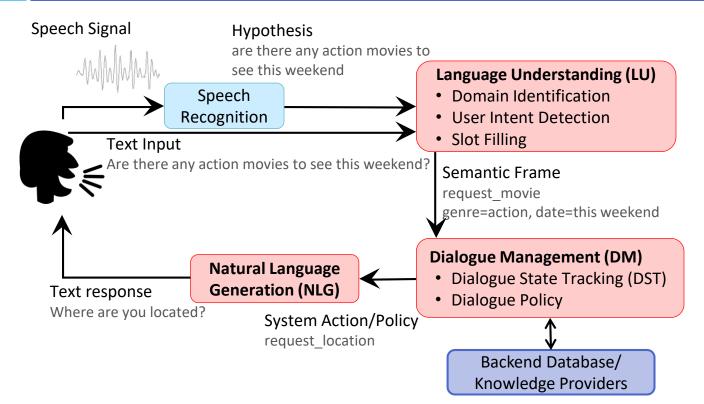


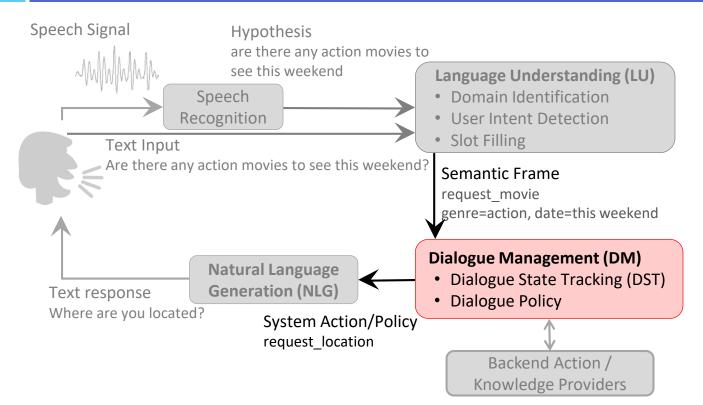
Task-Oriented Dialogue System (Young, 2000)

http://rsta.royalsocietypublishing.org/content/358/1769/1389.short



Task-Oriented Dialogue System (Young, 2000)

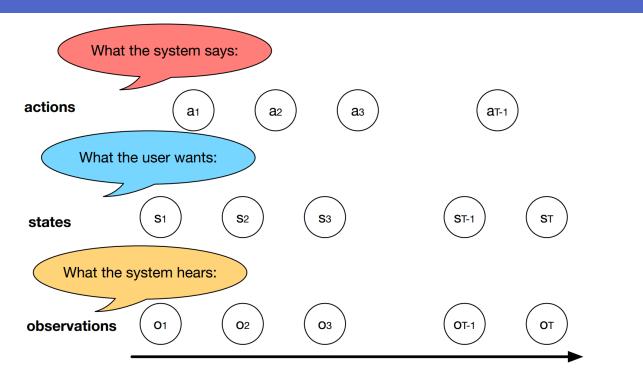
http://rsta.royalsocietypublishing.org/content/358/1769/1389.short



Example Dialogue

Example Dialogue

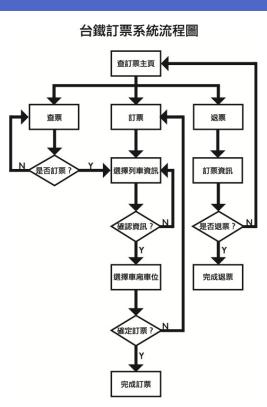
Elements of Dialogue Management



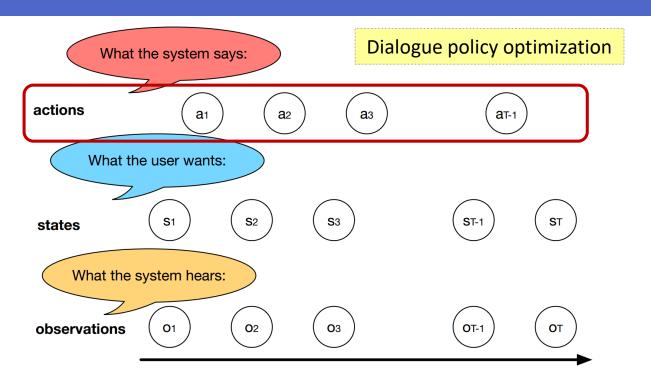
dialogue turns

(Figure from Gašić)

Rule-Based Management



Elements of Dialogue Management



dialogue turns

(Figure from Gašić)

¹¹ Dialogue Policy Optimization

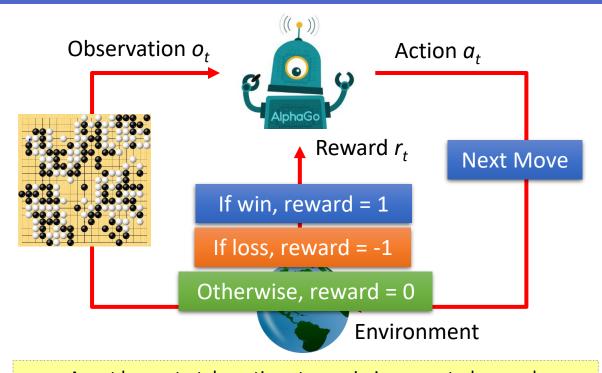
Reinforcement Learning

Reinforcement Learning

- 12
- RL is a general purpose framework for decision making
 - RL is for an *agent* with the capacity to *act*
 - Each action influences the agent's future state
 - Success is measured by a scalar *reward* signal
 - Goal: select actions to maximize future reward

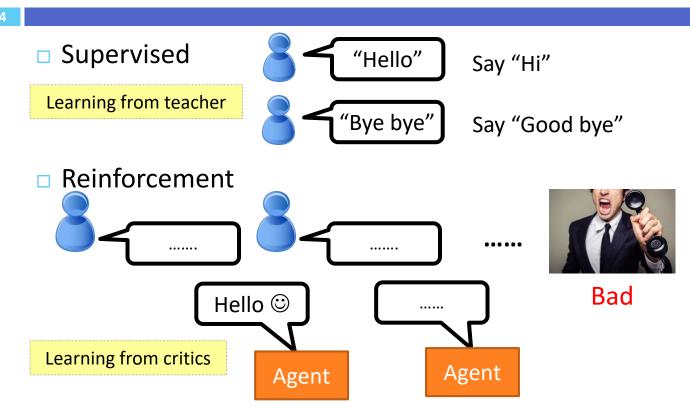
Big three: action, state, reward

Scenario of Reinforcement Learning



Agent learns to take actions to maximize expected reward.

Supervised v.s. Reinforcement



Dialogue as Reinforcement Learning

- Problems in solving dialogue as an RL task
 - 1) Optimization problem size
 - Belief dialogue state space is large and continuous
 - System action space is large

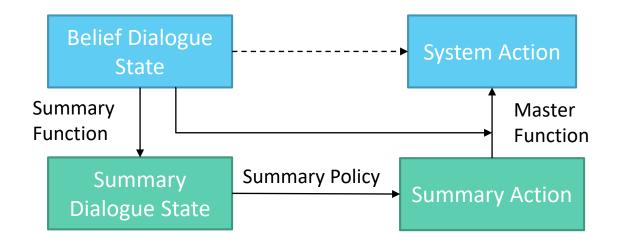
Solution: learn in reduced summary space

- 2) Knowledge environment (user)
 - Transition probability is unknown (user status)
 - How to get rewards
- 3) RL takes long time to converge

Solution: learn in interaction with a simulated user

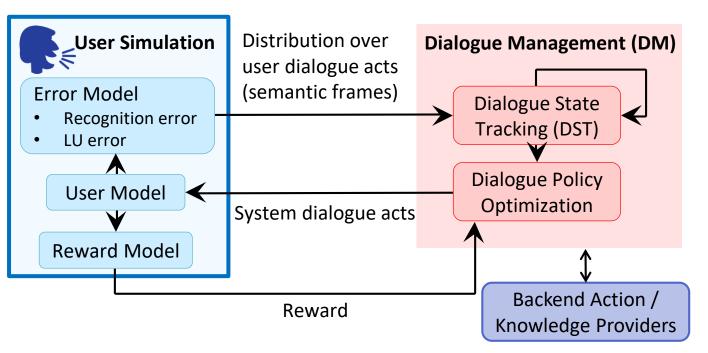
Large Belief Space and Action Space

Solution: perform optimization in a <u>reduced</u> <u>summary space</u> built according to the heuristics

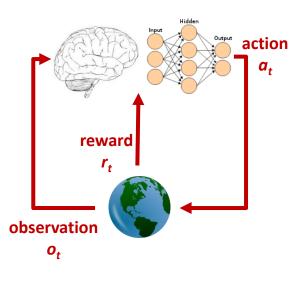


Transition Probability and Rewards

Solution: learn from a simulated user



Agent and Environment



- □ At time step *t*
 - The agent
 - Executes action *a_t*
 - Receives observation o_t
 - Receives scalar reward r_t
 - The environment
 - Receives action a_t
 - Emits observation o_{t+1}
 - Emits scalar reward r_{t+1}
 - t increments at env. step

State

Experience is the sequence of <u>observations</u>, <u>actions</u>, <u>rewards</u>

$$o_1, r_1, a_1, \dots, a_{t-1}, o_t, r_t$$

State is the information used to determine what happens next

- what happens depends on the <u>history</u> experience
 - The agent selects actions
 - The environment selects observations/rewards
- The state is the function of the history experience

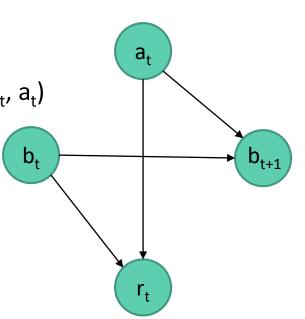
$$s_t = f(o_1, r_1, a_1, \dots, a_{t-1}, o_t, r_t)$$

POMDP Policy Optimization

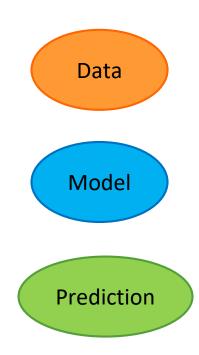
- 20
- Finding <u>value function associated with optimal</u> <u>policy</u>, i.e. the one that generates maximal return
 - Problem: tractable only for very simple cases (Kaelbling et al., 1998)
 - Alternative solution: discrete space POMDPs can be viewed as a continuous space MDP with states as belief states $b_t = b(s_t)$

Markov Decision Process (MDP)

- 21
- Belief state from tracking: b_t = s_t
- System actions: a_t
- Rewards: r_t
- **Transition probability:** $p(b_{t+1}|b_t, a_t)$



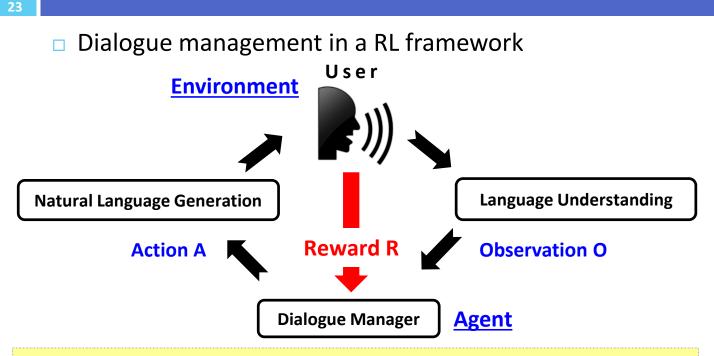
DM as Markov Decision Process (MDP)



- Belief dialogue states (continuous)
- Reward a measure of dialogue quality

- Markov decision process (MDP) & reinforcement learning
 - System actions Dialogue Policy Optimization

Dialogue Policy Optimization



The optimized dialogue policy selects the best action that maximizes the future reward. Correct rewards are a crucial factor in dialogue policy training

Reward

- Reinforcement learning is based on reward hypothesis
- \Box A reward r_t is a scalar feedback signal
 - Indicates how well agent is doing at step t

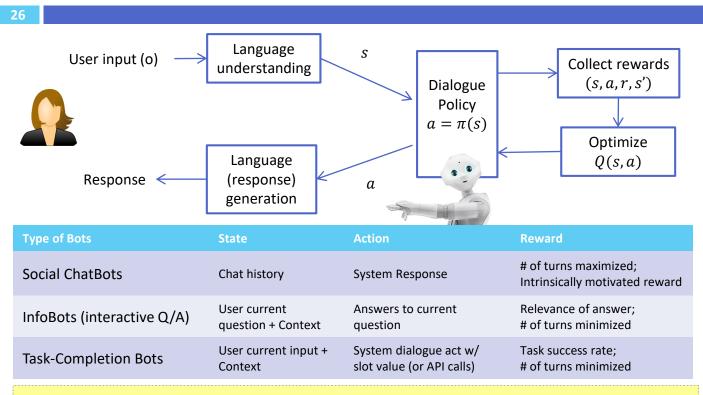
Reward hypothesis: all agent goals can be desired by maximizing expected cumulative reward

Reward for RL \cong Evaluation for System

- Dialogue is a special RL task
 - Human involves in <u>interaction</u> and <u>rating</u> (evaluation) of a dialogue
 - Fully human-in-the-loop framework
- Rating: correctness, appropriateness, and adequacy

- Expert rating	high quality, <mark>high</mark> cost
- User rating	unreliable quality, medium cost
- Objective rating	Check desired aspects, low cost

Reinforcement Learning for Dialogue Policy Optimization



Goal: develop a generic deep RL algorithm to learn dialogue policy for all bot categories

Dialogue Reinforcement Learning Signal

Typical reward function

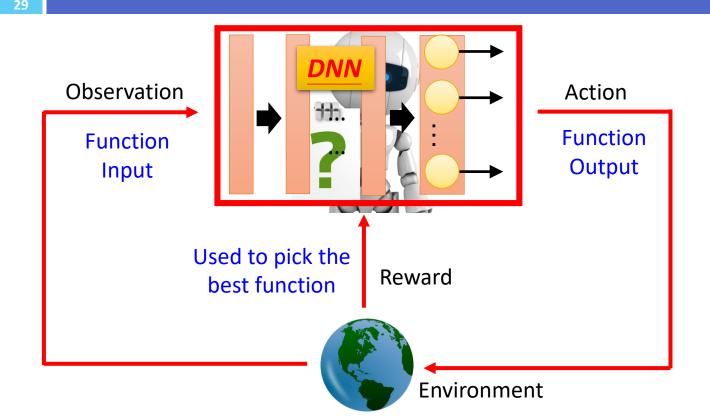
- -1 for per turn penalty
- Large reward at completion if successful
- Typically requires domain knowledge
 - Simulated user
 - Paid users (Amazon Mechanical Turk)
 - ✗ Real users

The user simulator is usually required for dialogue system training before deployment

Sequential Decision Making

- Goal: select actions to maximize total future reward
 - Actions may have long-term consequences
 - Reward may be delayed
 - It may be better to sacrifice immediate reward to gain more long-term reward

Deep Reinforcement Learning



³⁰ Reinforcement Learning Approach

Value-Based Policy-Based Model-Based

Major Components in an RL Agent

- An RL agent may include one or more of these components
 - **Policy**: agent's behavior function
 - Value function: how good is each state and/or action
 - **Model**: agent's representation of the environment

Policy

- A policy is the agent's behavior
- A policy maps from state to action
 - Deterministic policy: $a = \pi(s)$
 - $\hfill\square$ Stochastic policy: $\pi(a) = P(a \mid s)$

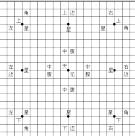
Value Function

- A value function is a <u>prediction of future reward</u> (with action *a* in state *s*)
 - Q-value function gives <u>expected total reward</u>
 - $\hfill\square$ from state S and action a
 - lacksquare under policy π
 - ${\scriptstyle \Box}\,$ with discount factor $\,\gamma\,$

$$Q^{\pi}(s,a) = \mathbb{E}[r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \dots \mid s,a]$$

Value functions decompose into a Bellman equation

$$Q^{\pi}(s,a) = \mathbb{E}_{s',a'}[r + \gamma Q^{\pi}(s',a') \mid s,a]$$



Optimal Value Function

An optimal value function is the maximum achievable value $Q^*(s, a) = \max Q^{\pi}(s, a) = Q^{\pi^*}(s, a)$ allows us to act optimally $\pi^*(s) = \arg \max Q^*(s, a)$ informally maximizes over all decisions $Q^*(s, a) = r_{t+1} + \gamma \max r_{t+2} + \gamma^2 \max r_{t+3} + \dots$ $= r_{t+1} + \gamma \max Q^*(s_{t+1}, a_{t+1})$ decompose into a Bellman equation $Q^*(s,a) = \mathbb{E}_{s'}[r + \gamma \max_{a'} Q^*(s',a') \mid s,a]$

Reinforcement Learning Approach

- Policy-based RL
 - Search directly for optimal policy π^*

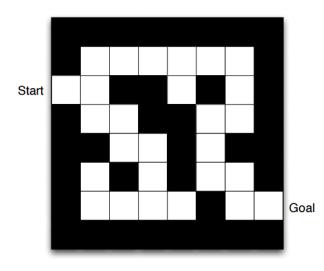
 π^* is the policy achieving maximum future reward

- Value-based RL
 - lacksquare Estimate the optimal value function $Q^*(s,a)$

 $Q^{st}(s,a)$ is maximum value achievable under any policy

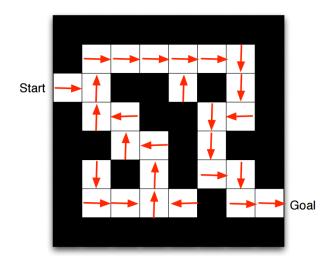
- Model-based RL
 - Build a model of the environment
 - Plan (e.g. by lookahead) using model

Maze Example



- Rewards: -1 per timestep
- Actions: N, E, S, W
- States: agent's location

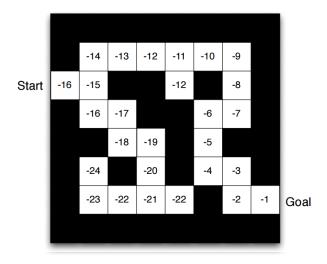
Maze Example: Policy



- Rewards: -1 per timestep
- Actions: N, E, S, W
- States: agent's location

Arrows represent policy $\pi(s)$ for each state s

Maze Example: Value Function



- Rewards: -1 per timestep
- Actions: N, E, S, W
- States: agent's location

Numbers represent value $Q_{\pi}(s)$ of each state s

Categorizing RL Agents

Value-Based No Policy (implicit) Value Function **Policy-Based** Policy No Value Function Actor-Critic Policy Value Function

- Model-Free
 - Policy and/or Value
 Function
 - No Model
- Model-Based
 - Policy and/or Value
 Function
 - Model

RL Agent Taxonomy



⁴¹ Value-Based Deep RL

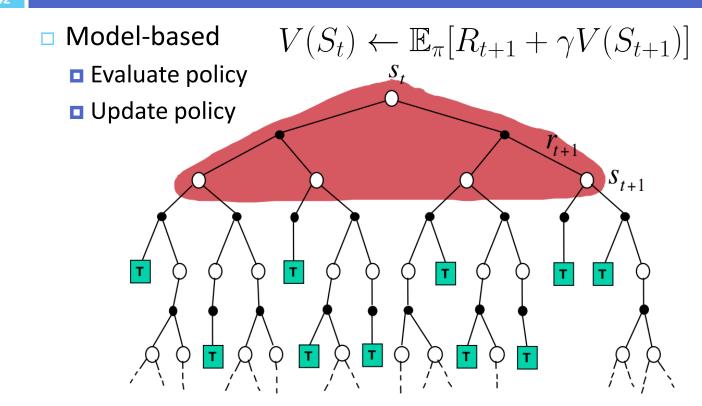
Dynamic Programming

Monte-Carlo

Temporal-Difference

Q-Learning

Dynamic Programming



Dynamic Programming

GridWorld example

R: 1 V: 18.26 ↓	R: 2 V: 31.13 ➔	R: 10 V: 26.67	R: -3 V: 24.92 ✔	R: 10 V: 7.68 €	R: +90 V: 0.63 ➔	R: 1 V: 3.35 ✔
R: 10 V: 13.27 ↑	R: -1 V: 19.08 ▲	R: -3 V: 26.48 ▲	R:9 V:23.96 ✔	R: -1 V: 9.72 ▲	R: -1 V: 1.8 €	R: 1 V: 3.34
R: -4 V: 0.88 ✦	R: 3 V: 1.45 ▲	R: 4 V: 9.3 ▲	R: 2 V: 27.83 ▲	R: -3 V: 60.58 ✔	R: -90 V: 30.34 ✔	B: -1 V: 0.98 ↑
R: -40 V: 0 ✔	R:-30 V:0 ♠	R: -10 V: 0.97	R: -12 V: 11.69 ↑	R: 30 V: 64.3 ➔	R: 1 V: 80.36 €	R: 1 V: 41.4 €
R: -40 V: 0 ↓	R: -30 V: 0 ✦	R: -10 V:0 ♠	R: +12 V: 0 ➔	R: -30 V: 14.52 个	R: 1 V: 24.88 ↑	R: 5 V: 7.71
R: -40 V: 0 ↑	R: -30 V: 0 €	R: -10 V:0 ♠	R: -12 V: 0 €	R: -30 V: 0 ♠	R:1 V:0 ♠	R: 3 V: 0.72 ↑

Monte-Carlo RL

- Characteristics
 - Learn from complete episodes of experience
 - Model-free: no knowledge of MDP transitions / rewards
 Value = mean return

MC policy

Goal: learn v_{π} from episodes under policy π

 $s_1, a_1, r_1, \dots, s_k \sim \pi$

Return is the total discounted reward

$$G_t = r_{t+1} + \gamma r_{t+2} + \dots + \gamma^{T-1} r_T$$

Value function is the expected return

$$v_{\pi}(s_t) = \mathbb{E}[G_t \mid s_t]$$

Monte-Carlo



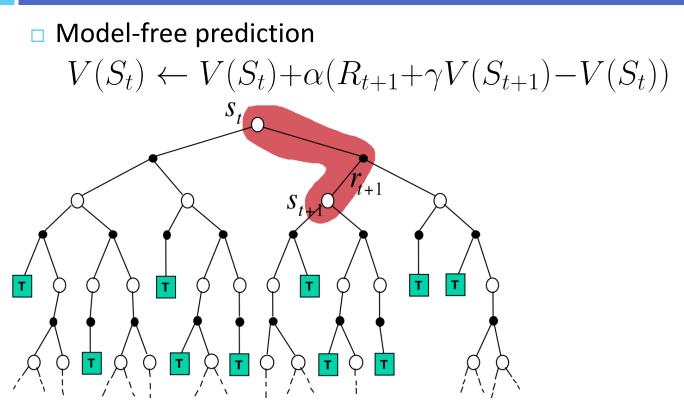
Temporal-Difference RL

- Characteristics
 - Learn from *incompele* episodes of experience
 - Model-free: no knowledge of MDP transitions / rewards
 - Update a guess toward a guess
- TD policy
 - **\square** Goal: learn v_{π} online from experience under policy π
 - Value function is updated toward estimated return

$$V(S_t) \leftarrow V(S_t) + \alpha (G_t - V(S_t))$$
$$V(S_t) \leftarrow V(S_t) + \alpha (R_{t+1} + \gamma V(S_{t+1}) - V(S_t))$$

TD target

Temporal-Difference



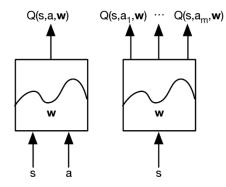
Q-Learning – Value Function Approximation

 \Box Value functions are represented by a lookup table $Q(s,a) \ \ \forall s,a$

too many states and/or actions to store

too slow to learn the value of each entry individually

Values can be estimated with *function approximation*



Q-Networks

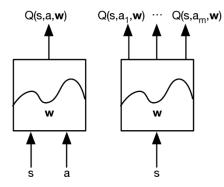
49

 $\hfill\square$ Q-networks represent value functions with weights w

$$Q(s,a,w) \approx Q^*(s,a)$$

generalize from seen states to unseen states

f u update parameter w for function approximation



Q-Learning

Goal: estimate optimal Q-values

Optimal Q-values obey a Bellman equation

$$Q^*(s, a) = \mathbb{E}_{s'} r + \gamma \max_{a'} Q^*(s', a') | s, a]$$

learning target

Value iteration algorithms solve the Bellman equation

$$Q_{\underline{i}}(s,a) = \mathbb{E}_{s'}[r + \gamma \max_{a'} Q_{\underline{i}}(s',a') \mid s,a]$$

Deep Q-Networks (DQN)

51

 $\,\square\,$ Represent value function by deep Q-network with weights $\,w$

 $Q(s,a, {m w}) pprox Q^*(s,a)$ Objective is to minimize mean square error (MSE) loss by SGD

$$L(w) = \mathbb{E}\left[\left(r + \gamma \max_{a'} Q(s', a', w) - Q(s, a, w)\right)^2\right]$$

Leading to the following Q-learning gradient

$$\frac{\partial L(w)}{\partial w} = \mathbb{E}\left[\left(r + \gamma \max_{a'} Q(s', a', w) - Q(s, a, w)\right) \frac{\partial Q(s, a, w)}{\partial w}\right]$$

Issue: naïve Q-learning oscillates or diverges using NN due to: 1) correlations between samples 2) non-stationary targets

Stability Issues with Deep RL

- Naive Q-learning oscillates or diverges with neural nets
 - 1. Data is sequential
 - Successive samples are correlated, non-iid (independent and identically distributed)
 - 2. Policy changes rapidly with slight changes to Q-values
 - Policy may oscillate
 - Distribution of data can swing from one extreme to another
 - 3. Scale of rewards and Q-values is unknown
 - Naive Q-learning gradients can be unstable when backpropagated

Stable Solutions for DQN

- DQN provides a stable solutions to deep value-based RL
 - 1. Use experience replay
 - Break correlations in data, bring us back to iid setting
 - Learn from all past policies
 - 2. Freeze target Q-network
 - Avoid oscillation
 - Break correlations between Q-network and target
 - 3. Clip rewards or normalize network adaptively to sensible range
 - Robust gradients

Stable Solution 1: Experience Replay

- To remove correlations, build a dataset from agent's experience
 - **Take action at according to** ϵ -greedy policy small prob for exploration
 - **Store transition** $(s_t, a_t, r_{t+1}, s_{t+1})$ in replay memory D
 - **\square** Sample random mini-batch of transitions (s, a, r, s') from D

$$\begin{array}{c|c} s_{1}, a_{1}, r_{2}, s_{2} \\ \hline s_{2}, a_{2}, r_{3}, s_{3} \\ \hline s_{3}, a_{3}, r_{4}, s_{4} \\ \hline \\ \vdots \\ a_{t}, r_{t+1}, s_{t+1} \end{array} \rightarrow \begin{array}{c} s_{t}, a_{t}, r_{t+1}, s_{t+1} \\ \hline \\ \hline s_{t}, a_{t}, r_{t+1}, s_{t+1} \end{array} \rightarrow \begin{array}{c} s_{t}, a_{t}, r_{t+1}, s_{t+1} \\ \hline \end{array}$$

 s_t ,

Optimize MSE between Q-network and Q-learning targets

$$L(w) = \mathbb{E}_{s,a,r,s'\sim D} \left[\left(r + \gamma \max_{a'} Q(s',a',w) - Q(s,a,w) \right)^2 \right]$$

Stable Solution 2: Fixed Target Q-Network

- 55
- To avoid oscillations, fix parameters used in Q-learning target
 Compute Q-learning targets w.r.t. old, fixed parameters w⁻

$$r + \gamma \max_{a'} Q(s', a', w^{-})$$

Optimize MSE between Q-network and Q-learning targets

$$L(w) = \mathbb{E}_{s,a,r,s'\sim D} \left[\left(r + \gamma \max_{a'} Q(s',a',w^{-}) - Q(s,a,w) \right)^2 \right]$$

 \blacksquare Periodically update fixed parameters $~w^- \leftarrow w$

Stable Solution 3: Reward / Value Range

- To avoid oscillations, control the reward / value range
 - DQN clips the rewards to [-1, +1]
 - Prevents too large Q-values
 - Ensures gradients are well-conditioned

Other Improvements: Double DQN

Nature DQN

$$L(w) = \mathbb{E}_{s,a,r,s'\sim D} \left[\left(r + \gamma \max_{a'} Q(s',a',w^{-}) - Q(s,a,w) \right)^2 \right]$$

Double DQN: remove upward bias caused by max Q(s, a, w)
 Current Q-network w is used to select actions
 Older Q-network w is used to evaluate actions

$$L(w) = \mathbb{E}_{s,a,r,s'\sim D} \left[\left(r + \gamma \frac{Q(s', \arg\max_{a'} Q(s', a', w), w^{-})}{Q(s, a, w)} - Q(s, a, w) \right)^2 \right]$$

Other Improvements: Prioritized Replay

Т

Prioritized Replay: weight experience based on surprise
 Store experience in priority queue according to DQN error

$$\left| r + \gamma \max_{a'} Q(s', a', w^{-}) - Q(s, a, w) \right|$$

L

Other Improvements: Dueling Network

59

Dueling Network: split Q-network into two channels

$$Q(s,a) = V(s,v) + A(s,a,w)$$

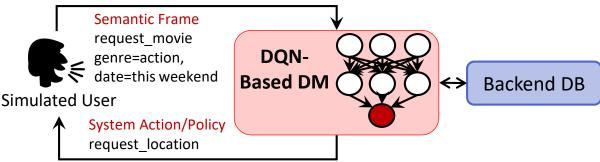
- \blacksquare Action-independent value function V(s,v)
 - Value function estimates how good the state is
- $\hfill\square$ Action-dependent advantage function A(s,a,w)
 - Advantage function estimates the additional benefit

DQN for Dialogue Management (Li et al., 2017)

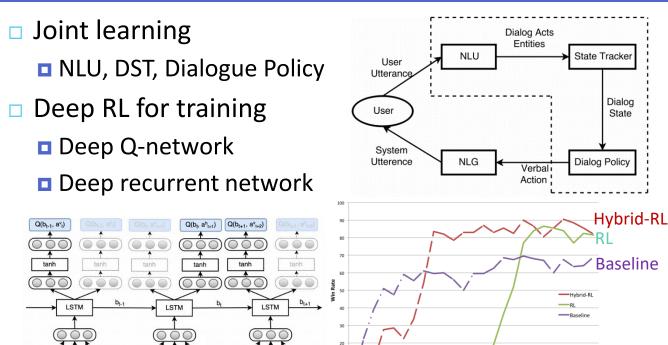
□ Goal: end-to-end learning of values Q(s, a) from interactions

$$L(w) = \mathbb{E}_{s,a,r,s'\sim D} \left[\left(r + \gamma \max_{a'} Q(s',a',w^{-}) - Q(s,a,w) \right)^2 \right]$$

- Input: state is the combination of user history observation, previous system action, database returned results
- Output: Q(s, a) for all available system action a
- Reward: -1 per turn; large reward for successful task



E2E RL-Based System (Zhao and Eskenazi, 2016)



20000

40000

60000

Step

80000

100000

120000

(o^u_{t+1}) (o^{db}_{t+1}

at+1

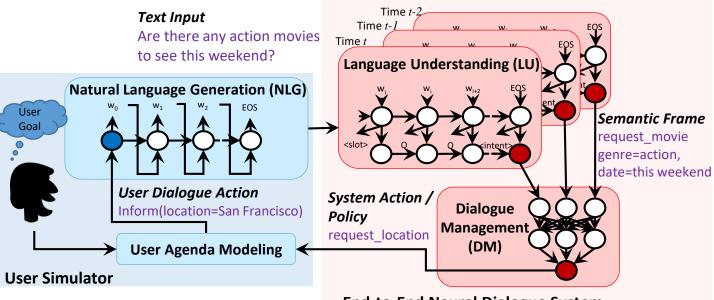
out

 a_{t-1} (o^{u}_{t-1})

http://www.aclweb.org/anthology/W/W16/W16-36.pdf#page=19

E2E Task-Completion Bot (TC-Bot) (Li et al., 2017)

https://arxiv.org/abs/1703.01008



End-to-End Neural Dialogue System

Idea: supervised learning for each component and reinforcement learning for end-to-end training the neural dialogue system

E2E Task-Completion Bot (TC-Bot) (Li et al., 2017)

https://arxiv.org/abs/1703.01008

User goal: Two tickets for "the witch" tomorrow 9:30 PM at regal meridian 16, Seattle.

RULE BASED SYSTEM

User: Can I get 2 tickets for the witch? Agent: Which theater do you want? User: Regal meridian 16 Agent: What time would you like to see it? User: 9:30 pm Agent: What date would you like to see it? User: Tomorrow! Agent: How many people are you? User: Just two adults. Agent: What is your location? User: Seattle! Agent: What kind of video format do you like? User: Oh, any kind is okay. Agent: Do you have any price constraint? User: No, I don't care. Agent: Great - I was able to purchase 2 tickets for you to see the witch tomorrow at regal meridian 16 theater in Seattle at 9:30 pm. User: Thank you. Agent: Thank you!

REINFORCEMENT LEARNING SYSTEM

User: Can I get 2 tickets for the witch? Agent: What date would you like to see it? User: Tomorrow Agent: Which theater do you prefer? User: Regal meridian 16 Agent: What is your location? User: Seattle Agent: What time would you like to see it? User: 9:30 pm. Agent: Great - I was able to purchase 2 tickets for you to see the witch tomorrow at regal meridian 16 theater in Seattle at 9:30 pm. User: Thanks. Agent: Thanks! 8.0 Rate RL Agent

The system can learn how to efficiently interact with users for task completion

⁶⁴ Policy-Based Deep RL

Estimate How Good An Agent's Behavior is

Deep Policy Networks

 \square Represent policy by deep network with weights $~\mathcal{U}$

$$a = \pi(a \mid s, u) \qquad a = \pi(s, u)$$

stochastic policy

deterministic policy

Objective is to maximize total discounted reward by SGD

$$L(u) = \mathbb{E}\left[r_1 + \gamma r_2 + \gamma^2 r_3 + \dots \mid \pi(\cdot, u)\right]$$

Policy Gradient

 $\hfill\square$ The gradient of a stochastic policy $\pi(a \mid s, u)$ is given by

$$\frac{\partial L(u)}{\partial u} = \mathbb{E}_s \left[\frac{\partial \log \pi(a \mid s, u)}{\partial u} Q^{\pi}(s, a) \right]$$

hinspace The gradient of a deterministic policy $\pi(s,u)$ is given by

$$\frac{\partial L(u)}{\partial u} = \mathbb{E}_s \left[\frac{\partial Q^{\pi}(s, a)}{\partial a} \frac{\partial a}{\partial u} \right] \quad a = \pi(s, u)$$

How to deal with continuous actions

Actor-Critic (Value-Based + Policy-Based)

- $\hfill\square$ Estimate value function $Q(s,a,w) \thickapprox Q^{\pi}(s,a)$
- Update policy parameters \mathcal{U} by SGD
 - Stochastic policy

$$\frac{\partial L(u)}{\partial u} = \mathbb{E}_s \left[\frac{\partial \log \pi(a \mid s, u)}{\partial u} Q(s, a, \boldsymbol{w}) \right]$$

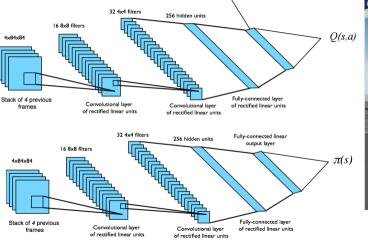
Deterministic policy

$$\frac{\partial L(u)}{\partial u} = \mathbb{E}_s \left[\frac{\partial Q(s, a, \boldsymbol{w})}{\partial a} \frac{\partial a}{\partial u} \right]$$

Q-networks tell whether a policy is good or not Policy networks optimize the policy accordingly

Deterministic Deep Policy Gradient

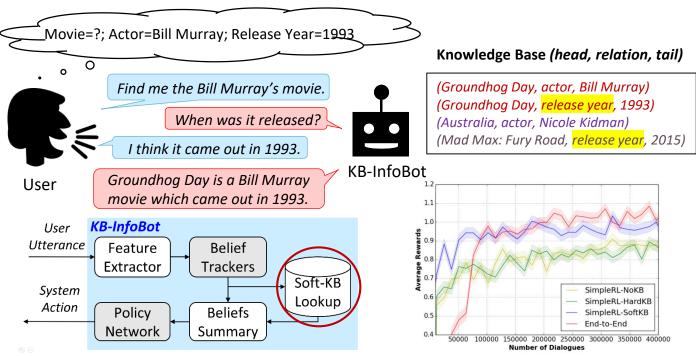
- Goal: end-to-end learning of control policy from pixels
 - Input: state is stack of raw pixels from last 4 frames
 - Output: two separate CNNs for Q and π



Lillicrap et al., "Continuous control with deep reinforcement learning," arXiv, 2015.

E2E RL-Based Info-Bot (Dhingra et al., 2016)

https://arxiv.org/abs/1609.00777



Idea: differentiable database for propagating the gradients

Dialogue Management Evaluation

- Metrics
 - Turn-level evaluation: system action accuracy
 - Dialogue-level evaluation: task success rate, reward

Concluding Remarks

Dialogue policy optimization of DM solves MDP via RL

- Value-based
 - Dynamic programming
 - Monte-Carlo
 - Temporal-difference
 - Q-learning → DQN
- Policy-based
 - Deep policy gradient
- Actor-critic

