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Task-Oriented Dialogue System (Young, 2000)

3

Speech 
Recognition

Language Understanding (LU)
• Domain Identification
• User Intent Detection
• Slot Filling

Dialogue Management (DM)
• Dialogue State Tracking (DST)
• Dialogue Policy

Natural Language 
Generation (NLG)

Hypothesis
are there any action movies to 
see this weekend

Semantic Frame
request_movie
genre=action, date=this weekend

System Action/Policy
request_location

Text response
Where are you located?

Text Input
Are there any action movies to see this weekend?

Speech Signal

Backend Database/ 
Knowledge Providers

http://rsta.royalsocietypublishing.org/content/358/1769/1389.short
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Language Understanding (LU)

 Pipelined

6

1. Domain 
Classification

2. Intent 
Classification

3. Slot Filling



LU – Domain/Intent Classification

As an utterance 
classification 

task

• Given a collection of utterances ui with labels ci, 
D= {(u1,c1),…,(un,cn)} where ci ∊ C, train a 
model to estimate labels for new utterances uk.

7

find me a cheap taiwanese restaurant in oakland

Movies
Restaurants
Music
Sports
…

find_movie, buy_tickets
find_restaurant, find_price, book_table
find_lyrics, find_singer
…

Domain Intent
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Conventional Approach

8

Data

Model

Prediction

dialogue utterances annotated with 
domains/intents

domains/intents

machine learning classification model
e.g. support vector machine (SVM)
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Theory: Support Vector Machine

 SVM is a maximum margin classifier

 Input data points are mapped into a high dimensional 
feature space where the data is linearly separable

 Support vectors are input data points that lie on the 
margin

9

http://www.csie.ntu.edu.tw/~htlin/mooc/
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 z

z

Theory: Support Vector Machine

 Multiclass SVM

 Extended using one-versus-rest approach

 Then transform into probability

http://www.csie.ntu.edu.tw/~htlin/mooc/

SVM1 SVM2 SVM3 SVMk

S1 S2 S3 Sk

score for 
each class … …

P1 P2 P3 Pk
prob for 
each class 

… …

Domain/intent can be decided based on the estimated scores



LU – Slot Filling
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flights from Boston to New York today

O O B-city O B-city I-city O

O O B-dept O B-arrival I-arrival B-date

As a sequence 
tagging task

• Given a collection tagged word sequences,    
S={((w1,1,w1,2,…, w1,n1), (t1,1,t1,2,…,t1,n1)),
((w2,1,w2,2,…,w2,n2), (t2,1,t2,2,…,t2,n2))…}
where ti ∊ M, the goal is to estimate tags for a new word 
sequence.

flights from Boston to New York today

Entity Tag

Slot Tag
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Conventional Approach

12

Data

Model

Prediction

dialogue utterances annotated with slots

slots and their values

machine learning tagging model
e.g. conditional random fields (CRF)
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Theory: Conditional Random Fields

 CRF assumes that the label at time step t depends on 
the label in the previous time step t-1

 Maximize the log probability log p(y | x) with respect 
to parameters λ
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input

output

Slots can be tagged based on the y that maximizes p(y|x)
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A Single Neuron

z

1w

2w

Nw

…

1x

2x

Nx



b

 z  z

zbias

y

 
ze

z



1

1


Sigmoid function

Activation function

1

w, b are the parameters of this neuron
15
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A Single Neuron

z

1w

2w

Nw

…

1x

2x

Nx



b
bias

y

1








5.0"2" 

5.0"2"    

ynot

yis

A single neuron can only handle binary classification

16

MN RRf :
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A Layer of Neurons

 Handwriting digit classification
MN RRf :

A layer of neurons can handle multiple possible output,
and the result depends on the max one

…

1x

2x

Nx



1

 1y



……
“1” or not

“2” or not

“3” or not

2y

3y

10 neurons/10 classes

Which 
one is 
max?
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Deep Neural Networks (DNN)

 Fully connected feedforward network

1x

2x

…
…

Layer 1

…
…

1y

2y

…
…

Layer 2

…
…

Layer L

……

……

……

Input Output

My
Nx

vector 
x

vector 
y

Deep NN: multiple hidden layers

MN RRf :
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Recurrent Neural Network (RNN)

http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/

: tanh, ReLU

time

RNN can learn accumulated sequential information (time-series)
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Model Training

 All model parameters                                      can be 
updated by SGD

20http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/

yt-1 yt+1yt target

predicted
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BPTT

21

For 𝐶(1)
Backward Pass:

For 𝐶(2)
For 𝐶(3)For 𝐶(4)

Forward Pass: Compute s1, s2, s3, s4 ……

y1 y2 y3

x1 x2 x3

o1 o2 o3

ini
t

y4

x4

o4

𝐶(1) 𝐶(2) 𝐶(3) 𝐶(4)

s1 s2 s3 s4

The model is trained by comparing the correct 
sequence tags and the predicted ones



22

Deep Learning Approach

22

Data

Model

Prediction

dialogue utterances annotated with 
semantic frames (user intents & slots)

user intents, slots and their values

deep learning model (classification/tagging)
e.g. recurrent neural networks (RNN)
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Classification Model

 Input: each utterance ui is represented as a feature vector fi

 Output: a domain/intent label ci for each input utterance

23

As an utterance 
classification 

task

• Given a collection of utterances ui with labels ci, 
D= {(u1,c1),…,(un,cn)} where ci ∊ C, train a 
model to estimate labels for new utterances uk.

How to represent a sentence using a feature vector



Sequence Tagging Model
24

As a sequence 
tagging task

• Given a collection tagged word sequences,    
S={((w1,1,w1,2,…, w1,n1), (t1,1,t1,2,…,t1,n1)),
((w2,1,w2,2,…,w2,n2), (t2,1,t2,2,…,t2,n2))…}
where ti ∊ M, the goal is to estimate tags for a new word 
sequence.

 Input: each word wi,j is represented as a feature vector fi,j

 Output: a slot label ti for each word in the utterance

How to represent a word using a feature vector
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Word Representation

 Atomic symbols: one-hot representation

25

[0 0 0 0 0 0 1 0 0 … 0]

[0 0 0 0 0 0 1 0 0 … 0] [0 0 1 0 0 0 0 0 0 … 0]AND = 0

Issues: difficult to compute the similarity 
(i.e. comparing “car” and “motorcycle”)

car

car

car motorcycle
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Word Representation

 Neighbor-based: low-dimensional dense word embedding

26

Idea: words with similar meanings often have similar neighbors
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Chinese Input Unit of Representation

 Character

 Feed each char to each time step

 Word

 Word segmentation required

你知道美女與野獸電影的評價如何嗎?

你/知道/美女與野獸/電影/的/評價/如何/嗎

Can two types of information fuse together for better performance?



LU – Domain/Intent Classification

As an utterance 
classification 

task

• Given a collection of utterances ui with labels ci, 
D= {(u1,c1),…,(un,cn)} where ci ∊ C, train a 
model to estimate labels for new utterances uk.

28

find me a cheap taiwanese restaurant in oakland

Movies
Restaurants
Music
Sports
…

find_movie, buy_tickets
find_restaurant, find_price, book_table
find_lyrics, find_singer
…

Domain Intent
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Deep Neural Networks for Domain/Intent 
Classification – I (Sarikaya et al, 2011)

 Deep belief nets (DBN)

 Unsupervised training of weights

 Fine-tuning by back-propagation

 Compared to MaxEnt, SVM, and boosting

29

http://ieeexplore.ieee.org/abstract/document/5947649/
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Deep Neural Networks for Domain/Intent 
Classification – II (Tur et al., 2012; Deng et al., 2012)

 Deep convex networks (DCN)

 Simple classifiers are stacked to learn complex functions

 Feature selection of salient n-grams

 Extension to kernel-DCN

30

http://ieeexplore.ieee.org/abstract/document/6289054/; http://ieeexplore.ieee.org/abstract/document/6424224/



31

Deep Neural Networks for Domain/Intent 
Classification – III (Ravuri and Stolcke, 2015)

 RNN and LSTMs for 
utterance classification

 Word hashing to deal with 
large number of singletons

 Kat: #Ka, Kat, at#

 Each character n-gram is 
associated with a bit in the 
input encoding

31

https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/RNNLM_addressee.pdf



LU – Slot Filling
32

flights from Boston to New York today

O O B-city O B-city I-city O

O O B-dept O B-arrival I-arrival B-date

As a sequence 
tagging task

• Given a collection tagged word sequences,    
S={((w1,1,w1,2,…, w1,n1), (t1,1,t1,2,…,t1,n1)),
((w2,1,w2,2,…,w2,n2), (t2,1,t2,2,…,t2,n2))…}
where ti ∊ M, the goal is to estimate tags for a new word 
sequence.

flights from Boston to New York today

Entity Tag

Slot Tag
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Recurrent Neural Nets for Slot Tagging – I 
(Yao et al, 2013; Mesnil et al, 2015)

 Variations: 

a. RNNs with LSTM cells

b. Input, sliding window of n-grams

c. Bi-directional LSTMs

𝑤0 𝑤1 𝑤2 𝑤𝑛

ℎ0
𝑓 ℎ1

𝑓
ℎ2
𝑓

ℎ𝑛
𝑓

ℎ0
𝑏 ℎ1

𝑏 ℎ2
𝑏 ℎ𝑛

𝑏

𝑦0 𝑦1 𝑦2 𝑦𝑛

(b) LSTM-LA (c) bLSTM

𝑦0 𝑦1 𝑦2 𝑦𝑛

𝑤0 𝑤1 𝑤2 𝑤𝑛

ℎ0 ℎ1 ℎ2 ℎ𝑛

(a) LSTM

𝑦0 𝑦1 𝑦2 𝑦𝑛

𝑤0 𝑤1 𝑤2 𝑤𝑛

ℎ0 ℎ1 ℎ2 ℎ𝑛

http://131.107.65.14/en-us/um/people/gzweig/Pubs/Interspeech2013RNNLU.pdf; http://dl.acm.org/citation.cfm?id=2876380
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Recurrent Neural Nets for Slot Tagging – II 
(Kurata et al., 2016; Simonnet et al., 2015)

 Encoder-decoder networks

 Leverages sentence level 
information

 Attention-based encoder-
decoder

 Use of attention (as in MT) 
in the encoder-decoder 
network

 Attention is estimated using 
a feed-forward network with 
input: ht and st at time t

𝑦0 𝑦1 𝑦2 𝑦𝑛

𝑤𝑛 𝑤2 𝑤1 𝑤0

ℎ𝑛 ℎ2 ℎ1 ℎ0

𝑤0 𝑤1 𝑤2 𝑤𝑛

𝑦0 𝑦1 𝑦2 𝑦𝑛

𝑤0 𝑤1 𝑤2 𝑤𝑛

ℎ0 ℎ1 ℎ2 ℎ𝑛
𝑠0 𝑠1 𝑠2 𝑠𝑛

ci

ℎ0 ℎ𝑛…

http://www.aclweb.org/anthology/D16-1223
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Slot Filling Intent 
Prediction

Joint Semantic Frame Parsing

Sequence-
based 

(Hakkani-Tur 
et al., 2016)

• Slot filling and 
intent prediction 
in the same 
output sequence

Parallel       
(Liu and 

Lane, 2016)

• Intent prediction 
and slot filling 
are performed 
in two branches

35 https://www.microsoft.com/en-us/research/wp-content/uploads/2016/06/IS16_MultiJoint.pdf; https://arxiv.org/abs/1609.01454
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Milestone 1 – Language Understanding

3) Collect and annotate data

4) Use machine learning method to train your system

 Conventional

 SVM for domain/intent classification

 CRF for slot filling

 Deep learning

 LSTM for domain/intent classification and slot filling

5) Test your system performance

36
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Speech 
Recognition

Language Understanding (LU)
• Domain Identification
• User Intent Detection
• Slot Filling

Dialogue Management (DM)
• Dialogue State Tracking (DST)
• Dialogue Policy

Natural Language 
Generation (NLG)

Hypothesis
are there any action movies to 
see this weekend

Semantic Frame
request_movie
genre=action, date=this weekend

System Action/Policy
request_location

Text response
Where are you located?

Text Input
Are there any action movies to see this weekend?

Speech Signal

Backend Database/ 
Knowledge Providers

Concluding Remarks
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