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* Approximation Algorithms

« Examples
* Vertex Cover
 Traveling Salesman Problem

o Set Cover
« 3-CNF-SAT
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Approximation

* “A value or quantity that is nearly but not exactly correct”

« Approximation algorithms for optimization problems: the
approximate solution is guaranteed to be close to the exact solution
(.e., the optimal value)

 Cf. heuristics search: no guarantee
* Note: we cannot approximate decision problems

The exact answer

hbound

An approximate answer
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Why Approximation? 4’

« Most practical optimization problems are NP-hard
* |t is widely believed that P # NP

* Thus, polynomial-time algorithms are unlikely, and we must sacrifice either
optimality, efficiency, or generality

« Approximation algorithms sacrifice optimality, return near-optimal
answers
 How “near” is near-optimal?
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Approximation Algorithms

« p(n) -approximation algorithm
« Approximation ratigp(n)
* N: Input size
« C": cost of an optimal solution
 C: cost of the solution produced by the approximation algorithm

1 < max(5. &) < p(n)
! |

Maximization problem: C* /C < p(n)
Minimization problem: C'/C* < p(n)
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© Approximation Ratio p(n)

¢ C* n: in '
. input size
maX( O'* ) C ) < p(n) C”: cost of an optimal solution
C: cost of an approximate solution
. p(n) 21
« Smaller is better f(n) =1 indicates an exact algorithm)

 Challenge: prove that C is close to C” without knowing C”
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Vertex Cover

Textbook 35.1 — The vertex-cover problem
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Vertex Cover Problem

* Avertex coverof G = (V, E)isasubset V' c Vs.t if (w, V) €
E,thenweVorveV

« A vertex cover “covers” every edge in G
* Optimization problem: find a minimum size vertex cover in Gy \p-complete

 Decision problem: is there a vertex cover with size smaller
than k

Slides: Yun-Nung (Vivian) Chen and Hsu-Chun Hsiao, National Taiwan University 8


http://vivianchen.idv.tw/
https://www.csie.ntu.edu.tw/~hchsiao/

Greedy Heuristic Algorithm

* |dea: cover as many edges as possible (vertex with the maximum
degree) at each stage and then delete the covered edges

0@ g
@*i@

{b, d, e} is the optimal solution!
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Greedy Heuristic Algorithm

* |dea: cover as many edges as possible (vertex with the maximum
degree) at each stage and then delete the covered edges

* The greedy heuristic cannot always find optimal solution (otherwise

OISO "IE
Lo 884 &

» There is no guarantee that C is always close to C" either
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Approximate Algorithm

APPROX-VERTEX-COVER (G)
C =g
E’ = G.E
while E' #
let (u, v) be an arbitrary edge of E’
C =CU {u, v}
remove from E’ every edge incident on either u or v
return C

* APPROX-VERTEX-COVER

« Randomly select one edge at a time
 Remove all incident edges

* Running time = O(|V| + |E|)
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Approximate Algorithm

* APPROX-VERTEX-COVER

« Randomly select one edge at a time
 Remove all incident edges

b —(c —(d - ) Q'@
¢

a ¢

@ approximation algorithm (notopmal)
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Approximate Algorithm

Theorem. APPROX-VERTEX-COVER is a 2-approx. for the vertex cover problem.

3 things to check

* Q1: Does it give a feasible solution?
A feasible solution for vertex cover is a node set that covers all the edges
* Finding an optimal solution is hard, but finding a feasible one could be easy
* Q2: Does it run in polynomial time?
« An exponential-time algorithm is not qualified to be an approximation algorithm
* Q3: Does it give an approximate solution with approximation ratio < 27
« Other names: 2-approximate solution, factor-2 approximation
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2-Approximation Solution

Prove that p(n) = 2. Thatis |C| < 2|C*|.
« Suppose that the algorithm runs for k iterations. Let C be the output of

APPROX-VE
e If k =0, then
e Ifk >0, then

-
&
C

'EX-COVER. Let OPT be any optimal vertex cover of G.
= |C*| =0

= 2k. It suffices to ensure that |C*| > k

» Observe that all those k edges (u, v) chosen by APPROX-VERTEX-COVER in
those k iterations form a matching of G. Just for OPT (or any feasible solution)
to cover this matching requires at least k nodes.
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Approximation Analysis

* Tight analysis: check whether we underestimate the quality of the
approximate solution obtained by APPROX-VERTEX-COVER

* This factor-2 approximation is still the best known approximation
algorithm

* Reducing to 1.99 is a significant result

Yes, it is tight!
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Vertex Cover v.s. Independent Set

* C Is a vertex cover of graph G=(V, E) Iff V — C Is an independent set of
G

* Q: Does a 2-approximation algorithm for vertex cover imply a 2-
approximation for maximum independent set?
e

Optimal vertex Optimal independent
cover: 49 nodes Set: 51 nodes

&
P

A 2-approximate
vertex cover: 98 nodes
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Traveling Salesman Problem

Textbook 35.2 — The traveling-salesman problem
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Traveling Salesman Problem (TSP)

« Optimization problem: Given a set of cities and their pairwise
distances, find a tour of lowest cost that visits each city exactly once.

* Inter-city distances satisfy triangle inequality if for all vertices

d(u,w) < d(u,v) + d(v,w),Vu,v,w € V

w/ triangle inequality  w/o triangle inequality
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Approximate Algorithm

APPROX-TSP-TOUR (G)
select a vertex r from G.V as a “root” vertex
grow a minimum spanning tree T for G from root r using
MST-PRIM(G, d, r)
H = the list of vertices visited in a preorder tree walk of T
return C

* APPROX-TSP-TOUR

e Grow an MST from a random root
« MST-PRIM

* For (n - 1) iterations, add the least-weighted edge incident to the current subtree that does not incur
a cycle

+ Running time = O(|E| + |V|log [V']) = O(|V'|?)
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Approximate Algorithm

| |- i N :
b ff{x\g b f
’Ef\hj -,

&[/

H=a,b,c,h,d, e f,g,a
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A} H*:a,b,C,h,f,g,e,d,a
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Approximate Algorithm

Theorem. APPROX-TSP-TOUR is a 2-approximation for the TSP problem.
3 things to check

* Q1: Does it give a feasible solution?
A feasible solution is a path of G visiting each cities exactly once
* The property of a complete graph is needed

* Q2: Does it run in polynomial time?
* Q3: Does it give an approximate solution with approximation ratio < 27
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2-Approximation Solution

Prove that p(n) = 2. That is cost(H) < 2 x cost(H™).
 With triangle inequality: cost(H) < 2 x cost(MST) o==0

\%)
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 Let H* denote an optimal tour formed by some tree plus an edge:
cost(MST) < cost(H™)

« Hence, cost(H) < 2 x cost(MST) < 2 x cost(H™)
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General TSP

Theorem 35.3. If P # NP, there is no polynomial-time approximation algorithm with a
constant ratio bound p for the general TSP

* Proof by contradiction

« Suppose there is such an algorithm A with a constant ratio p. We will
use A to solve HAM-CYCLE In polynomial time.

 Algorithm for HAM-CYCLE
« Convert G = (V, E) into an instance | of TSP with cities V (resulting in a complete

graph G' = (V, E’)): . 9) {1 if (u,v) € E

p|lV|+1 otherwise.

e Run Aonl

* If the reported cost < p|V|, then return “Yes” (i.e., G contains a tour that is an
HC), else return “No.”
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General TSP

Theorem 35.3. If P # NP, there is no polynomial-time approximation algorithm with a
constant ratio bound p for the general TSP

« Analysis
* If G has an HC: G’contains a tour of cost |V| by picking edges in E, each has 1
CoSt > (p[V[+1)+ (|[V] = 1) > p|V]|

* If G does not have an HC: any tour of G’ must use some edge not in E, which
has a total cost < p x cost(H™)

 Algorithm A guarantees to return a tour of cost
« HAM-CYCLE can be solved in polynomial time, contradiction
* Areturns a cost < p|V| If G contains an HC; A returns a cost > p|V|, otherwise

u,y,V, W, X, Uis a m Q 1 u,y, v, w, X, Uis a traveling-
Hamiltonian Cycle “ < A salesman tour with cost |V|
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Exercise 35.2-2

Show how in polynomial time we can transform one instance of the traveling-salesman problem into
another instance whose cost function satisfies the triangle inequality. The two instances must have
the same set of optimal tours. Explain why such a polynomial-time transformation does not contradict

Theorem 35.3, assuming that P # NP.

TSP w/o triangle inequality TSP w/ triangle inequality
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Exercise 35.2-2

 For example, we can add d, ., (the largest cost) to each edge

e G contains a tour of minimum cost k & k + dmax X |V|
G’ contains a tour of minimum cost

» G’s satisfies triangle inequality because for all vertices u,v,w € V
d'(u,w) = d(u,w) + dpax < 2 X dpax < d'(u,v) +d' (v, w)

TSP w/o triangle inequality TSP w/ triangle inequality
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Exercise 35.2-2

TSP w/o triangle inequality TSP w/ triangle inequality

cost(H) = 12 @ approximate
cost(H*) =4
cost(H) = 32

cost(H;) -9 cost(H*) = 24
cost(H™) cost(H)
< 2
cost(H*) —
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Set Cover

Textbook 35.3 — The set-covering problem
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Set Cover

* Optimization problem: Given k subsets {S;, S,, ..., S,}of 1, 2, ..., n,
find an index subset C of {1, 2, ..., k} with minimum |C| s.t.
U?lEIS?Z — {1727' o ,?’L}

Set cover is NP-complete.
1) Itisin NP
2) It is NP-hard
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Approximate Algorithm

GREEDY-SET-COVER (S)

I =d

C =¢

while C # {1, 2, .., n}
select 1 be an i1ndex maximizing [|S; - C|
I = I U {1i}
C =CUS;

return I

* GREEDY-SET-COVER

« At each stage, picking the set S that covers the greatest number of remaining
elements that are uncovered

e Running time = ?
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Approximate Algorithm

Theorem. GREEDY-SET-COVER is a O(logn) -approx. for the set cover problem.

3 things to check

* Q1: Does It give a feasible solution?

A feasible solution output is a collection of subsets whose union is the ground
set {1, 2, ..., n}.

* Q2: Does it run in polynomial time?
« Q3: Does it give an approximate solution with p(n) = O(logn) ?
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O(logn) -Approximation Solution

Prove that p(n) = O(logn). That is, |I| < O(logn) x |I*|.
* Let I* denote an optimal set cover. We plan to prove that

1 1 1
1< | =+ + +ot 1
n n—1 n-—2

Slides: Yun-Nung (Vivian) Chen, National Taiwan University 33


http://vivianchen.idv.tw/

Total Price

* For brevity, we re-index those subsets s.t. for each I, S; is the I-th set
selected by GREEDY-SET-COVER

* Let C, be the C right before the elements of S; Is inserted into C
* If an element | is inserted into C in the I-th iteration, the price of | is|giici|
* The sum of price of all n integers is exactly |I|
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Algorithm lllustration
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Bound

 For brevity, we re-index the integers s.t. they are inserted into C
according to the increasing order of these integers

’——h

* When | Is about to be put into C, there -~
are at least n-j+1 uncovered numbers. /

O
I
* I* Is a collection of sets that can cover ‘e o
these n-j+1 numbers. There is an index
tel*s.t. S, can cover at least - N
uncovered numbers

* We have|S; — Ci| > "=, wh?*rej Is inserted into C in the i-th iteration.
* The price of jisTg; 10 S n' jJ'rl
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O(logn)-Approximation Solution

* The sum of price of all n integers is exactly

. 1
ne price of | Is at most .=

* Therefore, we can prove that

1 * * *
1SS 1 = Ho 1] = Ollog) |1
71=1
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3-CNF-SAT

Textbook 35.4 — Randomization and linear programming
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Randomized Approximate Algo

 Randomized algorithm’s behavior is determined not only by its input
but also by values produced by a random-number generator

. |Exact_________|Approximate
Deterministic MST APPROX-TSP-TOUR
Randomized Quick Sort MAX-3-CNF-SAT
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3-CNF-SAT Problem

 Decision problem: Satisfiability of Boolean formulas in 3-conjunctive
normal form (3-CNF)

(331 V —xq V _|.5132) A (333 V xo V 334) N\ (_'215‘1 V —x3 V _11134)

« 3-CNF = AND of clauses, each of which is the OR of exactly 3 distinct literals
* Aliteral is an occurrence of a variable or its negation, e.g., X; or =X,

x1 = 0,29 = 0,23 = 1,24 = 1 > satisfiable
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MAX-3-CNF-SAT

« Optimization problem: find an assignment of the variables that satisfies
as many clauses as possible

» Closeness to optimum is measured by the fraction of satisfied clauses

— (21 V21 V. x9) A (23 V2o Vg A (—mx VsV xy)

r1 =0,r0 =0,23 = 1,4 =1 satisfies 3 clauses
r1=1,20 =0,23 =1,24 =1 satisfies 2 clauses

This clause is always satisfied.
For simplicity, we assume no clause containing both literal and its negation.
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Randomized Approximation Algo

 Randomly set each literal to be 0 or 1 (EE#8

 Then... paLb /
/ < — M:\.,-.ﬁ'}
 End //7 o [

Theorem 35.6. Given an instance of MAX-3-CNF-SAT with n variables x;, X,, ..., X,
and m clauses, the randomized algorithm that independently sets each variable to 1
with probability 1/2 and to O with probability 1/2 is a randomized 8/7-approximation
algorithm
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Randomized Approximation Algo

Theorem 35.6. Given an instance of MAX-3-CNF-SAT with n variables X, X,, ..., X, and m

clauses, the randomized algorithm that independently sets each variable to 1 with probability 1/2 and
to O with probability 1/2 is a randomized 8/7-approximation algorithm

e Proof (satisfying 7/8 of clauses in expectation)
« Each clause is the OR of exactly 3 distinct literals

Prlz; =0] = Prlz; =1] =1/2
— V1 # x9 # x3, Pri(x1 Vza Vas) =0]=1/8
— E[# of satisfied clauses| = m x E[clause j is satisfied]
>m x (1—1/8) = 7m/8
max # of satisfied clauses
E[# of satisfied clauses]

— p(n) = = 8/7
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Concluding Remarks

« Most practical optimization problems are NP-hard
* |t is widely believed that P # NP

* Thus, polynomial-time algorithms are unlikely, and we must sacrifice either
optimality, efficiency, or generality

« Approximation algorithms sacrifice optimality, return near-optimal

answers
max(—, &) < p(n)
) <P
3

Maximization problem: C* /C' < p(n)
Minimization problem: C'/C* < p(n)
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Question?

Important announcement will be sent to
@ntu.edu.tw mailbox & post to the course website

Course Website: http://ada.miulab.tw
Emall: ada-ta@csie.ntu.edu.tw



