
Algorithm Design and Analysis
演算法設計與分析

Yun-Nung (Vivian) Chen 陳縕儂

Amortized Analysis

均攤分析

http://ada.miulab.tw

Slides: Yun-Nung (Vivian) Chen and Hsu-Chun Hsiao, National Taiwan University

Outline

• Amortized analysis

• #1: Stack Operations

• Aggregate method

• Accounting method

• Potential method

• #2: Binary Counter

• Aggregate method

• Accounting method

• Potential method

2

http://vivianchen.idv.tw/
https://www.csie.ntu.edu.tw/~hchsiao/

Slides: Yun-Nung (Vivian) Chen and Hsu-Chun Hsiao, National Taiwan University

Algorithm Design & Analysis

• Design Strategy
• Divide-and-Conquer

• Dynamic Programming

• Greedy Algorithms

• Graph Algorithms

• Analysis
• Amortized Analysis

3

http://vivianchen.idv.tw/
https://www.csie.ntu.edu.tw/~hchsiao/

Slides: Yun-Nung (Vivian) Chen and Hsu-Chun Hsiao, National Taiwan University

Amortized Analysis

4

Textbook Chapter 17 – Amortized Analysis

http://vivianchen.idv.tw/
https://www.csie.ntu.edu.tw/~hchsiao/

Slides: Yun-Nung (Vivian) Chen and Hsu-Chun Hsiao, National Taiwan University

Data-Structure Operations

• A data structure comes with operations that organize the
stored data

• Different operations may have different costs

• The same operation may have different costs

5

stack

PUSH POP

MULTIPOP

cost

operations

http://vivianchen.idv.tw/
https://www.csie.ntu.edu.tw/~hchsiao/

Slides: Yun-Nung (Vivian) Chen and Hsu-Chun Hsiao, National Taiwan University

Worst Case Time Complexity

6

stack

PUSH POP

MULTIPOP

cost

operations

worst-case

Cost of stack operations

PUSH(S, x) = O(1)

POP(S) = O(1)

MULTIPOP(S, k) = O(min(|S|, k))

http://vivianchen.idv.tw/
https://www.csie.ntu.edu.tw/~hchsiao/

Slides: Yun-Nung (Vivian) Chen and Hsu-Chun Hsiao, National Taiwan University

Worst Case Time Complexity

• n-th operation takes MULTIPOP(S, n) = O(n) time in the worst case

• n operations take O(n2) time

7

Stack Operations

Suppose that we apply a sequence of n operations on a data structure. What is the

time complexity of the procedure?

Can this be an over-estimate?

What if only a few operations take O(n) time and

the rest of them take O(1) time?

The worst-case bound is not tight because this

expensive Multipop operation cannot occur so frequently!

http://vivianchen.idv.tw/
https://www.csie.ntu.edu.tw/~hchsiao/

Slides: Yun-Nung (Vivian) Chen and Hsu-Chun Hsiao, National Taiwan University

Amortized Analysis

• Goal: obtain an accurate worst-case bound in executing a sequence of
operations on a given data structure

• An upper bound for any sequence of n operations

• Comparison: types of running-time analysis

8

Type Description

Worst case Running time guarantee for any input of size n

Average case Expected running time for a random input of size n

Probabilistic Expected running time of a randomized algorithm

Amortized Worst-case running time for a sequence of n operations

http://vivianchen.idv.tw/
https://www.csie.ntu.edu.tw/~hchsiao/

Slides: Yun-Nung (Vivian) Chen and Hsu-Chun Hsiao, National Taiwan University

Stack Operations

9

Textbook Chapter 17.1 – Aggregate analysis

Textbook Chapter 17.2 – The accounting method

Textbook Chapter 17.3 – The potential method

http://vivianchen.idv.tw/
https://www.csie.ntu.edu.tw/~hchsiao/

Slides: Yun-Nung (Vivian) Chen and Hsu-Chun Hsiao, National Taiwan University

Stack Operations

• Implementation with an array or a linked list

10

Operation Type Cost

PUSH(S, x): inset an element x into S

POP(S): pop the top element from S

MULTIPOP(S, k): pop top k elements from S at once

stack

PUSH POP

MULTIPOP
MULTIPOP(S, k)

while not STACK-EMPTY(S) and k > 0

POP(S)

k = k - 1

Stack Operations

Suppose that we apply a sequence of n operations on a data structure. What is the

time complexity of the procedure?

http://vivianchen.idv.tw/
https://www.csie.ntu.edu.tw/~hchsiao/

Slides: Yun-Nung (Vivian) Chen and Hsu-Chun Hsiao, National Taiwan University

Aggregate Method (聚集法)

• Approach:

1. Determine an upper bound 𝑇(𝑛) on the cost of any sequence of 𝑛 operations

2. Calculate the amortized cost per operation as 𝑇(𝑛)/𝑛

3. All operations have the same amortized cost

11

cost

operations

𝑇(𝑛) Amortized cost of each op =

opnop1 op2 … …

http://vivianchen.idv.tw/
https://www.csie.ntu.edu.tw/~hchsiao/

Slides: Yun-Nung (Vivian) Chen and Hsu-Chun Hsiao, National Taiwan University

Aggregate Method for Stack

• The number of each operation type

• These npop + nmultipop operations together take at most

• Total cost for n operations:

• Amortized cost per operation:

12

Operation Type #Operations

PUSH(S, x): inset an element x into S npush

POP(S): pop the top element from S npop

MULTIPOP(S, k): pop top k elements from S at once nmultipop

n

Key idea: #pop elements ≤ #push operations/elements

http://vivianchen.idv.tw/
https://www.csie.ntu.edu.tw/~hchsiao/

Slides: Yun-Nung (Vivian) Chen and Hsu-Chun Hsiao, National Taiwan University

Another Thinking

• Once the push operation is taken, we prepare the additional cost for
the future usage of multipop

13

Key idea: #pop elements ≤ #push operations/elements

http://vivianchen.idv.tw/
https://www.csie.ntu.edu.tw/~hchsiao/

Slides: Yun-Nung (Vivian) Chen and Hsu-Chun Hsiao, National Taiwan University

Accounting Method (記帳法)

• Idea: save credits from the operations that take less cost for future use
of operations that take more cost (針對使用花費較低的operations時先
存錢未雨綢繆, 供未來花費較高的operations使用)

• Approach:

1. Each operation is assigned a valid amortized cost

• If amortized cost > actual cost, the difference becomes credit (存)

• Credit is deposited in an object of the data structure

• If amortized cost < actual cost, then withdraw (提) stored credits

2. Validity check: ensure that every object has sufficient credit for any sequence
of n operations

3. Calculate total amortized cost based on individual ones

14

http://vivianchen.idv.tw/
https://www.csie.ntu.edu.tw/~hchsiao/

Slides: Yun-Nung (Vivian) Chen and Hsu-Chun Hsiao, National Taiwan University

Accounting Method (記帳法)

• Validity check: ensure that every object has sufficient credit for any
times of n operations (不能有赤字)

• ci: the actual cost of the i-th operation

• ĉi: the amortized cost of the i-th operation

→ For all sequences of n operations, we require

15

▪ Aggregate Method
▪ Each type of operations have its actual cost

▪ Compute amortized cost using T(n)

▪ Accounting Method
▪ Each type of operations can have a

different amortized cost

▪ Assign valid amortized costs first and
then compute T(n)

http://vivianchen.idv.tw/
https://www.csie.ntu.edu.tw/~hchsiao/

Slides: Yun-Nung (Vivian) Chen and Hsu-Chun Hsiao, National Taiwan University

Accounting Method for Stack

1. Assign the amortized cost

2. Show that for each object s.t.

• PUSH: the pushed element is deposited $1 credit

• POP and MULTIPOP: use the credit stored with the popped element

• There is always enough credit to pay for each operation

3. Each amortized cost is O(1) → total amortized cost is O(n)

16

Operation Type Actual Cost Amortized Cost

PUSH(S, x) 1 2

POP(S) 1 0

MULTIPOP(S, k) min(|S|, k) 0

http://vivianchen.idv.tw/
https://www.csie.ntu.edu.tw/~hchsiao/

Slides: Yun-Nung (Vivian) Chen and Hsu-Chun Hsiao, National Taiwan University

Potential Method (位能法)

• Idea: represent the prepaid work as “potential,” which can be released
to pay for future operations (the potential is associated with the whole
data structure rather than specific objects)

• Approach:

1. Select a potential function that takes the current data structure state as
input and outputs a “potential level”

2. Validity check: ensure that the potential level is nonnegative

3. Calculate the amortized cost of each operation based on the potential function

4. Calculate total amortized cost based on individual ones

17

▪ Accounting Method
▪ Each object within the data structure has its credit

▪ Potential Method
▪ The data structure has credits

http://vivianchen.idv.tw/
https://www.csie.ntu.edu.tw/~hchsiao/

Slides: Yun-Nung (Vivian) Chen and Hsu-Chun Hsiao, National Taiwan University

Potential Method (位能法)

• Potential function Φ maps any state of the data structure to a real
number

• D0: the initial state of data structure

• Di: the state of data structure after i-th operation

• ci: the actual cost of i-th operation

• ĉi: the amortized cost of i-th operation, defined as

18

http://vivianchen.idv.tw/
https://www.csie.ntu.edu.tw/~hchsiao/

Slides: Yun-Nung (Vivian) Chen and Hsu-Chun Hsiao, National Taiwan University

Potential Method (位能法)

• Total amortized cost

• To obtain an upper bound on the actual cost

• Define a potential function such that

• Usually we set

19

http://vivianchen.idv.tw/
https://www.csie.ntu.edu.tw/~hchsiao/

Slides: Yun-Nung (Vivian) Chen and Hsu-Chun Hsiao, National Taiwan University

Potential Method for Stack

1. Define Φ 𝐷𝑖 to be the number of elements in the stack after the i-th
operation

2. Validity check:
• The stack is initially empty →

• The number of elements in the stack is always ≥ 0 →

3. Compute amortized cost of each operation:

• PUSH(S, X):

• POP(S):

• MULTIPOP(S, k):

4. All operations have O(1) amortized cost → total amortized cost is O(n)

20

Practice: justify why it is zero

ci: the actual cost of i-th operation

ĉi: the amortized cost of i-th operation

http://vivianchen.idv.tw/
https://www.csie.ntu.edu.tw/~hchsiao/

Slides: Yun-Nung (Vivian) Chen and Hsu-Chun Hsiao, National Taiwan University

Fibonacci Heap

21

http://vivianchen.idv.tw/
https://www.csie.ntu.edu.tw/~hchsiao/

Slides: Yun-Nung (Vivian) Chen and Hsu-Chun Hsiao, National Taiwan University

Prim’s Time Complexity

• Fibonacci heap (Textbook Ch. 19)
• BUILD-MIN-HEAP:

• EXTRACT-MIN: (amortized)

• DECREASE-KEY: (amortized)

• Total complexity:

22

MST-PRIM(G, w, r) // w = weights, r = root

for u in G.V

u.key = ∞

u.π = NIL

r.key = 0

Q = G.V

while Q ≠ empty

u = EXTRACT-MIN(Q)

for v in G.adj[u]

if v ∈ Q and w(u, v) < v.key

v.π = u

v.key = w(u, v) // DECREASE-KEY

http://vivianchen.idv.tw/
https://www.csie.ntu.edu.tw/~hchsiao/

Slides: Yun-Nung (Vivian) Chen and Hsu-Chun Hsiao, National Taiwan University

Dijkstra’s Time Complexity

• Fabonacci heap (Textbook Ch. 19)
• BUILD-MIN-HEAP:

• EXTRACT-MIN: (amortized)

• DECREASE-KEY: (amortized)

• Total complexity:

23

DIJKSTRA(G, w, s)

INITIALIZATION(G, s)

S = empty

Q = G.v // INSERT

while Q ≠ empty

u = EXTRACT-MIN(Q)

S = S∪{u}
for v in G.adj[u]

RELAX(u, v, w)

INITIALIZATION(G, s)

for v in G.V

v.d = ∞

v.π = NIL

s.d = 0

RELAX(u, v, w)

if v.d > u.d + w(u, v)

// DECREASE-KEY

v.d = u.d + w(u, v)

v.π = u

http://vivianchen.idv.tw/
https://www.csie.ntu.edu.tw/~hchsiao/

Slides: Yun-Nung (Vivian) Chen and Hsu-Chun Hsiao, National Taiwan University

Binary Counter

24

Textbook Chapter 17.1 – Aggregate analysis

Textbook Chapter 17.2 – The accounting method

Textbook Chapter 17.3 – The potential method

http://vivianchen.idv.tw/
https://www.csie.ntu.edu.tw/~hchsiao/

Slides: Yun-Nung (Vivian) Chen and Hsu-Chun Hsiao, National Taiwan University

Binary Counter

• Implementation with a k-bit array

• Each operation takes O(log n) time in the worst case

• n operations take O(n log n) time

25

INCREMENT(A)

i = 0

while i < A.length and A[i] == 1

A[i] = 0

i = i + 1

if i < A.length

A[i] = 1

Binary Counter

Suppose that a counter is initially zero. We increment the counter n times. How

many bits are altered throughout the process?

0

1

10

11

100

101

110

111

1000

1001

1010

1011

1100

1101

1110

1111

10000

increment

http://vivianchen.idv.tw/
https://www.csie.ntu.edu.tw/~hchsiao/

Slides: Yun-Nung (Vivian) Chen and Hsu-Chun Hsiao, National Taiwan University

Aggregate Method for Binary Counter

26

Counter

Value
A[3] A[2] A[1] A[0]

Total Cost of First n

Operations

0 0 0 0 0 0

1 0 0 0 1 1

2 0 0 1 0 3

3 0 0 1 1 4

4 0 1 0 0 7

5 0 1 0 1 8

6 0 1 1 0 10

7 0 1 1 1 11

8 1 0 0 0 15

flip every increment
flip every 2 increments

flip every 4 increments
flip every 8 increments

http://vivianchen.idv.tw/
https://www.csie.ntu.edu.tw/~hchsiao/

Slides: Yun-Nung (Vivian) Chen and Hsu-Chun Hsiao, National Taiwan University

Aggregate Method for Binary Counter

• Total #bits flipping in n increment operations:

• Total cost of the sequence:

• Amortized cost per operation:

27

http://vivianchen.idv.tw/
https://www.csie.ntu.edu.tw/~hchsiao/

Slides: Yun-Nung (Vivian) Chen and Hsu-Chun Hsiao, National Taiwan University

Accounting Method for Binary Counter

1. Assign the amortized cost

2. Validity check:
• Each bit 0 to bit 1, we save additional $1 in the bit 1

• When bit 1 becomes to bit 0, we spend the saved cost

3. Each increment
• Change many 1s to 0s → free

• Change exactly a 0 to 1 → O(1)

• Each amortized cost is O(1) → total amortized cost is O(n)
28

Operation Actual Cost Amortized Cost

bit 0 → bit 1 1 2 (存$1到bit 1)

bit 1 → bit 0 1 0 (用掉存在bit 1裡面的$1)

increment #flipped bits 2 for setting a bit to 1

http://vivianchen.idv.tw/
https://www.csie.ntu.edu.tw/~hchsiao/

Slides: Yun-Nung (Vivian) Chen and Hsu-Chun Hsiao, National Taiwan University

Accounting Method for Binary Counter

29

Counter

Value
A[3] A[2] A[1] A[0]

Total Cost of First n

Operations

0 0 0 0 0 0

1 0 0 0 1 1

2 0 0 1 0 3

3 0 0 1 1 4

4 0 1 0 0 7

5 0 1 0 1 8

6 0 1 1 0 10

7 0 1 1 1 11

8 1 0 0 0 15

Amortized cost per operation is O(1)

Total amortized cost of n operations is O(n)

http://vivianchen.idv.tw/
https://www.csie.ntu.edu.tw/~hchsiao/

Slides: Yun-Nung (Vivian) Chen and Hsu-Chun Hsiao, National Taiwan University

Potential Method for Binary Counter

1. Define Φ 𝐷𝑖 to be the number of 1s in the counter after the i-th
operation

2. Validity check:
• The counter is initially zero →

• The number of 1’s cannot be negative →

3. Compute amortized cost of each INCREMENT:

• Let LSB0(i) be the number of continuous 1s in the suffix

• For example, LSB0(01011011) = 2, and LSB0(01011111) = 5

4. All operations have O(1) amortized cost → total amortized cost is O(n)

30

ci: the actual cost of i-th operation

ĉi: the amortized cost of i-th operation

http://vivianchen.idv.tw/
https://www.csie.ntu.edu.tw/~hchsiao/

Slides: Yun-Nung (Vivian) Chen and Hsu-Chun Hsiao, National Taiwan University

Concluding Remarks

31

Aggregate method (聚集法)

• Determine an upper bound 𝑇(𝑛) on the cost over any sequence of 𝑛 operations

• The average cost per operation is then 𝑇(𝑛)/𝑛

• All operations have the same amortized cost

Accounting method (記帳法)

• Each operation is assigned an amortized cost (may differ from the actual cost)

• Each object of the data structure is associated with a credit

• Need to ensure that every object has sufficient credit at any time

Potential method (位能法)

• Similar to accounting method; each operation is assigned an amortized cost

• The data structure as a whole maintains a credit (i.e., potential)

• Need to ensure that the potential level is nonnegative at any time

Three analyzing methods reach the same answer, and choose your preference

http://vivianchen.idv.tw/
https://www.csie.ntu.edu.tw/~hchsiao/

Question?
Important announcement will be sent to
@ntu.edu.tw mailbox & post to the course website

Course Website: http://ada.miulab.tw

Email: ada-ta@csie.ntu.edu.tw

