

Task-Oriented Dialogue System (Young, 2000)

http://rsta.royalsocietypublishing.org/content/358/1769/1389.short

Task-Oriented Dialogue System (Young, 2000)

http://rsta.royalsocietypublishing.org/content/358/1769/1389.short

Language Understanding (LU)

LU – Domain/Intent Classification

As an utterance classification task Given a collection of utterances u_i with labels c_i, D = {(u₁,c₁),...,(u_n,c_n)} where c_i ∈ C, train a model to estimate labels for new utterances u_k.

find me a cheap taiwanese restaurant in oakland

Movies	
<u>Restaurants</u>	
Music	
Sports	

find_movie, buy_tickets
 <u>find_restaurant</u>, find_price, book_table
 find_lyrics, find_singer

Domain

. . .

Intent

Conventional Approach

machine learning classification model e.g. support vector machine (SVM)

Theory: Support Vector Machine

http://www.csie.ntu.edu.tw/~htlin/mooc/

- □ SVM is a maximum margin classifier
 - Input data points are mapped into a <u>high dimensional</u> <u>feature space</u> where the data is linearly separable
 - Support vectors are input data points that lie on the margin

Theory: Support Vector Machine

LU – Slot Filling

11

flights from Boston to New York today

	flights	from	Boston	to	New	York	today
Entity Tag	0	0	B-city	0	B-city	I-city	0
Slot Tag	0	0	B-dept	0	B-arrival	I-arrival	B-date

Conventional Approach

dialogue utterances annotated with slots

machine learning tagging model e.g. conditional random fields (CRF)

slots and their values

Theory: Conditional Random Fields

CRF assumes that the label at time step t depends on the label in the previous time step t-1

Maximize the log probability $\log p(y \mid x)$ with respect to parameters λ
$$\begin{split} p(y \mid x) &= \frac{1}{Z(x)} \exp(\sum_{i} \lambda_{i} f_{i}(x, y)) \\ &= \prod_{t} \frac{1}{Z(x)} \exp(\sum_{i} \lambda_{i} f_{i}(x, y_{t}, y_{t-1})) \end{split}$$

Slots can be tagged based on the y that maximizes p(y|x)

A Single Neuron

w, b are the parameters of this neuron

A Single Neuron

A single neuron can only handle binary classification

A Layer of Neurons

Deep Neural Networks (DNN)

18

Recurrent Neural Network (RNN)

RNN can learn accumulated sequential information (time-series)

http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/

Model Training

20

The model is trained by comparing the correct sequence tags and the predicted ones

Deep Learning Approach

dialogue utterances annotated with semantic frames (user intents & slots)

deep learning model (classification/tagging) e.g. recurrent neural networks (RNN)

user intents, slots and their values

Classification Model

As an utterance classification task

 Given a collection of utterances u_i with labels c_i, D = {(u₁,c₁),...,(u_n,c_n)} where c_i ∈ C, train a model to estimate labels for new utterances u_k.

□ Input: each utterance u_i is represented as a feature vector f_i

D Output: a domain/intent label c_i for each input utterance

How to represent a sentence using a feature vector

Sequence Tagging Model

- □ Input: each word $w_{i,i}$ is represented as a feature vector $f_{i,i}$
- Output: a slot label t_i for each word in the utterance

How to represent a word using a feature vector

Word Representation

Atomic symbols: one-hot representation

car

Issues: difficult to compute the similarity (i.e. comparing "car" and "motorcycle")

 $\begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & \dots & 0 \end{bmatrix} \xrightarrow{\text{AND}} \begin{bmatrix} 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & \dots & 0 \end{bmatrix} = \underset{\text{car}}{\text{motorcycle}}$

Word Representation

26

Neighbor-based: low-dimensional dense word embedding

Idea: words with similar meanings often have similar neighbors

Chinese Input Unit of Representation

Character

Feed each char to each time step

Word

Word segmentation required

Can two types of information fuse together for better performance?

LU – Domain/Intent Classification

As an utterance classification task

28

 Given a collection of utterances u_i with labels c_i, D = {(u₁,c₁),...,(u_n,c_n)} where c_i ∈ C, train a model to estimate labels for new utterances u_k.

find me a cheap taiwanese restaurant in oakland

Movies Restaurants Music Sports find_movie, buy_tickets
find_restaurant, find_price, book_table
find_lyrics, find_singer

Domain

...

Intent

Deep Neural Networks for Domain/Intent Classification – I (Sarikaya et al, 2011)

http://ieeexplore.ieee.org/abstract/document/5947649/

- Deep belief nets (DBN)
 - Unsupervised training of weights
 - Fine-tuning by back-propagation
 - Compared to MaxEnt, SVM, and boosting

Deep Neural Networks for Domain/Intent Classification – II (Tur et al., 2012; Deng et al., 2012)

http://ieeexplore.ieee.org/abstract/document/6289054/; http://ieeexplore.ieee.org/abstract/document/6424224/

- Deep convex networks (DCN)
 - Simple classifiers are stacked to learn complex functions
 - Feature selection of salient n-grams
- Extension to kernel-DCN

Deep Neural Networks for Domain/Intent Classification – III (Ravuri and Stolcke, 2015)

https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/RNNLM_addressee.pdf

 RNN and LSTMs for utterance classification

31

- Word hashing to deal with large number of singletons
 - Kat: #Ka, Kat, at#
 - Each character n-gram is associated with a bit in the input encoding

LU – Slot Filling

flights from Boston to New York today

	flights	from	Boston	to	New	York	today
Entity Tag	0	0	B-city	0	B-city	I-city	0
Slot Tag	0	0	B-dept	0	B-arrival	I-arrival	B-date

Recurrent Neural Nets for Slot Tagging – I

(Yao et al, 2013; Mesnil et al, 2015)

http://131.107.65.14/en-us/um/people/gzweig/Pubs/Interspeech2013RNNLU.pdf; http://dl.acm.org/citation.cfm?id=2876380

Variations:

- a. RNNs with LSTM cells
- b. Input, sliding window of n-grams
- c. Bi-directional LSTMs

Recurrent Neural Nets for Slot Tagging – II

(Kurata et al., 2016; Simonnet et al., 2015)

Encoder-decoder networks

34

- Leverages sentence level information
- Attention-based encoderdecoder
 - Use of attention (as in MT) in the encoder-decoder network
 - Attention is estimated using w₀ a feed-forward network with input: h_t and s_t at time t

http://www.aclweb.org/anthology/D16-1223

Joint Semantic Frame Parsing

Milestone 1 – Language Understanding

- 3) Collect and annotate data
- 4) Use machine learning method to train your system
 - Conventional
 - SVM for domain/intent classification
 - CRF for slot filling
 - Deep learning
 - LSTM for domain/intent classification and slot filling
- ⁵⁾ Test your system performance

Concluding Remarks

