Modeling by MF

————— Lexical ——— Behavioral —||— Intended App —]

Intended

User Utterance App photo  tell check send email  NuLL CAMERA CHROME CAMERA IM CHROME EMAIL
B D 5
take this photo CAMERA @ | @ @
tell vivian this is me in the lab IM | @ I @
. 4 : ! I
Train — : 5 1 I
check my grades on website CHROME : @ @ : I @
send an email to professor EMAIL I i :
i et pref . @ | @ . @
take a photo of this CAMERA @ ‘ ; ; * @ W95 AW L
TeSt 7 j S\ ,"_N\ ,”_N‘\\ ,/'_\\ ,”_N\ ,”_N\
_ send it to alex R 4 85 /\, @ ) @ N | R PRy

< Reasoning with Matrix Factorization for Implicit Intents >

Y.-N. Chen, S. Ming, A. | Rudnicky, and A. Gershman, "Leveraging Behavioral Patterns of Mobile Applications for g@’
Personalized Spoken Language Understanding," in Proc. of ICMI, pages 83-86, 2015. ACM.



Experiments

= Dataset: 533 dialogues (1,607 utterances); 455 multi-turn dialogues

= Google recognized transcripts (word error rate = 25%)

= Evaluation metric: accuracy of user intent prediction (ACC)
mean average precision of ranked intents (MAP)

= Baseline: Maximum Likelihood Estimation (MLE)

(a) User-Indep 13.5/19.6
MLE
(b) User-Dep 20.2/27.9

Y.-N. Chen, S. Ming, A. | Rudnicky, and A. Gershman, "Leveraging Behavioral Patterns of Mobile Applications for
Personalized Spoken Language Understanding," in Proc. of ICMI, pages 83-86, 2015. ACM.




Experiments

Dataset: 533 dialogues (1,607 utterances); 455 multi-turn dialogues

Google recognized transcripts (word error rate = 25%)

Evaluation metric: accuracy of user intent prediction (ACC)
mean average precision of ranked intents (MAP)

Baseline: Maximum Likelihood Estimation (MLE)
Multinomial Logistic Regression (MLR)

(a) User-Indep 13.5/19.6
MLE

(b) User-Dep 20.2/27.9

(c) MLR User-Indep 42.8/46.4 14.9 / 18.7

(d) User-Dep 48.2 /52.1 19.3/25.2

Lexical features are useful to predict intended apps for both user-independent and user-
| dependent models.
Y.-N. Chen, S. Ming, A. | Rudnicky, and A. Gershman, "Leveraging Behavioral Patterns of Mobile Applications for '@}
Personalized Spoken Language Understanding," in Proc. of ICMI, pages 83-86, 2015. ACM.



Experiments

Dataset: 533 dialogues (1,607 utterances); 455 multi-turn dialogues

Google recognized transcripts (word error rate = 25%)

Evaluation metric: accuracy of user intent prediction (ACC)
mean average precision of ranked intents (MAP)

Baseline: Maximum Likelihood Estimation (MLE)
Multinomial Logistic Regression (MLR)

(a) User-Indep 13.5/19.6
MLE
(b) User-Dep 20.2/27.9
(c) MLR User-Indep 42.8 / 46.4 14.9/18.7 46.2*/ 50.1*
(d) User-Dep 48.2 /52.1 19.3/25.2 50.1*/ 53.9*

Combining lexical and behavioral features improves MLR performance, which models
explicit information from observations.

Y.-N. Chen, S. Ming, A. | Rudnicky, and A. Gershman, "Leveraging Behavioral Patterns of Mobile Applications for
Personalized Spoken Language Understanding," in Proc. of ICMI, pages 83-86, 2015. ACM.



Experiments

Dataset: 533 dialogues (1,607 utterances); 455 multi-turn dialogues
Google recognized transcripts (word error rate = 25%)

Evaluation metric: accuracy of user intent prediction (ACC)

mean average precision of ranked intents (MAP)

Baseline: Maximum Likelihood Estimation (MLE)

Multinomial Logistic Regression (MLR)

(a)
(b)
(c)
(d)
(e)
(f)

MLE

MLR

User-Indep
User-Dep
User-Indep
User-Dep

(c) + Personalized MF

(d) + Personalized MF

42.8 / 46.4
48.2 /52.1
47.6 / 51.1
48.3 [/ 52.7

13.5/19.6

20.2 /27.9
14.9 /18.7 46.2*/50.1*
19.3/25.2 50.1*/53.9*
16.4 /20.3 50.3** /54.2**
20.6 /26.7 51.9** /55.7**




Extension

= App functionality modeling

= Learning app embeddings
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App embeddings encoding functionality help user-independent understanding

Y.-N. Chen, S. Ming, A. | Rudnicky, and A. Gershman, "Leveraging Behavioral Patterns of Mobile Applications for {@)
Personalized Spoken Language Understanding," in Proc. of ICMI, pages 83-86, 2015. ACM.



Miscommunication
ads to misunderstanding,
~ which rarely leads to

- anything good.

Investigation of Language Understanding Impact for
Reinforcement Learning Based Dialogue Systems

X. Li, Y.-N. Chen, L.
X. Li, Y.-N. Chen, L.
Learning Based Dia




E2E Neural Dialogue System

= Dialogue management is framed as a reinforcement learning task
= Agent learns to select actions to maximize the expected reward

Observation

?
i If failing, reward = -30
I’n Otherwise, reward = -1
Environment

t
Action

X. Li, Y.-N. Chen, L. Li, and J. Gao, “End-to-End Task-Completion Neural Dialogue Systems,” preprint arXiv: 1703.010@
2017.



E2E Neural Dialogue System

= Dialogue management is framed as a reinforcement learning task
= Agent learns to select actions to maximize the expected reward

Observation

Text Input: Are there any action movies to see this weekend?

L3

User Simulator Neural Dialogue System
Natural Language Generation [ Language Understanding }
A \ 72
User Agenda Modeling [ Dialogue Management }

1 Dialogue Policy: request_location
Action

X. Li, Y.-N. Chen, L. Li, and J. Gao, “End-to-End Task-Completion Neural Dialogue Systems,” preprint arXiv: 1703.010@
2017.



E2E Neural Dialogue System

= NLU and NLG are trained in a supervised manner

= DM is trained in a reinforcement learning framework (NLU and NLG can

be fine tuned)

Text Input Time t-2
Are there any action Timet-l / EO
Time t /4

movies to see this

weekend?

Natural Language Generation

EO

User Dialogue Action

Inform(location=San Francisco)

Language Understanding\

EO

>

Semantic Frame
request_movie
genre=action,
date=this weekend

Dialogue Policy ( Dialogue

request_location Management

User Agenda Modeling

User Simulator

2017.

N

End-to-End Neural Dialogue System

X. Li, Y.-N. Chen, L. Li, and J. Gao, “End-to-End Task-Completion Neural Dialogue Systems,” preprint arXiv: 1703.010@



Frame-Level Interaction

= DM receives frame-level information
= No error model: perfect recognizer and LU

= Error model: simulate the possible errors

‘,User Simulation Dialogue Management (DM)
X user dialogue acts

_ I
Errcl)qr Mod_? (semantic frames) )[ Dialogue State j(J
° ecognition error i

e Tracking (DST)

A - Y }

Dial Poli
User Model < lalogue Folicy

system dialogue acts _ Optimization

X. Li, Y.-N. Chen, L. Li, and J. Gao, “End-to-End Task-Completion Neural Dialogue Systems,” preprint arXiv: 1703.010@
2017.



Natural Language Level Interaction

= User simulator sends natural language
= No recognition error
= Errors from NLG or LU

‘ User Simulation Dialogue Management (DM)

Language (J
Natural Language IhdersiEmdine Dlalogue State
Generation (NLG) (LU) Tracklng (DST)

D|alogue Policy }

system dialogue acts _ Optimization

I

User Model

X. Li, Y.-N. Chen, L. Li, and J. Gao, “End-to-End Task-Completion Neural Dialogue Systems,” preprint arXiv: 1703.010@
2017.



Success Rate

End-to-End Reinforcement Learning

= Frame-level semantics = Natural language
1.0 1.0
0.8 0.8
06 206
o
72}
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0.4 0:‘; 0.4
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0 —— RL Agent 0.2 —— RL Agent
— Rule Agent — Rule Agent
Upper Bound ~—— Upper Bound
0 0
0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000
Simulation Epoch Simulation Epoch

The RL agent is able to learn how to interact with users to complete tasks more
efficiently and effectively, and outperforms the rule-based agent.
X. Li, Y.-N. Chen, L. Li, and J. Gao, “End-to-End Task-Completion Neural Dialogue Systems,” preprint arXiv: 1703.010@
2017.



Why is LU so important?

Learning Curve of System Performance
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X. Li, Y.-N. Chen, L. Li, J. Gao, and A. Celikyilmaz, “Investigation of Language Understanding Impact for Reinforceme@
Learning Based Dialogue Systems,” preprint arXiv: 1703.07055, 2017.



Why is LU so important?

Learning Curve of System Performance
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The system performance is sensitive to LU errors (sentence-level contexts), for both |
rule-based and RL agents. @
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Success Rate

request_year

—reguest—meviename(actor=Robert Downey Jr)

Group 1: greeting(), thanks(), etc

Intent Error Analysis  couwaimomie

Group 3: request(xx)

= |Intent error rate = Intent error type
= |3:0.00 = |0: random
= |4:0.10 = |1: within group
= 15:0.20 = |2: between group
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request_moviename

. (eeter=Rebert-Dewneyr)
S I Ot E r rO r A n a IyS I S director  Robert Downey Sr
= Slot error rate = Slot error type
= 54:0.00 = |0: random
= S5:0.10 = |1: slot deletion
= S6:0.20 = |2: value substitution

= |3: slot substitution
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Success Rate

Error Comparison

= Intent error rate = Slot error rate
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Conclusion

= Word-level contexts in sentences help understand word meanings
= Learning from Prior Knowledge —

K-SAN achieves better LU via known knowledge [Chen et al., ‘16]
= Learning from Observations —
MUSE learns sense embeddings with efficient sense selection [Lee & Chen, ‘17]

= Sentence-level contexts have different impacts on dialogue performance
= Inference -
App contexts improve personalized understanding via inference [Chen et al., ‘15]
= |nvestigation of Understanding Impact —
Slot errors degrade system performance more than intent errors [Liet al., “17]

= Contexts from different levels provide cues for better understanding in
supervised and unsupervised ways

©
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