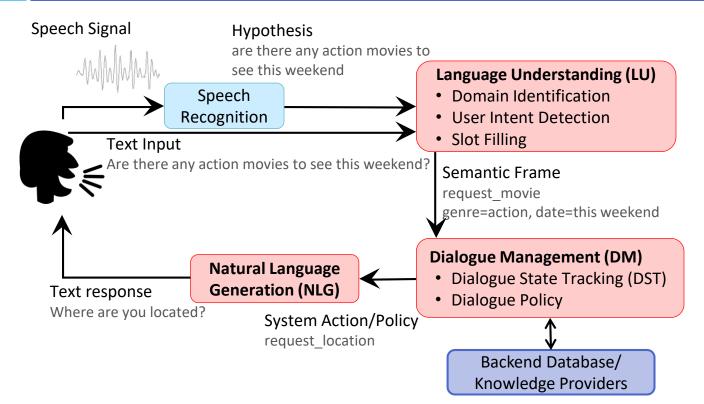


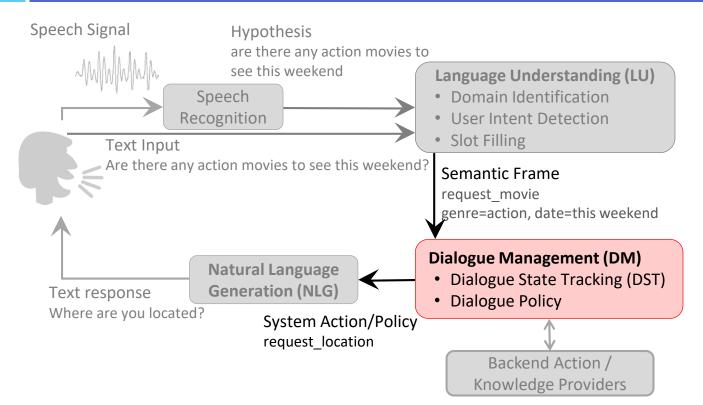
Task-Oriented Dialogue System (Young, 2000)

http://rsta.royalsocietypublishing.org/content/358/1769/1389.short



Task-Oriented Dialogue System (Young, 2000)

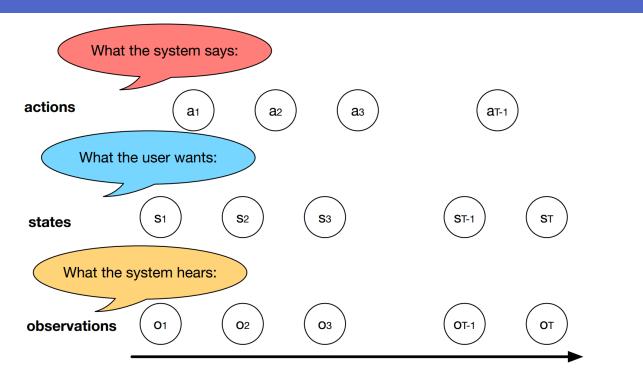
http://rsta.royalsocietypublishing.org/content/358/1769/1389.short



Example Dialogue

Example Dialogue

Elements of Dialogue Management



dialogue turns

(Figure from Gašić)

Reinforcement Learning

- RL is a general purpose framework for decision making
 - RL is for an *agent* with the capacity to *act*
 - Each action influences the agent's future state
 - Success is measured by a scalar *reward* signal
 - Goal: select actions to maximize future reward

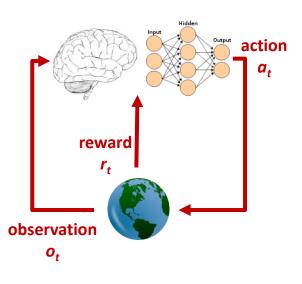
Big three: action, state, reward

Reinforcement Learning

Reinforcement Learning

Scenario of Reinforcement Learning

Agent and Environment



- □ At time step *t*
 - The agent
 - Executes action a_t
 - Receives observation o_t
 - Receives scalar reward r_t
 - The environment
 - Receives action a_t
 - Emits observation o_{t+1}
 - Emits scalar reward r_{t+1}
 - t increments at env. step

State

Experience is the sequence of <u>observations</u>, <u>actions</u>, <u>rewards</u>

$$o_1, r_1, a_1, \dots, a_{t-1}, o_t, r_t$$

State is the information used to determine what happens next

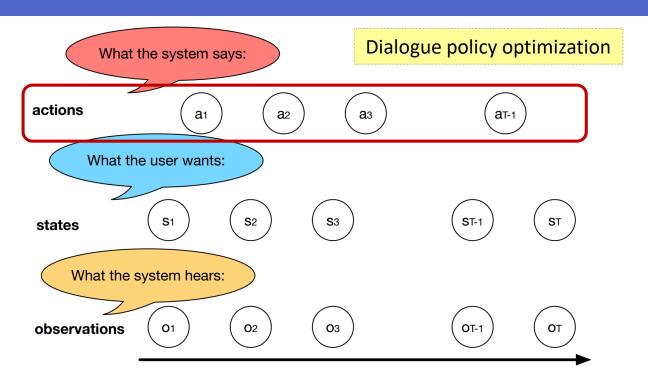
- what happens depends on the <u>history</u> experience
 - The agent selects actions
 - The environment selects observations/rewards
- The state is the function of the history experience

$$s_t = f(o_1, r_1, a_1, \dots, a_{t-1}, o_t, r_t)$$

¹⁵ Dialogue Policy Optimization

Decision Making

Elements of Dialogue Management



dialogue turns

(Figure from Gašić)

Partially Observable Markov Decision Process (POMDP)

a_t

r_t

S_{t+1}

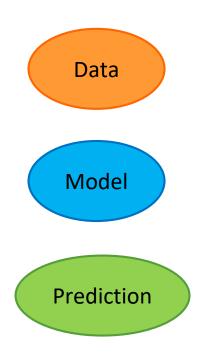
S_t

O_t

17

- Dialogue states: s_t
- Noisy observation: o_t
- System actions: a_t
- Rewards: r_t
- Transition probability: p(s_{t+1}|s_t, a_t)
- Observation probability: p(o_{t+1}|s_{t+1})
- Distribution over states: b(s_t)

DM as Partially Observable Markov Decision Process (POMDP)



- <u>Noisy observation</u> of dialogue states
- Reward a measure of dialogue quality

Partially observable Markov decision process (POMDP)

- Distribution over dialogue states
- Optimal system actions Dialogue Policy Optimization

Decision Making in POMDP

Policy:
$$\pi: B \to A$$
 belief estimation mapping
Return: $R_t = \sum_{k=0}^{T-1} \gamma^k \cdot r_{t+k}$ accumulated reward

Value function

How good the system is in a particular belief state

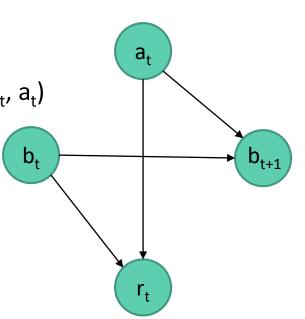
$$\begin{split} V^{\pi}(s) &= E_{\pi} \left\{ \sum_{k=0}^{T-1} \gamma^{k} \cdot r_{t+k} \mid s_{t} = s \right\} \\ &= r(s, a) + \gamma \sum_{s'} p(s' \mid s, a) \sum_{o'} p(o' \mid s') V^{\pi}(s') \xrightarrow{\text{(s_{t+1})}} V^{\pi}(b) = \sum_{s} V^{\pi}(s) b(s) \\ V^{\pi}(b) &= \sum_{s} V^{\pi}(s) b(s) \xrightarrow{\text{(s_{t+1})}} V^{\pi}(s') \xrightarrow{\text{(s_{t+$$

POMDP Policy Optimization

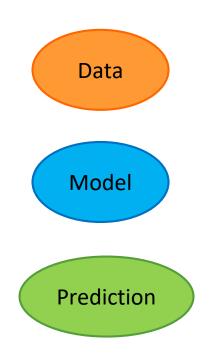
- 20
- Finding <u>value function associated with optimal</u> <u>policy</u>, i.e. the one that generates maximal return
 - Problem: tractable only for very simple cases (Kaelbling et al., 1998)
 - Alternative solution: discrete space POMDPs can be viewed as a continuous space MDP with states as belief states $b_t = b(s_t)$

Markov Decision Process (MDP)

- 21
- **Belief state from tracking:** $b_t = s_t$
- System actions: a_t
- Rewards: r_t
- **Transition probability:** $p(b_{t+1}|b_t, a_t)$



DM as Markov Decision Process (MDP)



- Belief dialogue states (continuous)
- Reward a measure of dialogue quality

 Markov decision process (MDP) & reinforcement learning

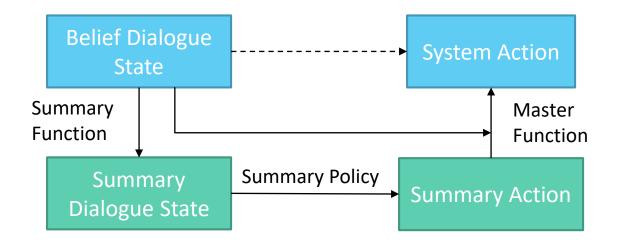
System actions – Dialogue Policy Optimization

Policy Optimization Issue

- Optimization problem size
 - Belief dialogue state space is large and continuous
 - System action space is large
- Knowledge environment (user)
 - Transition probability is unknown (user status)
 - How to get rewards

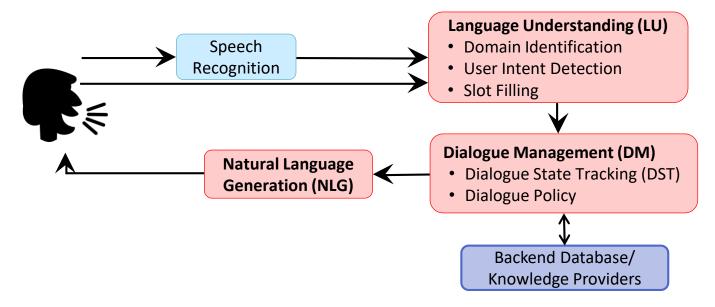
Large Belief Space and Action Space

Solution: perform optimization in a <u>reduced</u> <u>summary space</u> built according to the heuristics



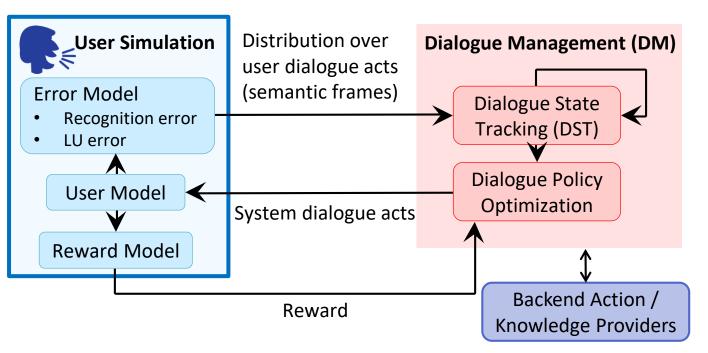
Transition Probability and Rewards

Solution: learn from real users



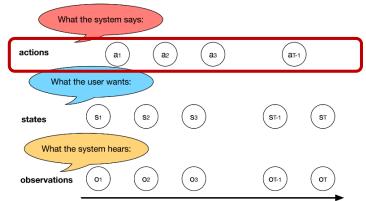
Transition Probability and Rewards

Solution: learn from a simulated user



Concluding Remarks

- Dialogue policy optimization can be viewed as an RL task
- POMDP can be viewed as a continuous space MDP
- Belief dialogue state space can be summarized to reduce computational complexity
- Transition probability and reward come from
 - Real user
 - Simulated user



dialogue turns