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Task-Oriented Dialogue System (Young, 2000)
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Speech 
Recognition

Language Understanding (LU)
• Domain Identification
• User Intent Detection
• Slot Filling

Dialogue Management (DM)
• Dialogue State Tracking (DST)
• Dialogue Policy

Natural Language 
Generation (NLG)

Hypothesis
are there any action movies to 
see this weekend

Semantic Frame
request_movie
genre=action, date=this weekend

System Action/Policy
request_location

Text response
Where are you located?

Text Input
Are there any action movies to see this weekend?

Speech Signal

Backend Database/ 
Knowledge Providers

http://rsta.royalsocietypublishing.org/content/358/1769/1389.short
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Traditional Approaches
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Natural Language Generation (NLG)

 Mapping dialogue acts into natural language

inform(name=Seven_Days, foodtype=Chinese)

Seven Days is a nice Chinese restaurant
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Template-Based NLG

 Define a set of rules to map frames to NL

7

Pros: simple, error-free, easy to control
Cons: time-consuming, rigid, poor scalability

Semantic Frame Natural Language

confirm() “Please tell me more about the product your are 
looking for.”

confirm(area=$V) “Do you want somewhere in the $V?”

confirm(food=$V) “Do you want a $V restaurant?”

confirm(food=$V,area=$W) “Do you want a $V restaurant in the $W.”
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Class-Based LM NLG (Oh and Rudnicky, 2000)

 Class-based language modeling

 NLG by decoding
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Pros: easy to implement/ 
understand, simple rules
Cons: computationally inefficient

Classes:
inform_area
inform_address
…
request_area
request_postcode

http://dl.acm.org/citation.cfm?id=1117568
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Phrase-Based NLG (Mairesse et al, 2010)

Semantic
DBN

Phrase
DBN

Charlie Chan is a Chinese Restaurant near      Cineworld in the        centre

d d

Inform(name=Charlie Chan, food=Chinese, type= restaurant, near=Cineworld, area=centre)
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Pros: efficient, good performance
Cons: require semantic alignments

realization phrase semantic stack

http://dl.acm.org/citation.cfm?id=1858838
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Deep Learning Approaches
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RNN-Based LM NLG (Wen et al., 2015)

<BOS> SLOT_NAME        serves          SLOT_FOOD               .

<BOS> Din Tai Fung       serves            Taiwanese                .

delexicalisation

Inform(name=Din Tai Fung, food=Taiwanese)

0, 0, 1, 0, 0, …, 1, 0, 0, …, 1, 0, 0, 0, 0, 0…

dialogue act 1-hot
representation

SLOT_NAME         serves            SLOT_FOOD               .                 <EOS>

Slot weight tying

conditioned on 
the dialogue act

Input

Output

http://www.anthology.aclweb.org/W/W15/W15-46.pdf#page=295
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Handling Semantic Repetition

 Issue: semantic repetition

 Din Tai Fung is a great Taiwanese restaurant that serves Taiwanese.

 Din Tai Fung is a child friendly restaurant, and also allows kids.

 Deficiency in either model or decoding (or both)

 Mitigation

 Post-processing rules (Oh & Rudnicky, 2000)

 Gating mechanism (Wen et al., 2015)

 Attention (Mei et al., 2016; Wen et al., 2015)
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Visualization
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 Original LSTM cell

 Dialogue act (DA) cell

 Modify Ct

Semantic Conditioned LSTM (Wen et al., 2015)
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Inform(name=Seven_Days, food=Chinese)

0, 0, 1, 0, 0, …, 1, 0, 0, …, 1, 0, 0, …
dialog act 1-hot
representation

d0
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Idea: using gate mechanism to control the 
generated semantics (dialogue act/slots)

http://www.aclweb.org/anthology/D/D15/D15-1199.pdf
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Attentive Encoder-Decoder for NLG

 Slot & value embedding

 Attentive meaning representation
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Attention Heat Map
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Model Comparison
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Structural NLG (Dušek and Jurčíček, 2016)

 Goal: NLG based on the syntax tree

 Encode trees as sequences

 Seq2Seq model for generation
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https://www.aclweb.org/anthology/P/P16/P16-2.pdf#page=79
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Contextual NLG (Dušek and Jurčíček, 2016)

 Goal: adapting users’ 
way of speaking, 
providing context-
aware responses

 Context encoder

 Seq2Seq model
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https://www.aclweb.org/anthology/W/W16/W16-36.pdf#page=203
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Decoder Sampling Strategy

 Decoding procedure

 Greedy search

 Beam search

 Random search
20

Inform(name=Din Tai Fung, food=Taiwanese)

0, 0, 1, 0, 0, …, 1, 0, 0, …, 1, 0, 0, 0, 0, 0…

SLOT_NAME         serves            SLOT_FOOD               .                 <EOS>
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Greedy Search

 Select the next word with the highest probability

21
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Beam Search

 Select the next k-best words and keep a beam with 
width=k for following decoding
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Random Search

 Randomly select the next word

 Higher diversity

 Can follow a probability distribution
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Chit-Chat Generation24
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Chit-Chat Bot

 Neural conversational model

 Non task-oriented
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Many-to-Many

 Both input and output are both sequences → Sequence-to-
sequence learning

 E.g. Machine Translation (machine learning→機器學
習)
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機 習器 學

[Ilya Sutskever, NIPS’14][Dzmitry Bahdanau, arXiv’15]

===
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A Neural Conversational Model

 Seq2Seq
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[Vinyals and Le, 2015]
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Chit-Chat Bot
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電視影集 (~40,000 sentences)、美國總統大選辯論
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Sci-Fi Short Film - SUNSPRING

29https://www.youtube.com/watch?v=LY7x2Ihqj
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Concluding Remarks

 The three pillars of deep learning for NLG
 Distributed representation – generalization
 Recurrent connection – long-term dependency
 Conditional RNN – flexibility/creativity

 Useful techniques in deep learning for NLG
 Learnable gates
 Attention mechanism

 Generating longer/complex sentences
 Phrase dialogue as conditional generation problem

 Conditioning on raw input sentence  chit-chat bot
 Conditioning on both structured and unstructured sources 

task-completing dialogue system
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