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Part I

Introduction & Background
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Language Empowering Intelligent Assistants

Apple Siri (2011) Google Now (2012)

Facebook M & Bot (2015) Google Home (2016)

Microsoft Cortana (2014)

Amazon Alexa/Echo (2014)
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Dialogue System

 Task-Oriented

 Personal assistant, 
achieve a certain task

 Combination of rules and 
statistical components
 POMDP for spoken dialog 

systems (Williams and 
Young, 2007)

 Learning End-to-End Goal-
oriented Dialog (Antoni and 
Weston, 2016)

 An End-to-End Trainable 
Task-oriented Dialogue 
System (Wen el al., 2016)

 Chit-Chat
 No specific goal, focus on 

conversation flow
 Work using variants of 

seq2seq model
 A Neural Conversation 

Model (Vinyals and Le, 
2015)

 Deep Reinforcement 
Learning for Dialogue 
Generation (Li et al., 2016)

 Conversational Contextual 
Cues: The Case of 
Personalization & History 
for Response Ranking (AI-
Rfou et al., 2016)
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Pipelined Task-Oriented Dialogue System
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Speech 
Recognition

Language Understanding (LU)
• Domain Identification
• User Intent Detection
• Slot Filling

Dialogue Management (DM)
• Dialogue State Tracking (DST)
• Dialogue Policy

Natural Language 
Generation (NLG)

Hypothesis
are there any action movies to 
see this weekend

Semantic Frame
request_movie
genre=action, date=this weekend

System Action/Policy
request_location

Text response
Where are you located?

Text Input
Are there any action movies to see this weekend?

Speech Signal



Part II

Modular Dialogue System

8



9

Outline

 Introduction and Background

 Modular Dialogue System

 Spoken/Natural Language Understanding (SLU/NLU)

 Dialogue State Tracking (DST)

 Dialogue Policy

 Natural Language Generation (NLG)

 End-to-End Learning for Dialogue Systems

 Conclusion

9



10

Semantic Frame Representation

 Requires a domain ontology

 Contains core content (intent, a set of slots with fillers)

find a cheap taiwanese restaurant in oakland

show me action movies directed by james cameron

find_restaurant (price=“cheap”, 
type=“taiwanese”, location=“oakland”)

find_movie (genre=“action”, 
director=“james cameron”)

Restaurant 
Domain

Movie 
Domain

restaurant

typeprice

location

movie

yeargenre

director

10



11

Language Understanding (LU)

 Pipelined

11

1. Domain 
Classification

2. Intent 
Classification

3. Slot Filling



LU – Domain/Intent Classification

• Given a collection of utterances ui with labels ci, D= 
{(u1,c1),…,(un,cn)}  where ci ∊ C, train a model to estimate labels 
for new utterances uk.

Mainly viewed as an utterance classification task
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find me a cheap taiwanese restaurant in oakland

Movies
Restaurants
Sports
Weather
Music
…

Find_movie
Buy_tickets
Find_restaurant
Book_table
Find_lyrics
…
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Language Understanding - Slot Filling
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Is there um a cheap place in the centre of town please?

Is there um a cheap place in the centre of  town please?

O O O O

B-price

O O O

B-area

O

I-areaI-area

Figure credited by Milica Gašić

As a sequence tagging task

• CRF for tagging each utterance

As a classification task

• SVM for each slot value pair
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Language Understanding 

 Intent Classification (Ravuri and Stolcke, 2015)

 IOB Sequence Labeling for Slot Filling (Hakkani-Tur et al., 2016)
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Slot Filling Intent 
Prediction

Joint Semantic Frame Parsing

Sequence-based 
(Hakkani-Tur et 

al., 2016)

•Slot filling and 
intent prediction 
in the same 
output sequence

Parallel (Liu and 
Lane, 2016)

•Intent prediction 
and slot filling are 
performed in two 
branches
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Dialogue State Tracking (DST)

17Slide credited by Sungjin Lee
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Dialogue State Tracking (DST)

 Maintain a probabilistic distribution instead of a 1-best 
prediction for better robustness

18Slide credited by Sungjin Lee

Incorrect 
for both!
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Dialogue State Tracking (DST)

 Maintain a probabilistic distribution instead of a 1-best 
prediction for better robustness to SLU errors or 
ambiguous input

19

How can I help you?

Book a table at Sumiko for 5

How many people?

3

Slot Value

# people 5 (0.5)

time 5 (0.5)

Slot Value

# people 3 (0.8)

time 5 (0.8)
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Dialogue Policy Optimization

 Dialogue management in a RL framework

21

U s e r

Reward R Observation OAction A

Environment

Agent

Natural Language Generation Language Understanding

Dialogue Manager

Slides credited by Pei-Hao Su

Optimized dialogue policy selects the best action that can maximize the future reward.
Correct rewards are a crucial factor in dialogue policy training 
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Reward for RL ≅ Evaluation for SDS

 Dialogue is a special RL task

 Human involves in interaction and rating (evaluation) of a 
dialogue

 Fully human-in-the-loop framework

 Rating: correctness, appropriateness, and adequacy

- Expert rating high quality, high cost

- User rating unreliable quality, medium cost

- Objective rating Check desired aspects, low cost

22
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Dialogue Reinforcement Signal

Typical Reward Function

 per turn penalty -1

 Large reward at completion if successful

Typically requires domain knowledge

✔ Simulated user

✔ Paid users (Amazon Mechanical Turk)

✖ Real users

|||

…

﹅
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User Simulation

 User Simulation

 Goal: generate natural and reasonable conversations to enable 
reinforcement learning for exploring the policy space

 Approach

 Rule-based crafted by experts (Li et al., 2016)

 Learning-based (Schatzmann et al., 2006)

Dialogue 
Corpus

Simulated User

Real User

Dialogue Management (DM)
• Dialogue State Tracking (DST)
• Dialogue Policy

Interaction

24
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Natural Language Generation (NLG)

 Mapping semantic frame into natural language
inform(name=Seven_Days, foodtype=Chinese)

Seven Days is a nice Chinese restaurant
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Template-Based NLG

 Define a set of rules to map frames to NL

27

Pros: simple, error-free, easy to control
Cons: time-consuming, poor scalability

Semantic Frame Natural Language

confirm() “Please tell me more about the product your are 
looking for.”

confirm(area=$V) “Do you want somewhere in the $V?”

confirm(food=$V) “Do you want a $V restaurant?”

confirm(food=$V,area=$W) “Do you want a $V restaurant in the $W.”
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Trainable Generator (Walker et al., 2002)

 Divide the problem into pipeline

 Statistical sentence plan generator (Stent et al., 2009)

 Statistical surface realization (Dethlefs et al., 2013; Cuayáhuitl et al., 

2014; …)

Sentence 
Plan

Generator

Inform(
name=Z_House,
price=cheap

)

Z House is a 
cheap restaurant.

Sentence 
Plan

Reranker

Surface 
Realiser

Pros: can model complex linguistic structures
Cons: heavily engineered, require domain knowledge

28
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RNN Language Generator (Wen et al., 2015)

<BOS> SLOT_NAME        serves          SLOT_FOOD               .

<BOS> EAT serves               British                    .

delexicalisation

Inform(name=EAT, food=British)

0, 0, 1, 0, 0, …, 1, 0, 0, …, 1, 0, 0, 0, 0, 0… …

dialog act 1-hot
representation

SLOT_NAME         serves            SLOT_FOOD               .                 <EOS>

Weight tying
29



30

Outline

 Introduction and Background

 Modular Dialogue System

 Spoken/Natural Language Understanding (SLU/NLU)

 Dialogue State Tracking (DST)

 Dialogue Policy

 Natural Language Generation (NLG)

 End-to-End Learning for Dialogue Systems

 Conclusion

30



31

E2E Joint NLU and DM (Yang et al., 2017)

 Errors from DM can be propagated to NLU for 
better robustness

DM

31
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E2E Supervised Dialogue System (Wen et al., 2016)

Wen, et al., “A Network-based End-to-End Trainable Task-Oriented Dialogue System,” arXiv.:1604.04562v2.

Can     I    have  korean

Korean     
0.7
British      
0.2
French     
0.1

…

Belief Tracker

0  0  0   …   0  1

MySQL query:
“Select * where 
food=Korean”

Database Operator

Intent Network

Can            I          have   <v.food>    

Generation Network
<v.name> serves  great   <v.food>      . 

Policy Network
Copy 
field

…

Database

Seven
 d

ays
C

u
rry P

rin
ce

N
irala

R
o

yal Stan
d

ard
Little Seu

o
l

DB pointerxt

zt

pt

qt
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Info Access Bot (Info-Bot) (Dhingra et al., 2016)

Movie=?; Actor=Bill Murray; Release Year=1993

Find me the Bill Murray’s movie.

I think it came out in 1993.

When was it released?

Groundhog Day is a Bill Murray 
movie which came out in 1993. 

KB-InfoBotUser

(Groundhog Day, actor, Bill Murray)
(Groundhog Day, release year, 1993)
(Australia, actor, Nicole Kidman)
(Mad Max: Fury Road, release year, 
2015)

Knowledge Base (head, relation, tail)

Dhingra et al., “End-to-End Reinforcement Learning of Dialogue Agents for Information Access,” arXiv.:1609.00777v2. 33

https://arxiv.org/abs/1609.00777v2
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E2E Task-Completion Bot (TC-Bot) (Li et al., 2017)

wi

B-
type

wi

+1

wi+2

O O

EOS

<intent
>

wi

B-
type

wi

+1

wi+2

O O

EOS

<intent
> Semantic Frame

request_movie
genre=action, 
date=this weekend

System Action / 
Policy
request_location

User Dialogue Action
Inform(location=San Francisco)

Time t-1

wi

<slot>

wi

+1

wi+2

O O

EOS

<intent>

Language Understanding (LU)

Time t-2

Time t

Dialogue 
Management 

(DM)

w0 w1 w2

Natural Language Generation (NLG)
EOSUser 

Goal

User Agenda Modeling

User Simulator

End-to-End Neural Dialogue System

Text Input
Are there any action movies 
to see this weekend?

Idea: supervised learning for each component and reinforcement 
learning for end-to-end training the neural dialogue system
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E2E Task-Completion Bot (TC-Bot) (Li et al., 2017)

 User goal: Two tickets for “the witch” tomorrow 9:30 PM at regal meridian 16, Seattle.

RULE BASED SYSTEM
User: Can I get 2 tickets for the witch?
Agent: Which theater do you want?
User: Regal meridian 16
Agent: What time would you like to see it?
User: 9:30 pm
Agent: What date would you like to see it?
User: Tomorrow!
Agent: How many people are you?
User: Just two adults.
Agent: What is your location?
User: Seattle!
Agent: What kind of video format do you like?
User: Oh, any kind is okay. 
Agent: Do you have any price constraint?
User: No, I don’t care.
Agent: Great - I was able to purchase 2 tickets for 
you to see the witch tomorrow at regal meridian 16 
theater in Seattle at 9:30 pm.
User: Thank you.
Agent: Thank you!

REINFORCEMENT LEARNING SYSTEM
User: Can I get 2 tickets for the witch?
Agent: What date would you like to see it?
User: Tomorrow
Agent: Which theater do you prefer?
User: Regal meridian 16
Agent: What is your location?
User: Seattle
Agent: What time would you like to see it?
User: 9:30 pm.
Agent: Great - I was able to purchase 2 tickets for 
you to see the witch tomorrow at regal meridian 
16 theater in Seattle at 9:30 pm.
User: Thanks.
Agent: Thanks!
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Concluding Remarks

 Modular dialogue system

37

Speech 
Recognition

Language Understanding (LU)
• Domain Identification
• User Intent Detection
• Slot Filling

Dialogue Management (DM)
• Dialogue State Tracking (DST)
• Dialogue Policy

Natural Language 
Generation (NLG)

Hypothesis
are there any action movies to 
see this weekend

Semantic Frame
request_movie
genre=action, date=this weekend

System Action/Policy
request_location

Text response
Where are you located?

Text Input
Are there any action movies to see this weekend?

Speech Signal


