NP Completeness (2)

Algorithm Design and Analysis 演算法設計與分析

http://ada.miulab.tw Yun-Nung (Vivian) Chen 陳縕儂

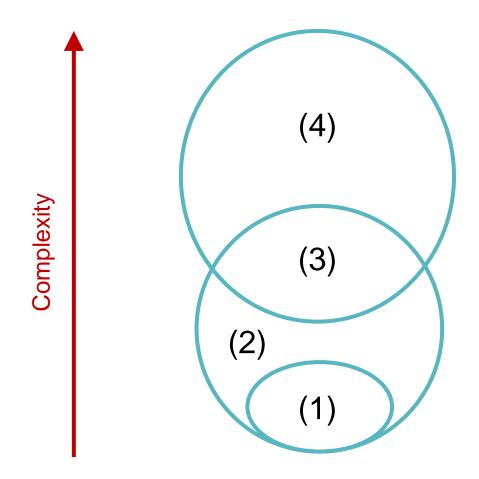
Outline

Mine 1

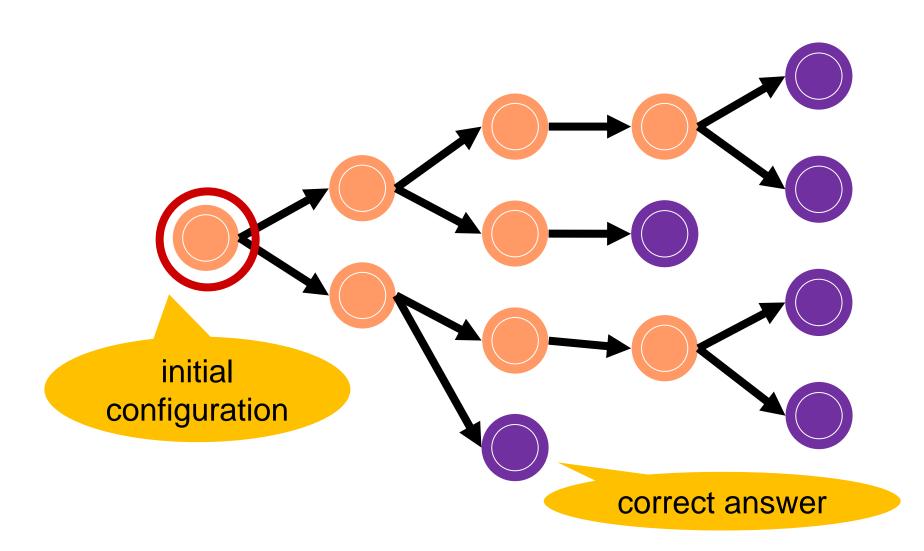
- Polynomial-Time Reduction
- Polynomial-Time Verification
- Proving NP-Completeness
 - 3-CNF-SAT
 - Clique
 - Vertex Cover
 - Independent Set
 - Traveling Salesman Problem

P, NP, NP-Complete, NP-Hard

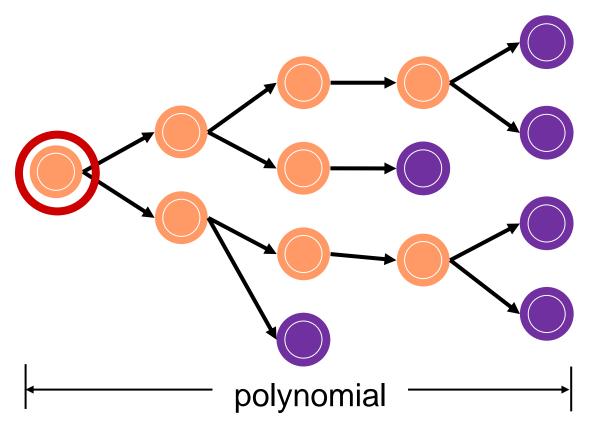
• P ≠ NP



Non-Deterministic Problem Solving



Non-Deterministic Polynomial



"solved" in non-deterministic polynomial time = "verified" in polynomial time

Polynomial-Time Reduction

Textbook Chapter 34.3 – NP-completeness and reducibility

First NP-Complete Problem – SAT (Satisfiability)

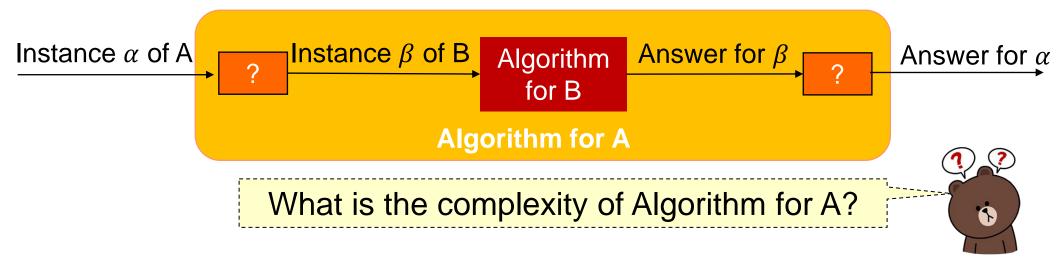
- Input: a Boolean formula with variables
- Output: whether there is a truth assignment for the variables that satisfies the input Boolean formula

$$(x \lor y \lor z) \land (x \lor \bar{y} \lor \bar{z}) \land (\bar{x} \lor y)$$

- Stephan A. Cook [FOCS 1971] proved that
 - SAT can be solved in non-deterministic polynomial time → SAT ∈ NP
 - If SAT can be solved in deterministic polynomial time, then so can any NP problems → SAT ∈ NP-hard

Reduction

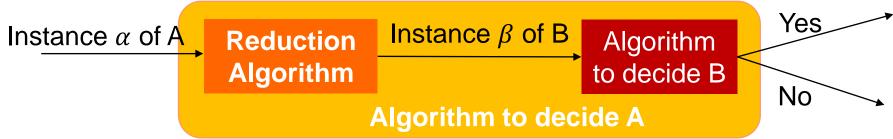
- Problem A can be reduced (in polynomial time) to Problem B
 Problem B can be reduced (in polynomial time) from Problem A
 - We can find an algorithm that solves Problem B to help solve Problem A



- If problem B has a polynomial-time algorithm, then so does problem A
- Practice: design a MULTIPLY() function by ADD(), DIVIDE(), and SQUARE()

Reduction

 A reduction is an algorithm for transforming a problem instance into another



- Definition
 - Reduction from A to B implies A is not harder than B
 - A ≤_D B if A can be reduced to B in polynomial time
- Applications
 - Designing algorithms: given algorithm for B, we can also solve A
 - Classifying problems: establish relative difficulty between A and B
 - Proving limits: if A is hard, then so is B

This is why we need it for proving NP-completeness!

Questions

- If A is an NP-hard problem and B can be reduced from A, then B is an NP-hard problem?
- If A is an NP-complete problem and B can be reduced from A, then B is an NP-complete problem?
- If A is an NP-complete problem and B can be reduced from A, then B is an NP-hard problem?

Problem Difficulty

Q: Which one is harder?

KNAPSACK: Given a set $\{a_1, ..., a_n\}$ of non-negative integers, and an integer K, decide if there is a subset $P \subseteq [1, n]$ such that $\sum_{i \in P} a_i = K$.

- A: They have equal difficulty.
- Proof:
 - PARTITION ≤_p KNAPSACK
 - KNAPSACK ≤_p PARTITION

Polynomial-time reducible?

<u>PARTITION</u>: Given a set of n non-negative integers $\{a_1, ..., a_n\}$, decide if there is a subset $P \subseteq [1, n]$ such that $\sum_{i \in P} a_i = \sum_{i \notin P} a_i$.

Polynomial-time reducible?

Polynomial Time Reduction

KNAPSACK: Given a set $\{a_1, ..., a_n\}$ of non-negative integers, and an integer K, decide if there is a subset $P \subseteq [1, n]$ such that $\sum_{i \in P} a_i = K$.

Polynomial-time reducible?

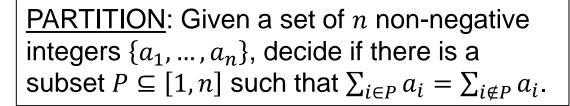
<u>PARTITION</u>: Given a set of n non-negative integers $\{a_1, ..., a_n\}$, decide if there is a subset $P \subseteq [1, n]$ such that $\sum_{i \in P} a_i = \sum_{i \notin P} a_i$.

Polynomial-time reducible?

- PARTITION ≤_p KNAPSACK
 - If we can solve KNAPSACK, how can we use that to solve PARTITION?
- KNAPSACK ≤_p PARTITION
 - If we can solve PARTITION, how can we use that to solve KNAPSACK?

PARTITION ≤_p KNAPSACK

KNAPSACK: Given a set $\{a_1, ..., a_n\}$ of non-negative integers, and an integer K, decide if there is a subset $P \subseteq [1, n]$ such that $\sum_{i \in P} a_i = K$.



- If we can solve KNAPSACK, how can we use that to solve PARTITION?
- Polynomial-time reduction
 - Set $K = \frac{1}{2} \sum_{i=1}^{n} a_i$

5

6

7

8

p-time reduction

5

6

7

8

PARTITION instance

KNAPSACK instance with

$$K = \frac{1}{2} \times 26 = 13$$

PARTITION ≤_D KNAPSACK

- If we can solve KNAPSACK, how can we use that to solve PARTITION?
- Polynomial-time reduction

• Set
$$K = \frac{1}{2} \sum_{i=1}^{n} a_i$$

5 6 7 8 p-time reduction

5 6 7 8

PARTITION instance

KNAPSACK instance with

$$K = \frac{1}{2} \times 26 = 13$$

 Correctness proof: KNAPSACK returns yes if and only if an equal-size partition exists

KNAPSACK ≤_p PARTITION

<u>KNAPSACK</u>: Given a set $\{a_1, ..., a_n\}$ of non-negative integers, and an integer K, decide if there is a subset $P \subseteq [1, n]$ such that $\sum_{i \in P} a_i = K$.



- If we can solve PARTITION, how can we use that to solve KNAPSACK?
- Polynomial-time reduction
 - Set $H = \frac{1}{2} \sum_{i=1}^{n} a_i$
 - Add $a_{n+1} = 2H + 2K$, $a_{n+2} = 4H$

5

6

7

8

p-time reduction

8H + 2K

KNAPSACK instance with K = 11

PARTITION instance

KNAPSACK ≤ PARTITION

- If we can solve PARTITION, how can we use that to solve KNAPSACK?
- Polynomial-time reduction
 - Set $H = \frac{1}{2} \sum_{i=1}^{n} a_i$
 - Add $a_{n+1} = 2H + 2K$, $a_{n+2} = 4H$

p-time reduction

8H + 2K

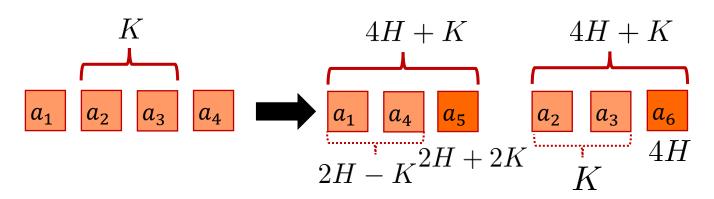
KNAPSACK instance with K = 11

PARTITION instance

 Correctness proof: PARTITION returns yes if and only if there is a subset $P \subseteq [1, n]$ such that $\sum_{i \in P} a_i = K$

KNAPSACK ≤_p PARTITION

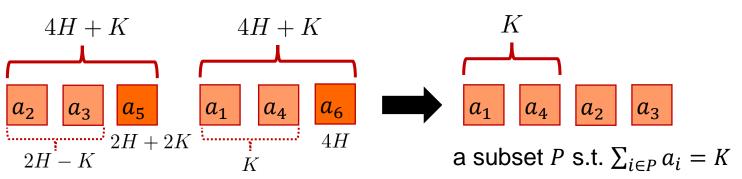
- Polynomial-time reduction
 - Set $H = \frac{1}{2} \sum_{i=1}^{n} a_i$
 - $Adda_{n+1} = 2H + 2K$, $a_{n+2} = 4H$
- Correctness proof: PARTITION returns yes if and only if there is a subset $P \subseteq [1, n]$ such that $\sum_{i \in P} a_i = K$
 - "if" direction



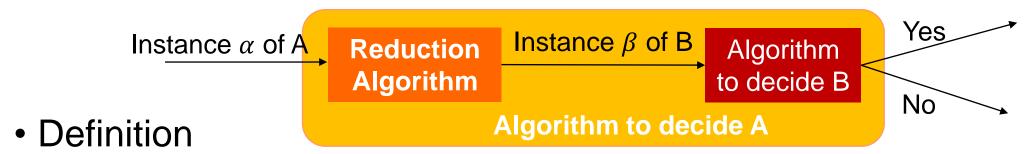
PARTITION returns yes!

KNAPSACK ≤_p PARTITION

- Polynomial-time reduction
 - Set $H = \frac{1}{2} \sum_{i=1}^{n} a_i$
 - $Adda_{n+1} = 2H + 2K$, $a_{n+2} = 4H$
- Correctness proof: PARTITION returns yes if and only if there is a subset $P \subseteq [1, n]$ such that $\sum_{i \in P} a_i = K$
 - "only if" direction
 - Because $\sum_{i=1}^{n+2} a_i = 8H + 2K$, if PARTITION returns yes, each set has 4H + K
 - $\{a_1, ..., a_n\}$ must be divided into 2H K and K



Reduction for Proving Limits



- Reduction from A to B implies A is not harder than B
- A ≤_p B if A can be reduced to B in polynomial time
- NP-completeness proofs
 - Goal: prove that B is NP-hard
 - Known: A is NP-complete/NP-hard
 - Approach: construct a polynomial-time reduction algorithm to convert α to β
 - Correctness: if we can solve B, then A can be solved → A ≤_p B
 - B is no easier than A → A is NP-hard, so B is NP-hard
 If the reduction is not p-time, does this argument hold?

Proving NP-Completeness

Formal Language Framework

- Focus on decision problems
- A language L over Σ is any set of strings made up of symbols from Σ
- Every language L over Σ is a subset of Σ^*

$$\sum^* = \{\epsilon; 0; 1; 10; 11; 101; 111; \cdots \}$$

The formal-language framework allows us to express concisely the relation between decision problems and algorithms that solve them.

- An algorithm A accepts a string $x \in \{0,1\}^*$ if A(x) = 1
- The language accepted by an algorithm A is the set of strings

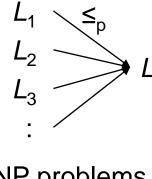
$$L = \{x \in \{0, 1\}^* : A(x) = 1\}$$

• An algorithm A rejects a string x if A(x) = 0

Proving NP-Completeness

- NP-Complete (NPC): class of decision problems in both NP and NP-hard
- In other words, a decision problem L is NP-complete if
 - *1.L* ∈ NP
 - $2.L \in NP$ -hard (that is, $L' \leq_p L$ for every $L' \in NP$)

How to prove *L* is NP-hard?

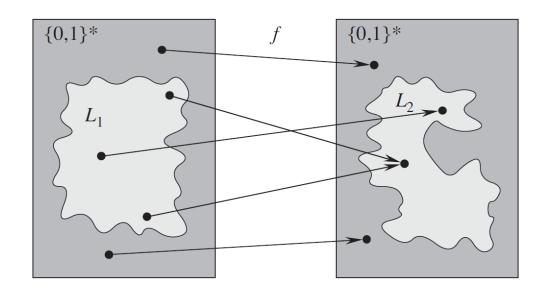


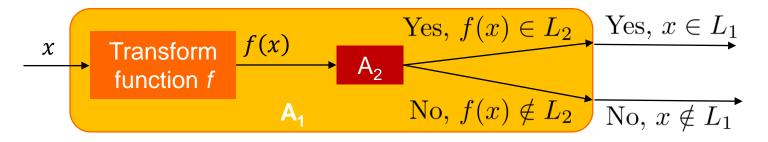
all NP problems



Polynomial-Time Reducible

• If $L_1, L_2 \subset \{0,1\}^*$ are languages s.t. $L_1 \leq_p L_2$, then L2 \in P implies L1 \in P.



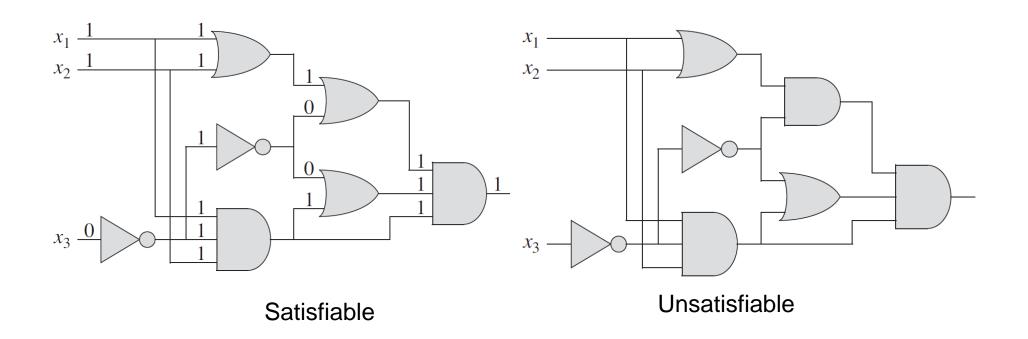


P v.s. NP

- If one proves that SAT can be solved by a polynomial-time algorithm, then NP = P.
- If somebody proves that SAT cannot be solved by any polynomial-time algorithm, then NP ≠ P.

Circuit Satisfiability Problem

- Given a Boolean combinational circuit composed of AND, OR, and NOT gates, is it satisfiable?
 - Satisfiable: there exists an assignment s.t. outputs = 1



CIRCUIT-SAT

CIRCUIT-SAT = {<C>: C is a satisfiable Boolean combinational circuit}

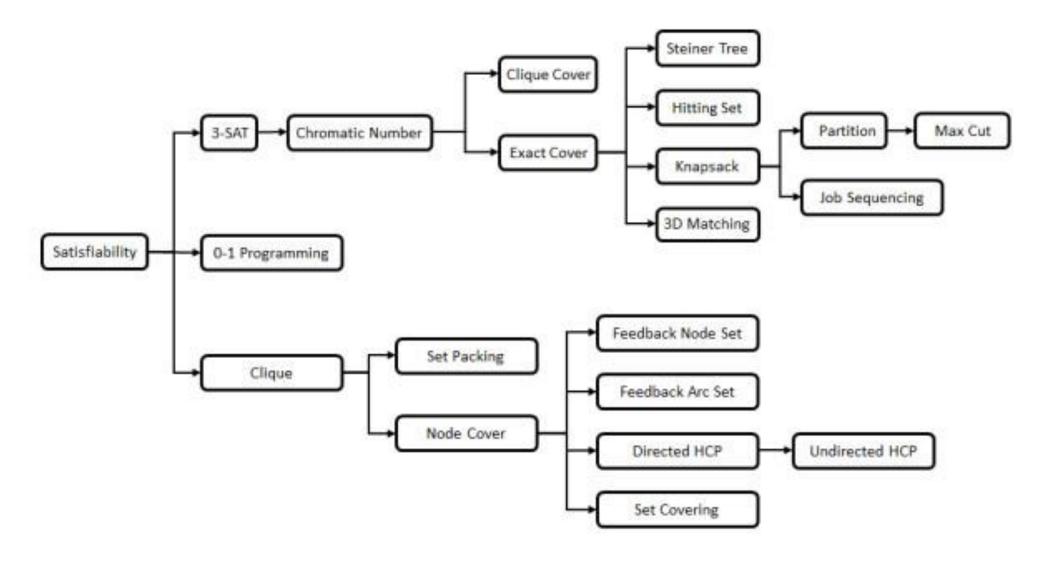
- CIRCUIT-SAT can be solved in non-deterministic polynomial time
 → ∈ NP
- If CIRCUIT-SAT can be solved in deterministic polynomial time, then so can any NP problems
 - \rightarrow \in NP-hard
- (proof in textbook 34.3)
- CIRCUIT-SAT is NP-complete

Karp's NP-Complete Problems

- 1. CNF-SAT
- 2. 0-1 INTEGER PROGRAMMING
- 3. CLIQUE
- 4. SET PACKING
- 5. VERTEX COVER
- 6. SET COVERING
- 7. FEEDBACK ARC SET
- 8. FEEDBACK NODE SET
- 9. DIRECTED HAMILTONIAN CIRCUIT
- 10.UNDIRECTED HAMILTONIAN CIRCUIT
- 11.3-SAT

- 12.CHROMATIC NUMBER
- 13.CLIQUE COVER
- 14.EXACT COVER
- 15.3-dimensional MATCHING
- **16.STEINER TREE**
- 17.HITTING SET
- 18.KNAPSACK
- 19.JOB SEQUENCING
- 20.PARTITION
- 21.MAX-CUT

Karp's NP-Complete Problems



Formula Satisfiability Problem (SAT)

• Given a Boolean formula Φ with variables, is there a variable assignment satisfying Φ

$$\phi = ((x_1 \to x_2) \lor \neg ((\neg x_1 \leftrightarrow x_3) \lor x_4)) \land \neg x_2$$

- ^ (AND), ∨ (OR), ¬ (NOT), → (implication), ↔ (if and only if)
- Satisfiable: Φ is evaluated to 1

$$x_1 = 0, x_2 = 0, x_3 = 1, x_4 = 1$$

$$\phi = ((0 \to 0) \lor \neg((\neg 0 \leftrightarrow 1) \lor 1)) \land \neg 0$$

$$= (1 \lor \neg((1 \leftrightarrow 1) \lor 1)) \land 1$$

$$= (1 \lor \neg(1 \lor 1)) \land 1$$

$$= (1 \lor 0) \land 1$$

$$= 1 \land 1$$

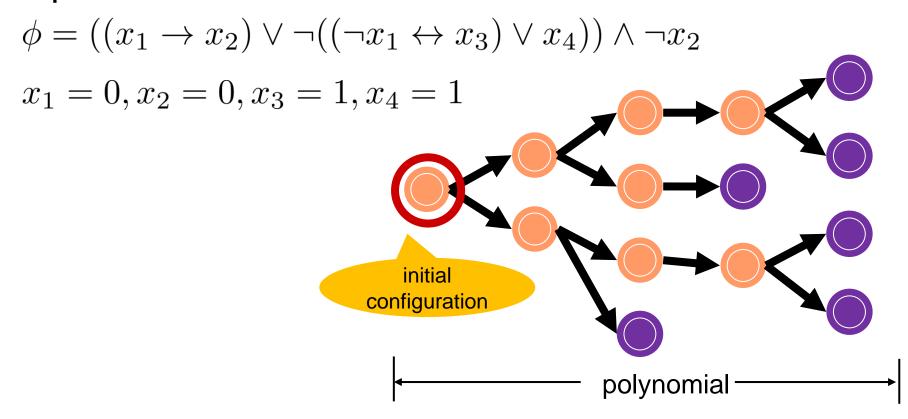
SAT

SAT = $\{\Phi \mid \Phi \text{ is a Boolean formula with a satisfying assignment }\}$

- Is SAT ∈ NP-Complete?
- To prove that SAT is NP-Complete, we show that
 - SAT ∈ NP
 - SAT ∈ NP-hard (CIRCUIT-SAT ≤_p SAT)
 - 1) CIRCUIT-SAT is a known NPC problem
 - 2) Construct a reduction f transforming every CIRCUIT-SAT instance to an SAT instance
 - 3) Prove that $x \in CIRCUIT\text{-SAT}$ iff $f(x) \in SAT$
 - 4) Prove that *f* is a polynomial time transformation

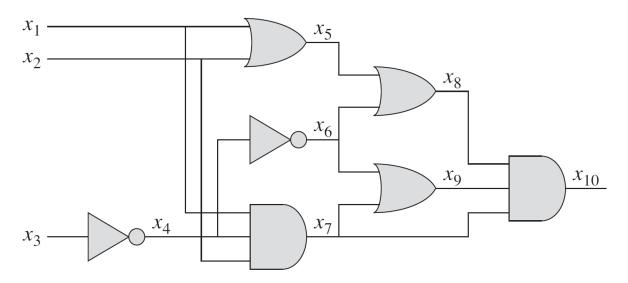
SAT \in NP

• Polynomial-time verification: replaces each variable in the formula with the corresponding value in the certificate and then evaluates the expression

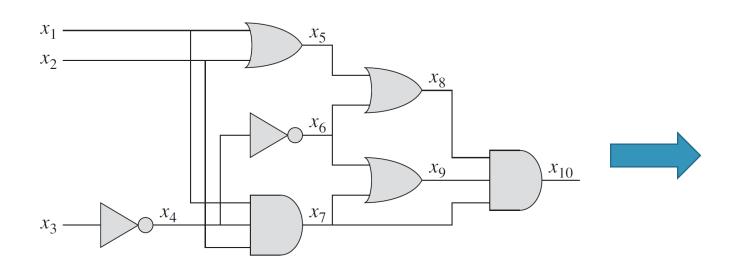


SAT ∈ NP-Hard

- 1)CIRCUIT-SAT is a known NPC problem
- 2)Construct a reduction f transforming every CIRCUIT-SAT instance to an SAT instance
 - Assign a variable to each wire in circuit C
 - Represent the operation of each gate using a formula, e.g.
 - Φ = AND the output variable and the operations of all gates $(x_7 \land x_8 \land x_9)$



SAT ∈ NP-Hard



- $\phi = x_{10} \wedge (x_4 \leftrightarrow \neg x_3)$ $\wedge (x_5 \leftrightarrow (x_1 \lor x_2))$ $\wedge (x_6 \leftrightarrow \neg x_4)$ $\wedge (x_7 \leftrightarrow (x_1 \land x_2 \land x_4))$ $\wedge (x_8 \leftrightarrow (x_5 \lor x_6))$ $\wedge (x_9 \leftrightarrow (x_6 \lor x_7))$ $\wedge (x_{10} \leftrightarrow (x_7 \land x_8 \land x_9))$
- Prove that $x \in CIRCUIT\text{-SAT} \leftrightarrow f(x) \in SAT$
 - $x \in CIRCUIT\text{-SAT} \rightarrow f(x) \in SAT$
 - $f(x) \in SAT \rightarrow x \in CIRCUIT-SAT$
- f is a polynomial time transformation CIRCUIT-SAT ≤ SAT → SAT ∈ NP-hard

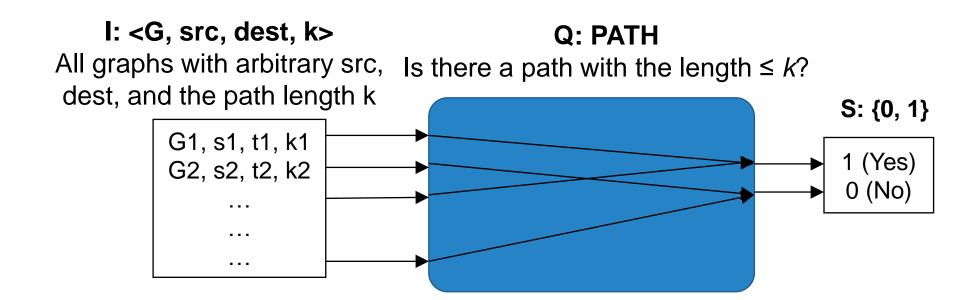
Polynomial-Time Verification

Chapter 34.1 – Polynomial-time

Chapter 34.2 – Polynomial-time verification

Abstract Problems

- Example of a decision problem, PATH
- I: a set of problem instances
- S: a set of problem solutions
- Q: abstract problem, defined as a binary relation on I and S

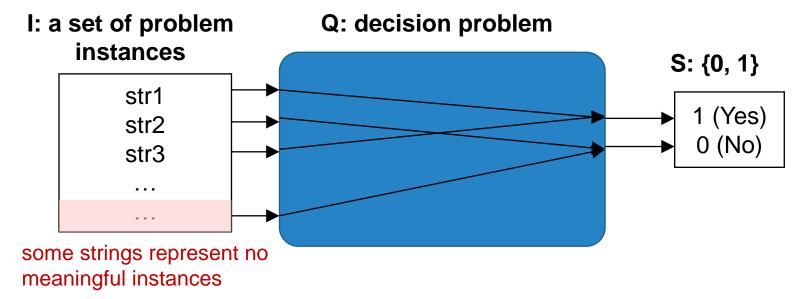


Problem Instance Encoding

 Convert an abstract problem instance into a binary string fed to a computer program

- A concrete problem is **polynomial-time solvable** if there exists an algorithm that solves any concrete instance of length n in time $O(n^k)$ for some constant k
 - Solvable = can produce a solution

Decision Problem Representation



- I: a set of problem instances $\sum^* = \{\epsilon; 0; 1; 10; 11; 101; 111; \cdots \}$
- Q: a decision problem

 a language I over $\nabla = \{0, 1\}$ s.t. $I = \{m \in \{0, 1\}^* : O(n)\}$
 - **=** a language L over $\Sigma = \{0,1\}$ s.t. $L = \{x \in \{0,1\}^* : Q(x) = 1\}$

以答案為1的instances定義decision problem Q (L = {str1, str3} in this example)

P in Formal Language Framework

A decision problem Q can be defined as a language L over $\sum = \{0,1\}$ s.t. $L = \{x \in \{0,1\}^* : Q(x) = 1\}$

- An algorithm A *accepts* a string $x \in \{0,1\}^*$ if A(x) = 1
- An algorithm A *rejects* a string $x \in \{0,1\}^*$ if A(x) = 0
- An algorithm A accepts a language L if A accepts every string $x \in L$
 - If the string is in *L*, A outputs yes.
 - If the string is not in *L*, A may output no or loop forever.
- An algorithm A **decides** a language L if A accepts L and A rejects every string $x \notin L$
 - For every string, A can output the correct answer.

P in Formal Language Framework

- Class P: a class of decision problems solvable in polynomial time
- Given an instance x of a decision problem Q, its solution Q(x) (i.e., YES or NO) can be found in polynomial time
- An alternative definition of P:

 $P = \{L \subseteq \{0,1\}^* \mid \text{there exists an algorithm that decides } L \text{ in polynomial time}\}$

• P is the class of language that can be accepted in polynomial time

 $P = \{L \mid L \text{ is accepted by a polynomial algorithm}\}\$

Hamiltonian-Cycle Problem

- Problem: find a cycle that visits each vertex exactly once
- Formal language:

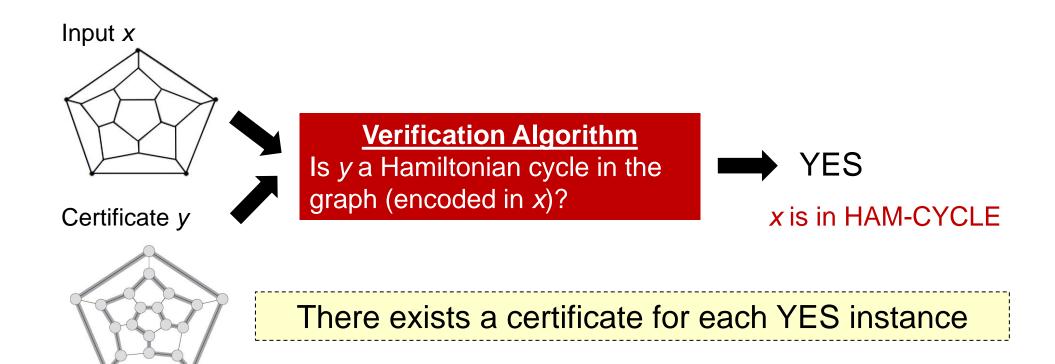
HAM-CYCLE = {<G> | G has a Hamiltonian cycle}

- Is this language decidable? Yes
- Is this language decidable in polynomial time bably not
- Given a certificate the vertices in order that form a Hamiltonian cycle in G, how much time does it take to verify that G indeed contains a Hamiltonian cycle?

Verification Algorithm

Verification algorithms verify memberships in language

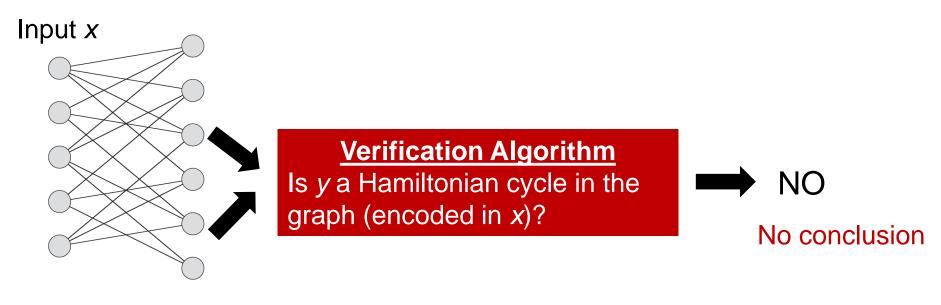
HAM-CYCLE = {<G> | G has a Hamiltonian cycle}



Verification Algorithm

Verification algorithms verify memberships in language

HAM-CYCLE = {<G> | G has a Hamiltonian cycle}

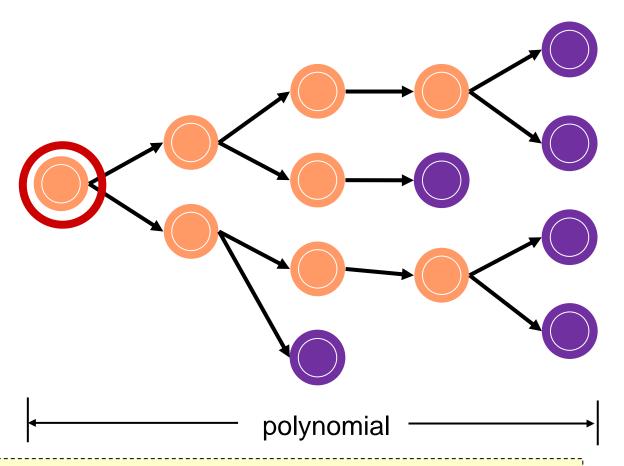


Certificate *y*

??

There exists no certificate for NO instance

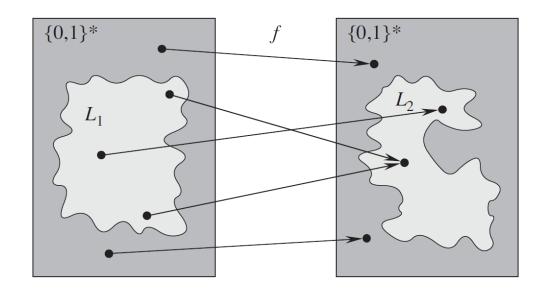
Non-Deterministic Polynomial

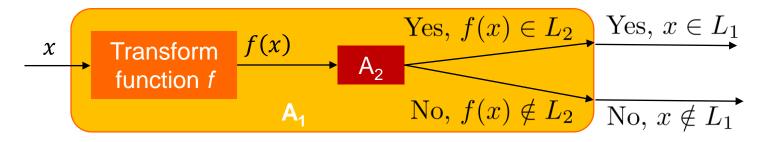


"solved" in non-deterministic polynomial time = "verified" in polynomial time

Polynomial-Time Reducible

• If $L_1, L_2 \subset \{0,1\}^*$ are languages s.t. $L_1 \leq_p L_2$, then L2 \in P implies L1 \in P.

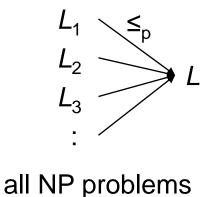




Proving NP-Completeness

- NP-Complete (NPC): class of decision problems in both NP and NP-hard
- In other words, a decision problem L is NP-complete if
 - *1.L* ∈ NP
 - $2.L \in NP$ -hard (that is, $L' \leq_p L$ for every $L' \in NP$)

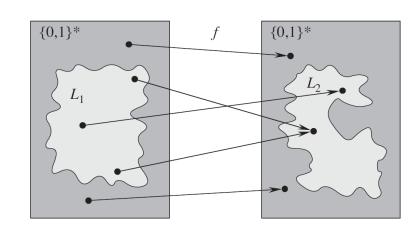
How to prove *L* is NP-hard?



held by Goal: prove polynomial-definition time reduction $\begin{array}{c}
L_1 \\
L_2
\end{array}$ known $\begin{array}{c}
NPC \\
L_3
\end{array}$ problem
:

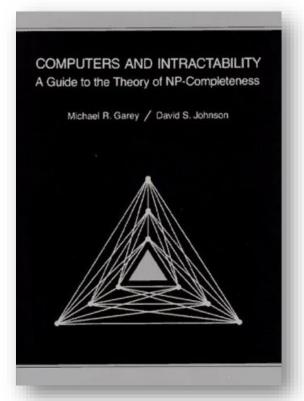
Proving NP-Completeness

- $L \in NPC$ iff $L \in NP$ and $L \in NP$ -hard
- Proof of L in NPC:
 - Prove L ∈ NP
 - Prove L ∈ NP-hard
 - 1) Select a known NPC problem C
 - 2) Construct a reduction f transforming every instance of C to an instance of L
 - 3) Prove that $x \in C \iff f(x) \in L, \forall x \in \{0,1\}^*$
 - 4) Prove that f is a polynomial time transformation



More NP-Complete Problems

- "Computers and Intractability" by Garey and Johnson includes more than 300 NP-complete problems
 - All except SAT are proved by Karp's polynomial-time reduction

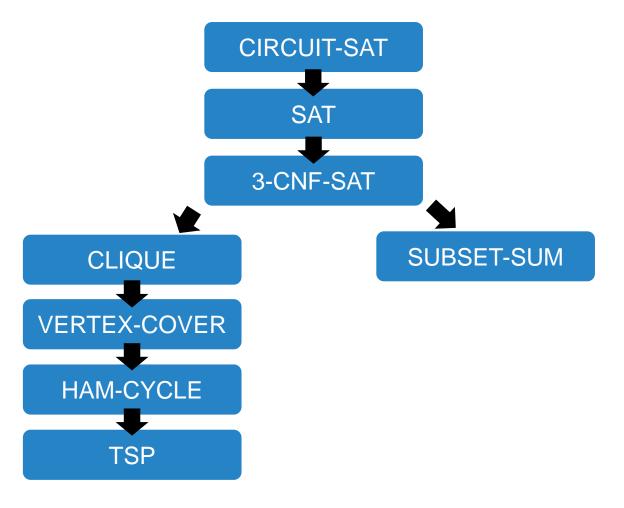


Proving More NP-Completeness

Chapter 34.5 – NP-complete problems

Roadmap for NP-Completeness

• A → B: A ≤_p B



3-CNF-SAT Problem

 3-CNF-SAT: Satisfiability of Boolean formulas in 3-conjunctive normal form (3-CNF)

$$(x_1 \vee \neg x_1 \vee \neg x_2) \wedge (x_3 \vee x_2 \vee x_4) \wedge (\neg x_1 \vee \neg x_3 \vee \neg x_4)$$

- 3-CNF = AND of clauses, each of which is the OR of exactly 3 distinct literals
- A literal is an occurrence of a variable or its negation, e.g., x_1 or $\neg x_1$

$$x_1 = 0, x_2 = 0, x_3 = 1, x_4 = 1 \rightarrow \text{satisfiable}$$

3-CNF-SAT

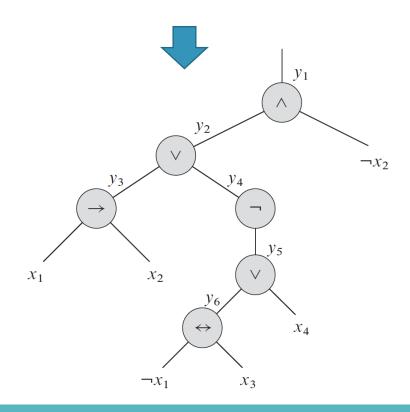
3-CNF-SAT = $\{\Phi \mid \Phi \text{ is a Boolean formula in 3-conjunctive normal form (3-CNF) with$ a satisfying assignment }

- Is 3-CNF-SAT ∈ NP-Complete?
- To prove that 3-CNF-SAT is NP-Complete, we show that
 - 3-CNF-SAT ∈ NP
 - 3-CNF-SAT ∈ NP-hard (SAT ≤_D 3-CNF-SAT)
 - 1) SAT is a known NPC problem
 - 2) Construct a reduction f transforming every SAT instance to an 3-CNF-SAT instance
 - 3) Prove that $x \in SAT$ iff $f(x) \in 3$ -CNF-SAT
 - 4) Prove that f is a polynomial time transformation

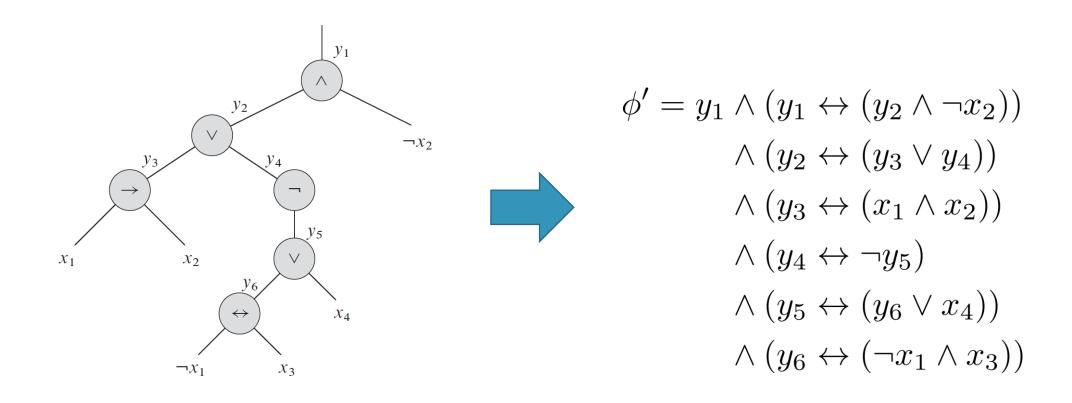
We focus on the reduction construction from now on, but remember that a full proof requires showing that all other conditions are true as well

a)Construct a binary parser tree for an input formula Φ and introduce a variable y_i for the output of each internal node

$$\phi = ((x_1 \to x_2) \lor \neg((\neg x_1 \leftrightarrow x_3) \lor x_4)) \land \neg x_2$$



b)Rewrite Φ as the AND of the root variable and clauses describing the operation of each node



c)Convert each clause Фі' to CNF

- Construct a truth table for each clause Φi'
- Construct the disjunctive normal form for ¬Φi'
- Apply DeMorgan's Law to get the CNF formula Φi"

y_1	y_2	y_2	Φ ₁ '	¬Ф₁'
1	1	1	0	1
1	1	0	1	0
1	0	1	0	1
1	0	0	0	1
0	1	1	1	0
0	1	0	0	1
0	0	1	1	0
0	0	0	1	0

 $\phi' = y_1 \land [(y_1 \leftrightarrow (y_2 \land \neg x_2))]$

 $\wedge (y_4 \leftrightarrow \neg y_5)$

 $\wedge (y_2 \leftrightarrow (y_3 \lor y_4))$

 $\wedge (y_3 \leftrightarrow (x_1 \land x_2))$

 $\land (y_5 \leftrightarrow (y_6 \lor x_4))$

d)Construct Φ" in which each clause C_i exactly 3 distinct literals

- 3 distinct literals: $C_i = l_1 \vee l_2 \vee l_3$
- 2 distinct literals: $C_i = l_1 \vee l_2$

$$C_i = l_1 \vee l_2 = (l_1 \vee l_2 \vee p) \wedge (l_1 \vee l_2 \vee \neg p)$$

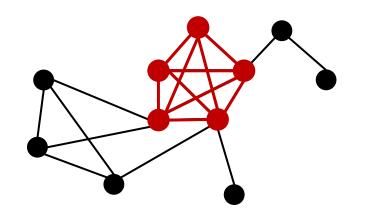
• 1 literal only: $C_i = l$

$$C_i = l = (l \lor p \lor q) \land (l \lor \neg p \lor q) \land (l \lor p \lor \neg q) \land (l \lor \neg p \lor \neg q)$$

- Φ" is satisfiable iff Φ is satisfiable
- All transformation can be done in polynomial time
- → 3-CNF-SAT is NP-Complete

Clique Problem

- A clique in G = (V, E) is a *complete* subgraph of G
 - Each pair of vertices in a clique is connected by an edge in E
 - Size of a clique = # of vertices it contains
- Optimization problem: find a max clique in G
- Decision problem: is there a clique with size larger than k



Does G contain a clique of size 4? Yes

Does G contain a clique of size 5? Yes

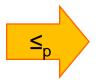
Does G contain a clique of size 6? No

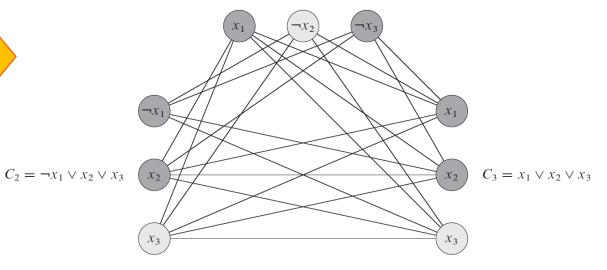
CLIQUE ∈ NP-Complete

CLIQUE = $\{ \langle G, k \rangle : G \text{ is a graph containing a clique of size } k \}$

- Is CLIQUE ∈ NP-Complete? 3-CNF-SAT ≤_p CLIQUE
- Construct a reduction f transforming every 3-CNF-SAT instance to a CLIQUE instance
- a graph G s.t. Φ with k clauses is satisfiable \Leftrightarrow G has a clique of size k

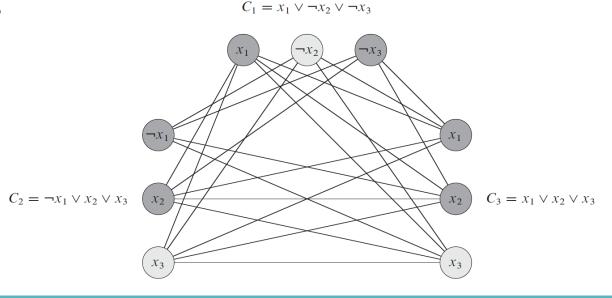
$$\phi = (x_1 \lor \neg x_2 \lor \neg x_3)$$
$$\land (\neg x_1 \lor x_2 \lor x_3)$$
$$\land (x_1 \lor x_2 \lor x_3)$$





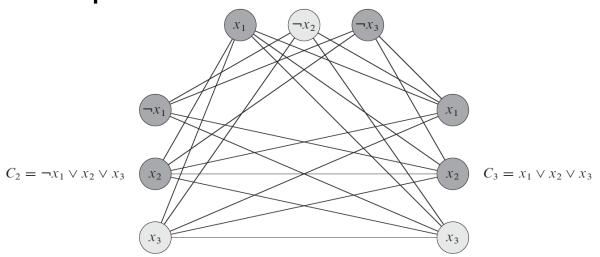
CLIQUE ∈ NP-Complete

- Polynomial-time reduction:
- Let $\phi = C_1 \wedge C_2 \wedge \cdots \wedge C_k$ be a Boolean formula in 3-CNF with k clauses, and each C_r has exactly 3 distinct literals l_1^r , l_2^r , l_3^r
- For each $C_r=(l_1^r\vee l_3^r\vee l_3^r)$, introduce a triple of vertices v_1^r , v_2^r , v_3^r in V
- Build an edge between v_i^r , v_i^s if both of the following hold:
 - v_i^r and v_i^s are in different triples
 - l_i^r is not the negation of l_i^s



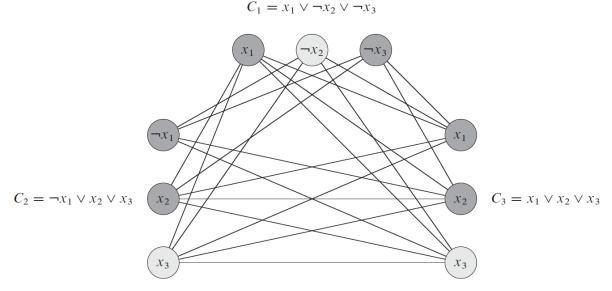
3-CNF-SAT ≤_D CLIQUE

- Correctness proof: Φ is satisfiable → G has a clique of size k
- If Φ is satisfiable
- \rightarrow Each C_r contains at least one $l_i^r = 1$ and such literal corresponds to v_i^r
- → Pick a TRUE literal from each C_r forms a set of V' of k vertices
- \rightarrow For any two vertices v_i^r , $v_i^s \in V'(r \neq s)$, edge $(v_i^r, v_i^s) \in E$, because $l_i^r = l_i^s = 1$ and they cannot be complements $c_1 = x_1 \vee \neg x_2 \vee \neg x_3$



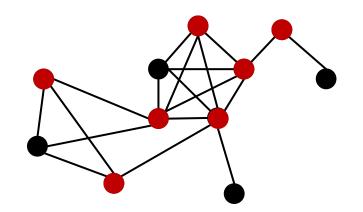
3-CNF-SAT ≤_p CLIQUE

- Correctness proof: G has a clique of size $k \rightarrow \Phi$ is satisfiable
- G has a clique V' of size k
- → V' contains exactly one vertex per triple since no edges connect vertices in the same triple
- \rightarrow Assign 1 to each l_i^r where $v_i^r \in V'$ s.t. each C_r is satisfiable, and so is Φ



Vertex Cover Problem

- Scattellus cont
- A vertex cover of G = (V, E) is a subset V' ⊆ V s.t. if (w, v) ∈ E, then w ∈ V' or v ∈ V'
 - A vertex cover "covers" every edge in G
- Optimization problem: find a minimum size vertex cover in G
- Decision problem: is there a vertex cover with size smaller than k



Does G have a vertex cover of size 11? Yes

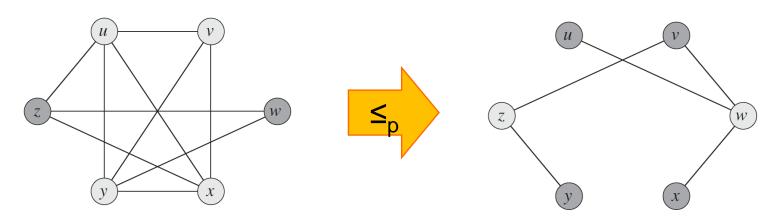
Does G have a vertex cover of size 7? Yes

Does G have a vertex cover of size 6? No

VERTEX-COVER ∈ NP-Complete

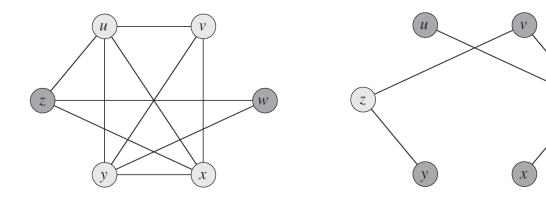
VERTEX-COVER = $\{ \langle G, k \rangle : G \text{ is a graph containing a vertex cover of size } k \}$

- Is VERTEX-COVER ∈ NP-Complete? CLIQUE ≤ VERTEX-COVER
- Construct a reduction f transforming every CLIQUE instance to a VERTEX-COVER instance (polynomial-time reduction)
 - Compute the complement of G
 - Given $G = \langle V, E \rangle$, G_c is defined as $\langle V, E_c \rangle$ s.t. $E_c = \{(u,v) \mid (u,v) \notin E\}$
- a graph G has a clique of size k ⇔ G_c has a vertex cover of size |V| k



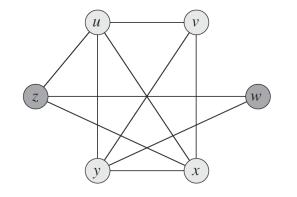
CLIQUE ≤_p VERTEX-COVER

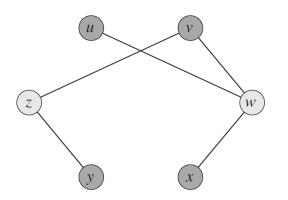
- Correctness proof:
 - a graph G has a clique of size $k \rightarrow G_c$ has a vertex cover of size |V| k
- If G has a clique $V' \subseteq V$ with |V'| = k
- \rightarrow for all $(w, v) \in E_c$, at least one of w or $v \notin V'$
- $\rightarrow w \in V V'$ or $v \in V V'$ (or both)
- \rightarrow edge (w, v) is covered by V V'
- $\rightarrow V V'$ forms a vertex cover of G_c , and |V V'| = |V| k



CLIQUE ≤_p VERTEX-COVER

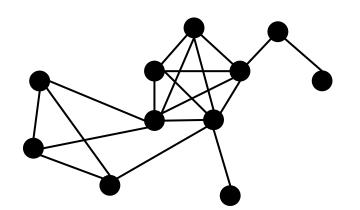
- Correctness proof:
 - G_c has a vertex cover of size $|V| k \rightarrow a$ graph G has a clique of size k
- If G_c has a vertex cover V' ⊆ V with |V'| = |V| k
- \rightarrow for all $w, v \in V$, if $(w, v) \in E_c$, then $w \in V'$ or $v \in V'$ or both
- \rightarrow for all $w, v \in V$, if $w \notin V'$ and $v \notin V'$, $(w, v) \in E$
- $\rightarrow V V'$ is a clique where |V V'| = k





Independent-Set Problem

- An independent set of G = (V, E) is a subset V' ⊆ V such that G has no edge between any pair of vertices in V'
 - A vertex cover "covers" every edge in G
- Optimization problem: find a maximum size independent set
- Decision problem: is there an independent set with size larger than k



Does G have an independent set of size 1?

Does G have an independent set of size 4?

Does G have an independent set of size 5?

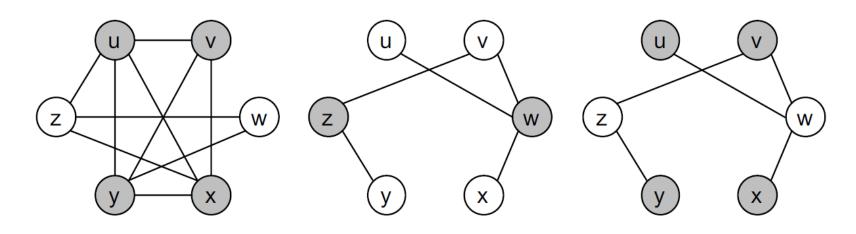
IND-SET ∈ NP-Complete

IND-SET = $\{ \langle G, k \rangle : G \text{ is a graph containing an independent set of size } k \}$

- Is IND-SET ∈ NP-Complete?
- Practice by yourself (textbook problem 34-1)

CLIQUE, VERTEX-COVER, IND-SET

- The following are equivalent for G = (V, E) and a subset V' of V:
 - 1) V' is a clique of G
 - 2) V-V' is a vertex cover of G_c
 - 3) V' is an independent set of G_c

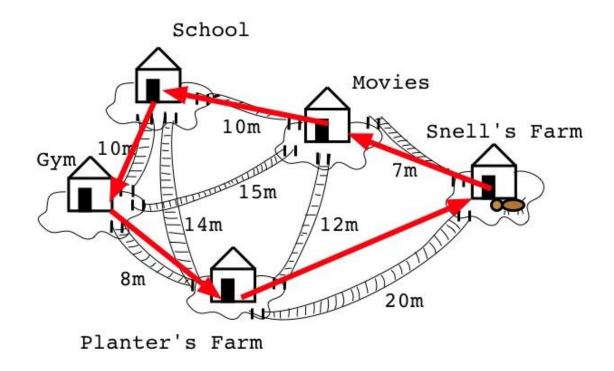


Clique

Vertex cover Independent set $V' = \{u, v, x, y\} \text{ in } G$ $V - V' = \{z, w\} \text{ in } G_c$ $V' = \{u, v, x, y\} \text{ in } G_c$

Traveling Salesman Problem (TSP)

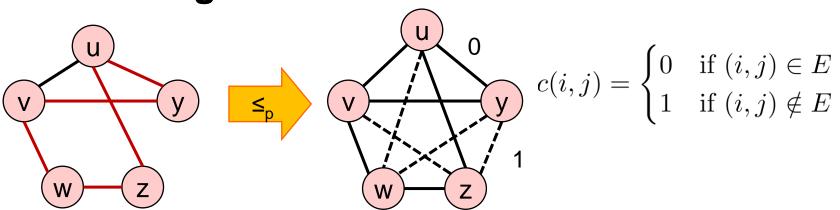
- Optimization problem: Given a set of cities and their pairwise distances, find a tour of lowest cost that visits each city exactly once.
- Decision problem: is there a traveling salesman tour with cost at most k



TSP ∈ NP-Complete

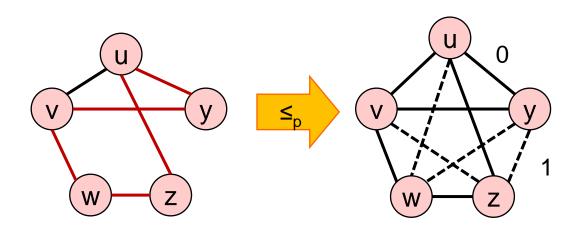
 $TSP = \{ \langle G, c, k \rangle : G = (V,E) \text{ is a complete graph, } c \text{ is a cost function for edges, } G \text{ has a traveling-salesman tour with cost at most } k \}$

- Is TSP ∈ NP-Complete? HAM-CYCLE ≤_p TSP
- Construct a reduction f transforming every HAM-CYCLE instance to a TSP instance (polynomial-time reduction)
- G contains a Hamiltonian cycle $h = \langle v_1, v_2, ..., v_n, v_1 \rangle \Leftrightarrow \langle v_1, v_2, ..., v_n, v_1 \rangle$ is a traveling-salesman tour with cost 0



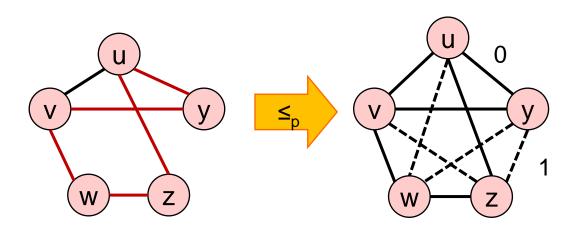
HAM-CYCLE ≤_p TSP

- Correctness proof: $x \in HAM-CYCLE \rightarrow f(x) \in TSP$
- If Hamiltonian cycle is $h = \langle v_1, v_2, ..., v_n, v_1 \rangle$
- \rightarrow h is also a tour in the transformed TSP instance
- → The distance of the tour *h* is *0* since there are *n* consecutive edges in *E*, and so has distance 0 in *f*(*x*)
- $\rightarrow f(x) \in TSP(f(x))$ has a TSP tour with cost ≤ 0)



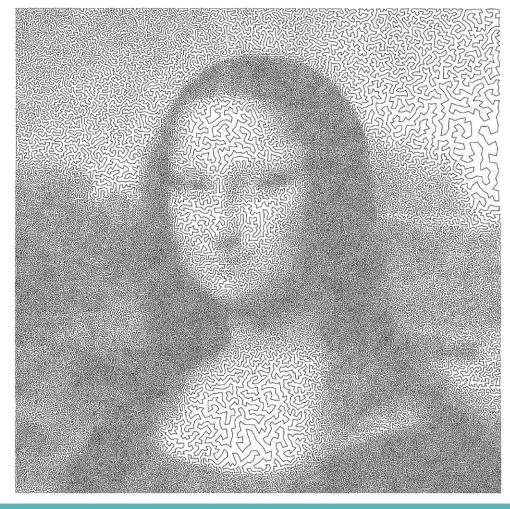
HAM-CYCLE ≤_p TSP

- Correctness proof: $f(x) \in \mathsf{TSP} \to x \in \mathsf{HAM-CYCLE}$
- After reduction, if a TSP tour with cost ≤ 0 as $\langle v_1, v_2, ..., v_n, v_1 \rangle$
- → The tour contains only edges in *E*
- \rightarrow Thus, $\langle v_1, v_2, ..., v_n, v_1 \rangle$ is a Hamiltonian cycle



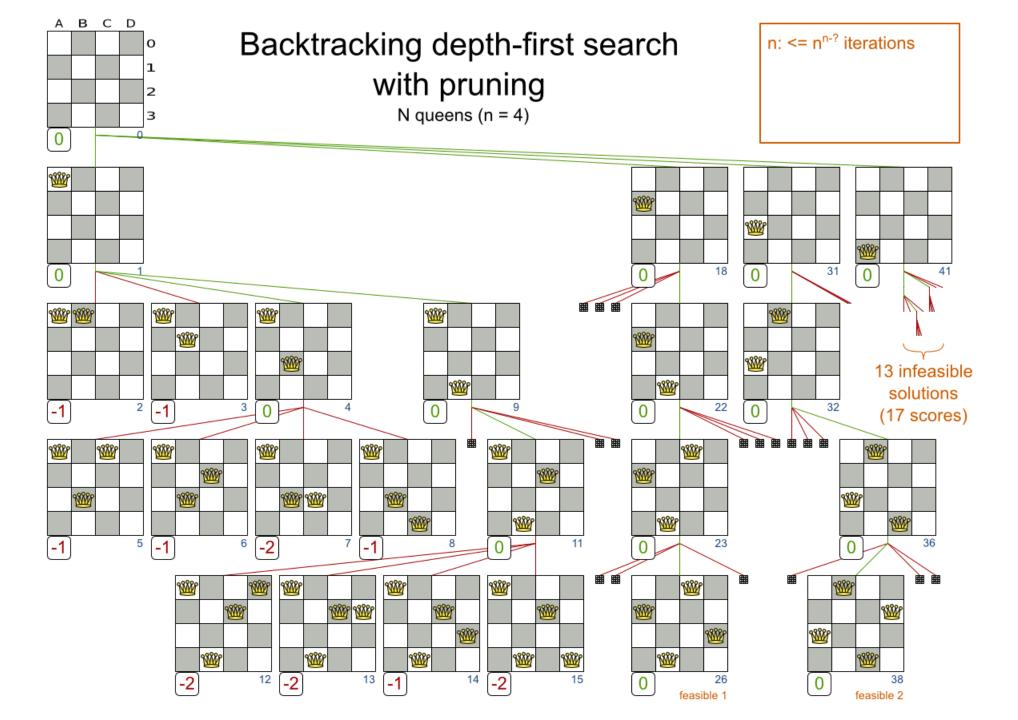
TSP Challenges

Mona Lisa TSP: \$1,000 Prize for 100,000-city

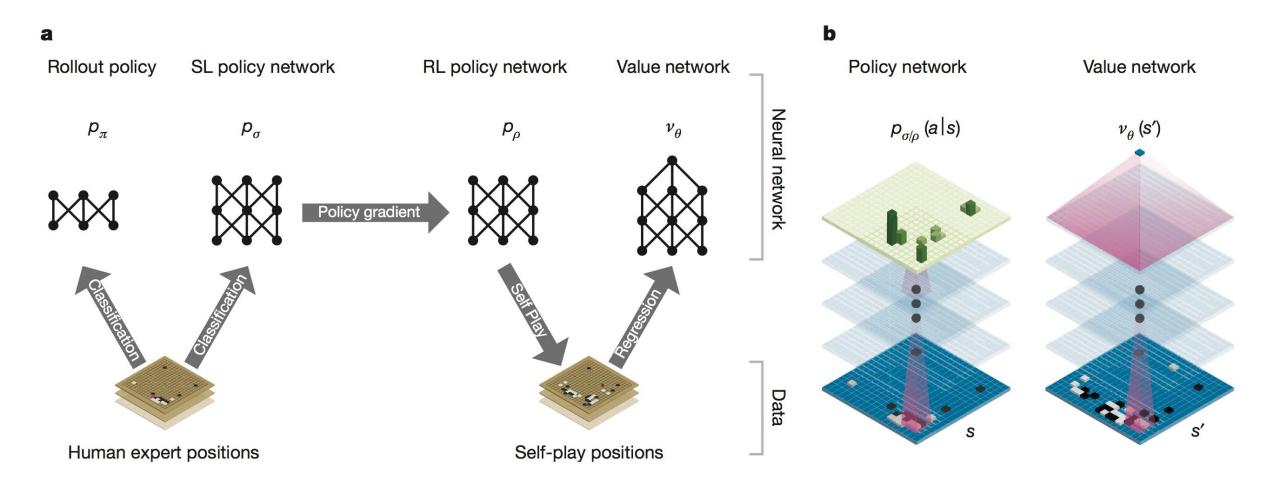


Strategies for NP-Complete/NP-Hard Problems

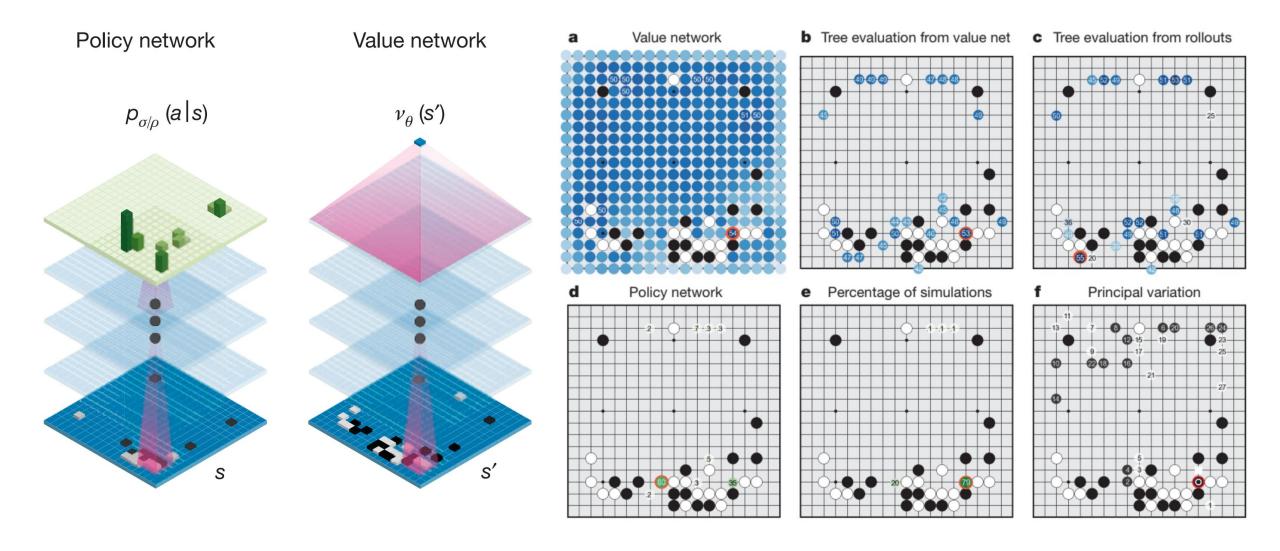
- NP-complete/NP-hard problems are unlikely to have polynomial-time solutions (unless P = NP), we must sacrifice either optimality, efficiency, or generality
 - Approximation algorithms: guarantee to be a fixed percentage away from the optimum
 - Local search: simulated annealing (hill climbing), genetic algorithms, etc
 - Heuristics: no formal guarantee of performance
 - Randomized algorithms: use a randomizer (random number generator) for operation
 - Pseudo-polynomial time algorithms: e.g., DP for 0-1 knapsack
 - Exponential algorithms/Branch and Bound/Exhaustive search: feasible only when the problem size is small
 - Restriction: work on some special cases of the original problem. e.g., the maximum independent set problem in circle graphs



AlphaGo [Chinese Details]

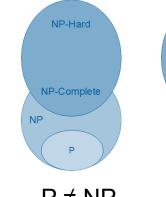


AlphaGo [Chinese Details]



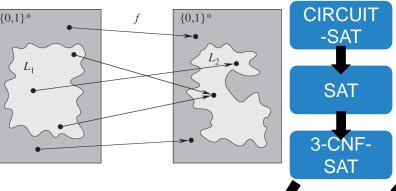
Concluding Remarks

- Proving NP-Completeness: $L \in NPC$ iff $L \in NP$ and $L \in NP$ **NP-hard**
- Polynomial-time verification
- Step-by-step approach for proving L in NPC:
 - Prove L ∈ NP
 - Prove L ∈ NP-hard
 - Select a known NPC problem C
 - Construct a reduction f transforming every instance of C to an instance of L
 - Prove that $x \in C \iff f(x) \in C, \forall x \in \{0,1\}^*$
 - Prove that f is a polynomial time transformation L ∈ NP
- Strategies for NP-complete/NP-hard problems





 $P \neq NP$



SUBSET-

SUM

Question?

Important announcement will be sent to @ntu.edu.tw mailbox & post to the course website

Course Website: http://ada.miulab.tw

Email: ada-ta@csie.ntu.edu.tw