


- Review



Task-Oriented Dialogue System (voung, 2000)

http://rsta.royalsocietypublishing.org/content/358/1769/1389.short
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- Dialogue Management



Example Dialogue

I’m looking for a Thai restaurant.

Something in the centre.

What’s the address?

Thank you, bye.

greeting ()
request (restaurant; foodtype=Thai)

request (area)

inform (area=centre)

inform (restaurant=Bangkok
city, area=centre of town,
foodtype=Thai)

request (address)

inform (address=24 Green street)

bye ()



Example Dialogue

greeting ()

I’m looking for a Thai restaurant. request (restaurant; foodtype=Thai)

request (area)

Something in the centre. inform (area=centre)

inform (restaurant=Bangkok
city, area=centre of town,
foodtype=Thai)

What’s the address? request (address)

inform (address=24 Green street)

Thank you, bye. bye ()




Elements of Dialogue Management

-

What the user wants:

ORCRORERONO

What the system hears:

dialogue turns (Figure from Gasi¢)




Rule-Based Management

BEFIRARARER




Elements of Dialogue Management

, Dlalogue policy optimization

actlons . . ]

What the user wants:

- ®O 60 ®06

What the system hears:

observations
>

dialogue turns

(Figure from Gasic)



Dialogue Policy Optimization

Reinforcement Learning



Reinforcement Learning
24 .

-1 RLis a general purpose framework for decision making
o RLis for an agent with the capacity to act
o Each action influences the agent’s future state
o Success is measured by a scalar reward signal

o Goal: select actions to maximize future reward

Big three: action, state, reward




Scenario of Reinforcement Learning

(1)
Observation o, Action a,
> E Lo/ 0
Reward r,

If win, reward =1

If loss, reward = -1

Otherwise, reward =0

Environment

Agent learns to take actions to maximize expected reward.




Supervised v.s. Reinforcement
.

SuperViSEd 8 ”He“o" ] Say uHin




Dialogue as Reinforcement Learning
-

Problems in solving dialogue as an RL task

1) Optimization problem size
Belief dialogue state space is large and continuous
System action space is large

2) Knowledge environment (user)
Transition probability is unknown (user status)
How to get rewards

3) RL takes long time to converge



Large Belief Space and Action Space
64
-1 Solution: perform optimization in a reduced
summary space built according to the heuristics

Belief Dialogue

----------------- System Action
State .

Summary
Function

Master
Function

Summary Summary Policy _
me Summary Action

Dialogue State



Transition Probability and Rewards

Solution: learn from a simulated user

_User Simulation
&

Distribution over
user dialogue acts
(semantic frames)

Dialogue Management (DM)

>

I
Dialogue State (J

_ Tracking (DST) )

\ 4

Error Model
* Recognition error
* LUerror

User Model <€

Reward Model

System dialogue acts

f Dialogue Policy )
Optimization

{

Reward

T[

Backend Action / ]

Knowledge Providers




Agent and Environment

At time step t

action O The agent
at

Executes action a,
Receives observation o,

reward Receives scalar reward ry

r, o The environment

Receives action g,

observation Emits observation o,,;

0, Emits scalar reward r,,;

o tincrements at env. step




State
e

Experience is the sequence of observations, actions, rewards

01,711,471, ..., Qt—-1,0¢, T¢

State is the information used to determine what happens next
o what happens depends on the history experience

The agent selects actions
The environment selects observations/rewards

The state is the function of the history experience

st = f(o1,71, a1, ..., Gt—1, 04, T¢)



POMDP Policy Optimization
-
Finding value function associated with optimal
policy, i.e. the one that generates maximal return

o Problem: tractable only for very simple cases
(Kaelbling et al., 1998)

o Alternative solution: discrete space POMDPs can be
viewed as a continuous space MDP with states as
belief states p; = b(st)




Markov Decision Process (MDP)
2y
1 Belief state from tracking: b, = s,

-1 System actions: a,
= Rewards: r,

1 Transition probability: p(b,,,|b,, a,)




DM as Markov Decision Process (MDP)

Belief dialogue states (continuous)
Reward — a measure of dialogue quality

Markov decision process (MDP) &
reinforcement learning

System actions —
Dialogue Policy Optimization



Dialogue Policy Optimization

Dialogue management in a RL framework
User

Natural Language Generation
Action A \ Reward R [ Observation O

Dialogue Manager | Agent

Environment

Language Understanding

- The optimized dialogue policy selects the best action that maximizes the future reward.
- Correct rewards are a crucial factor in dialogue policy training



Reward
e

Reinforcement learning is based on reward hypothesis

A reward r, is a scalar feedback signal
o Indicates how well agent is doing at step t

Reward hypothesis: all agent goals can be desired by maximizing
expected cumulative reward



Reward for RL = Evaluation for System

Dialogue is a special RL task

m Human involves in interaction and rating (evaluation) of a
dialogue

m Fully human-in-the-loop framework

Rating: correctness, appropriateness, and adequacy
- Expert rating high quality, high cost
- User rating unreliable quality, medium cost

- Objective rating | Check desired aspects, low cost




Reinforcement Learning for Dialogue
Policy Optimization

Language s
User input (0) —> .
Dialogue (s,a,r,5")
Policy
a =mn(s)
Optimize
Language / o Q(s,a)
Response <—— (response) a sy
generation Ve
B
|
. . # of turns maximized;
Social ChatBots Chat history System Response Intrinsically motivated reward
. . User current Answers to current Relevance of answer;
InfoBots (interactive O‘/A) question + Context question # of turns minimized
. User current input + System dialogue act w/ Task success rate;
Task-Completion Bots Context slot value (or API calls) # of turns minimized



Dialogue Reinforcement Learning Signal

Typical reward function

m -1 for per turn penalty

m Large reward at completion if successful
Typically requires domain knowledge

¢/ Simulated user

¢ Paid users (Amazon Mechanical Turk)

® Real users

The user simulator is usually required for
~dialogue system training before deployment




Sequential Decision Making
e
Goal: select actions to maximize total future reward
o Actions may have long-term consequences
o Reward may be delayed

o It may be better to sacrifice immediate reward to gain more
long-term reward




Deep Reinforcement Learning

Observation

>

Function
Input

Used to pick the

best function

Action

Function
Output

Reward

<
Environment



Reinforcement Learning Approach

Value-Based

Policy-Based
Model-Based



Major Components in an RL Agent
-

An RL agent may include one or more of these
components

o Policy: agent’s behavior function

o Value function: how good is each state and/or action
o Model: agent’s representation of the environment



Policy
324
-1 A policy is the agent’s behavior

-1 A policy maps from state to action
o Deterministic policy: a = 7T(8)
o Stochastic policy: m(a) = P(a | )




Value Function
e

A value function is a prediction of future reward (with action
a in state s) R T

+ +
EHRE = &

Q-value function gives expected total reward
o from state S and action 4 e

Bk
L

o under policy 7T

¥ T g

o with discount factor 7Y 5 Tz 5

T 2
Q"(s,a) = Elry1 +yreo+ 91443+ . | 8,
Value functions decompose into a Bellman equation

Q7(s,a) =By y[r +7Q7(s',a') | s, ]




Optimal Value Function
-

An optimal value function
O is the maximum achievable value
Q*(s,a) =max Q" (s,a) = Q”*(s, a)
o allows us to act optiT*naIIy
7 (s) = arg max Q*(s, a)
0 informally maximizes over all decisions

. 2
Q*(s,a) = ry+ymax ryo+y  max ryg+...
at+1 at+4-2

=TT maXQ (St41, Gr41)

0 decompose into a BeIIman equation
Q"(s,a) = Ey[r + ymax Q*(s',d') | 5,4



Reinforcement Learning Approach

Policy-based RL
o Search directly for optimal policy 7T

Model-based RL
o Build a model of the environment
o Plan (e.g. by lookahead) using model



Maze Example

Rewards: -1 per time-
step

Actions: N, E, S, W
States: agent’s location

Start

Goal




Maze Example: Policy

Rewards: -1 per time-
step

Actions: N, E, S, W
States: agent’s location




Maze Example: Value Function

Rewards: -1 per time-

step
Actions: N, E, S, W
Start | -16 | -15 -12 ) .
States: agent’s location

n

. .




Categorizing RL Agents

Value-Based Model-Free
O o Policy and/or Value
o Value Function Function
Policy-Based =
o Policy Model-Based
O o Policy and/or Value
Actor-Critic Function

. o Model
o Policy

o Value Function



RL Agent Taxonomy

fodel-Free
Value Function Actor Policy
ritic
Value-Based -Based
pdel-Based




Value-Based Deep RL

Dynamic Programming
Monte-Carlo
Temporal-Difference
Q-Learning



Dynamic Programming
e d

-1 Model-based V(St) < EW[RHl + ’YV(SHl)]
s

o Evaluate policy

0 Update policy °



Dynamic Programming
-

GridWorld example

A1 A2 A: 10 R:-3 R:10 A1
V. 18.26 V:31.13 V, 2667 V: 24.92 V:7.68 V:3.35
v s + - v
R: 10 A1 R:-3 A:g R:-1 A1
Vi 13.27 V:18.08 V:26.48 V:23.96 vi9.72 V:3.34

3 + +
¥
R:-4 A3 A4 A2 R:-3 A: -80 R: -1
V:0.88 Vi1.45 v:9.3 V. 27.83 V: 60.58 V: 30.34 V:0.98
> L . v n 4+
A:-40 A:-30 A:-10 A1 R:30 A1 A1
V:0 V0 V. 097 Vi 11.69 Vi 64.3 V: 80.36 Vi41.4
¥ ¥ * > « €
A:-40 R:-30 A:-10 A -12 A: -30 A1 A5
Vo V0 V0 Vo V:14.52 V. 24.88 Vi T.T1
+ B - * *
A:-40 A:-30 A:-10 A -12 A:-30 A R:3
V0 v:0 ) '] V0 ] V:0.72
Ly - ) < 4 4




Monte-Carlo RL
.
Characteristics
o Learn from complete episodes of experience
o Model-free: no knowledge of MDP transitions / rewards
o Value = mean return
MC policy
0 Goal: learn Ur from episodes under policy 7T
$1, A1, 71y oy Sp ~ T
o Return is the total discounted reward
Gt =Tl + YTt+2 + ...+ ’)/T_l’I“T
o Value function is the expected return

v.(st) = E|Gy | 8]



Monte-Carlo
e

Model-free prediction




Temporal-Difference RL
.

Characteristics

o Learn from incompele episodes of experience

o Model-free: no knowledge of MDP transitions / rewards
o Update a guess toward a guess

TD policy

o Goal: learn v, online from experience under policy 7

o Value function is updated toward estimated return

V(S) < V(S + O‘(Cit —V(5))
V(Sy) = V(S +a(R1+7V (Sis1) =V (Sh))

TD target



Temporal-Difference
-

Model-free prediction

V(Sy) < V(Sp)+a(R1+yV (Sei1) =V (St))

ie




Q-Lea rniNg — Value Function Approximation
-
Value functions are represented by a lookup table
Q(s,a) Vs,a
O too many states and/or actions to store
o too slow to learn the value of each entry individually

Values can be estimated with function approximation

Q(s,a,w) Q(s.a;.w) -+ Q(s.a,,w)

oot
~ N AN

w

T3




Q-Networks
e

Q-networks represent value functions with weightsw
Q(s,a,w) ~ (s, a)

O generalize from seen states to unseen states
o update parameter W for function approximation

Qfs,a,w) Q(s.a;.w) -+ Q(s.a,,w)

Pt
~

w

e




Q-Learning
-
Goal: estimate optimal Q-values
o Optimal Q-values obey a Bellman equation

Q'(s5,0) = Byl + ymax Q'(s', )| 5,0

learning target

o Value iteration algorithms solve the Bellman equation

QExs, a) = Eg[r + ymax (gfs’, a) | s, ql



Deep Q-Networks (DQN)

-
Represent value function by deep Q-network with weights qp

Q(s,a,w) ~ Q*(s,a)

Objective is to minimize mean square error (MSE) loss by SGD

2
Lw)=E ([T +ymaxQ(s, a' ’w}— Q(s, a, w)) ]

learning target
Leading to the following Q-learning gradient

agijw) —E Kr +ymax Q(s, a', w) — Q(s, a, w)) Qs 4, w)]

= Issue: naive Q-learning oscillates or diverges using NN due to:
1) correlations between samples 2) non-stationary targets



Stability Issues with Deep RL
.
Naive Q-learning oscillates or diverges with neural nets
1. Data is sequential

Successive samples are correlated, non-iid (independent and identically
distributed)

2. Policy changes rapidly with slight changes to Q-values
Policy may oscillate
Distribution of data can swing from one extreme to another
3. Scale of rewards and Q-values is unknown

Naive Q-learning gradients can be unstable when backpropagated



Stable Solutions for DQN
e

DQN provides a stable solutions to deep value-based RL
1. Use experience replay

Break correlations in data, bring us back to iid setting
Learn from all past policies
2. Freeze target Q-network
Avoid oscillation
Break correlations between Q-network and target
3. Clip rewards or normalize network adaptively to sensible range
Robust gradients



Stable Solution 1: Experience Replay
-

To remove correlations, build a dataset from agent’s experience

o Store transition (St, Aty Tt 1, 5t+1) in replay memory D
o Sample random mini-batch of transitions (s, a, 7, S') from D

51,41, 2,5
Sp, a2, 13,53 — s.ar,s

53, a3, 4, 54

Sty dts Me+1,St41 — | Sty dts Me41, Se+1

o Optimize MSE between Q-network and Q-learning targets

L(’LU) - Es,a,’r,s’wD

a

2
(fr +ymax Q(s', d’, w) — Q(s, a, w)) ]



Stable Solution 2: Fixed Target Q-Network
-
To avoid oscillations, fix parameters used in Q-learning target
o Compute Q-learning targets w.r.t. old, fixed parameters 1~
r+ 7 max Q(s',a',w™)

a
o Optimize MSE between Q-network and Q-learning targets

L(’LU) — Es,a,r,s’wD

a

2
(r + sz}XQ(S’, a, ”w_) o Q(S’ a@, w)) ]

o Periodically update fixed parameters w < w



Stable Solution 3: Reward / Value Range
e
To avoid oscillations, control the reward / value range
o DQN clips the rewards to [-1, +1]

Prevents too large Q-values
Ensures gradients are well-conditioned



Other Improvements: Double DQN
o
Nature DQN

L(w) = Es,a,r,s’wD

2
(’r T q/mz}xQ(s’, a,w”) — Qs,a, w)) ]

Double DQN: remove upward bias caused by max Q(s,a,w)
o Current Q-network W is used to select actions
o Older Q-network W is used to evaluate actions

L(’LU) — Es,a,ns’wD

2
(r QS arg max Q(s, ', w), W) — Qls,a, w)) ]



Other Improvements: Prioritized Replay
T

Prioritized Replay: weight experience based on surprise
o Store experience in priority queue according to DQN error

oy Q(s', ' w) = Qs, 0, w)



Other Improvements: Dueling Network
T

Dueling Network: split Q-network into two channels

Q(s,a) =V (s,v)+ A(s, a,w)

o Action-independent value function V(s, v)
Value function estimates how good the state is
o Action-dependent advantage function A(s, a, w)

Advantage function estimates the additional benefit



DQN for Dialogue Management (Lietal, 2017)

Goal: end-to-end learning of values Q(S, a) from interactions

2
L(w) =K., oD (fr + Y max Q(s', a, w_) — Q(Sa a, w)) ]

that L
a

O Input: state is the combination of user history observation,
previous system action, database returned results

o Output: Q(s, a) for all available system action a
o Reward: -1 per turn; large reward for successful task

<—>{ Backend DB ]

Semantic Frame

request_movie
_. genre=action, DQN-
S date=this weekend Based DM

Simulated User
T System Action/Policy

request_location




E2E RL-Based System (zhao and Eskenazi, 2016)

http://www.aclweb.org/anthology/W/W16/W16-36.pdf#page=19

Joint learning ; Diog Acts -

i Entities 1

. . ! NLU »| State Tracker| |

o NLU, DST, Dialogue Policy ! :

Deep RL for training ~  (Cwe)d) i o

o Deep Q-network System E —

Utterence NLG Verbal. Dialog Policy '

o Deep recurrent network s B i
b ol . S : "\/—/\/\/,\‘//\Hybrid-RL

= ] [ ] [Can ] [em ] [Cow ] / '_/"\/\—/ Baseline

/ ~—Baseline

m 77777 R = ¥ A A &0
gg ‘ %%O_())% é * \/ \/ =Hybrid-RL
LST™ Bt LSTM B NS C : w0 / / e

CIe1o) CIe1o) CIe1®) A NeY
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E2E Task-Completion Bot (TC-Bot) (Lietal., 2017)

https://arxiv.org/abs/1703.01008

Time t-
Text Input Time t-1 w.

Are there any action movies timet
to see this weekend?

Semantic Frame

Natural Language Generation (NLG) W, W,
request_movie
genre=action,

EOS
<slot> intent:
date=this weekend

Dialogue ‘T.’.

Management YERED)

User Dialogue Action System Action /

Inform(location=San Francisco) Policy
1

request_location
I—) User Agenda Modeling <€

User Simulator

Idea: supervised learning for each component and reinforcement
learning for end-to-end training the neural dialogue system



E2E Task-Completion Bot (TC-Bot) (Lietal., 2017)

https://arxiv.org/abs/1703.01008

User goal: Two tickets for “the witch” tomorrow 9:30 PM at regal meridian 16, Seattle.

RULE BASED SYSTEM
User: Can | get 2 tickets for the witch?
Agent: Which theater do you want?
User: Regal meridian 16
Agent: What time would you like to see it?
User: 9:30 pm
Agent: What date would you like to see it?
User: Tomorrow! —
Agent: How many people are you?
User: Just two adults.
Agent: What is your location? ~
User: Seattle!

(Agm What kind of video format do%u like?
User: Oh, any kind is okay.
Agent: Do you have any price constraint?
User: No, | don’t care. Y
Agent: Great - | was able to purchase 2 tickets for
you to see the witch tomorrow at regal meridian 16
theater in Seattle at 9:30 pm.
User: Thank you.
Agent: Thank you!

— —

REINFORCEMENT LEARNING SYSTEM

User: Can | get 2 tickets for the witch?

Agent: What date would you like to see it?

User: Tomorrow

Agent: Which theater do you prefer?

User: Regal meridian 16

Agent: What is your location?

User: Seattle

Agent: What time would you like to see it?

User: 9:30 pm.

Agent: Great - | was able to purchase 2 tickets for
you to see the witch tomorrow at regal meridian
16 theater in Seattle at 9:30 pm.

User: Thanks.

Agent: Thanks!

RL Agent

interact with users for task completion

0 100 200 300 400 500 600
Simulation Epoch



n Policy-Based Deep RL

Estimate How Good An Agent’s Behavior is



Deep Policy Networks
-
Represent policy by deep network with weights U

a=m(a|su) a=mr(s,u)
stochastic policy deterministic policy

Obijective is to maximize total discounted reward by SGD

Lu) =FE[ri+yra+vrs+ - | (-, u)]



Policy Gradient
-
The gradient of a stochastic policy 7T(CL ‘ S, u) is given by

agi@ Tk [alog Wegy 1) (m)]

The gradient of a deterministic policy 7T(S, ”LL) is given by

L), [P st




Actor-Critic (Value-Based + Policy-Based)
-
Estimate value function Q(S, a, ’w) ~ QW(Sa a)
Update policy parameterst by SGD
o Stochastic policy

OL(u) T lalog m(a | s, u)

ou ’ ou

o Deterministic policy

OL(u) . laQ(s,a, w) 6@]
ou ” da ou

Q-networks tell whether a policy is good or not
Policy networks optimize the policy accordingly

Qls.a.u)]




Deterministic Deep Policy Gradient

Goal: end-to-end learning of control policy from pixels
o Input: state is stack of raw pixels from last 4 frames
o Output: two separate CNNs forQandnm

Fully-connected layer
Convelutional layer Convelutional layer of rectified linear units
of rectified linear unics of rectified linear units

32 4x4 filters

4xB4x84
80 km/h
N 3
Stack of 4 previous Fully d layer
frames Convolutional layer Cenvelutional layer of rectified linear units
of rectified linear units of rectified linear units

Lillicrap et al., “Continuous control with deep reinforcement learning,” arXiv, 2015.



E2E RL-Based Info-Bot (Dhingra et al., 2016)

https://arxiv.org/abs/1609.00777

Movie=?; Actor=Bill Murray; Release Year=199
Knowledge Base (head, relation, tail)

(Groundhog Day, actor, Bill Murray)
(Groundhog Day, release year, 1993)
(Australia, actor, Nicole Kidman)

(Mad Max: Fury Road, release year, 2015)

Find me the Bill Murray’s movie.

When was it released? 1\

>~/ think it came out in 1993.

User ‘ Groundhog Day is a Bill Murray KB-InfoBot
movie which came out in 1993. »
User KB-InfoBot 1.0 RN

g ™ 'd .
Utterance Feature Belief
—

o /\/\/\/\/\/\/\//\/\

Average Rewards
o
@

_—
| Extractor | | Trackers | o
System SimpleRL-NokB
Action e 3 08 —  SimpleRL-HardKB
Policy Beliefs 05 —  SimpleRL-SoftkB
— End-to-End
. Network L Summary 04
50000 100000 150000 200000 250000 300000 350000 400000

Number of Dialogues



Dialogue Management Evaluation
T

Metrics
o Turn-level evaluation: system action accuracy
o Dialogue-level evaluation: task success rate, reward



Concluding Remarks

Dialogue policy optimization of DM solves MDP via RL

Value-based

o Dynamic programming

o Monte-Carlo
o Temporal-difference 9
o Q-learning 2> DQN

Policy-based
o Deep policy gradient

Actor-critic states @ @ @ @ @

What the system hears:

dialogue turns

-




