38

Algorithm Design and Analysis
SRR ETE T
Yun-Nung (Vivian) Chen R (=
(Slides modified from Hsu-Chun Hsiao) http://ada.miulab.tw

Announcement

 Homework assignment
« HW2 due on 10/25 (Tue) 14:20
« HW2 solution will be released at that day!

« Midterm announcement
 Next week!!!

 The exam is an ONSITE exam. If you can't take the exam onsite, please send
an email to ada-ta@csie.ntu.edu.tw BEFORE 10/23 (Sun) 23:59.

« EXxception: getting tested positive for COVID-19 — send an email to us ASAP -
« Some past exam problems are now released on NTU COOL. 1

——

Date: 10/27 (Thursday)
e 14:20-14:30 Instructions
e 14:30-17:30 Exam

Location: R102 + R103 + R104 + R107 + R111 + R204

* The seat assignment will be announced before the exam.

* There will be 300+ students taking this exam, so...
» Please check seat assignment before entering DerTian building.
» Please come sooner.

Content

« Time Complexity, Recurrence and Asymptotic Analysis

« Divide and Conquer

« Dynamic Programming

« Greedy
Based on slides, assignments, and some variations
Easy: ~60%, Medium: ~30%, Hard: ~10%
» Closed-book (Master method, etc. will be given in the appendix)
* There will be another formal announcement before the midterm.

Algorithm Design & Analysis Process

1) Formulate a problem {Design StepJ
2) Develop an algorithm
3) Prove the correctness
4) Analyze running time/space requirement

{Analysis Step J

Algorithm Analysis

* Analysis Skills
* Prove by contradiction
* Induction
« Asymptotic analysis
* Problem instance
 Algorithm Complexity
* In the worst case, what is the growth of function an algorithm takes

* Problem Complexity

* In the worst case, what is the growth of the function the optimal algorithm of the
problem takes

Algorithm Design Strategy

* Do not focus on “specific algorithms”
* But "some strategies” to “design” algorithms

» First Skill: Divide-and-Conquer (& B 1)
» Second Skill: Dynamic Programming (/8872
+ Third Skill: Greedy (2225%81)

Divide-and-Conquer

What Is Divide-and-Conquer?

» Solve a problem recursively

* Apply three steps at each level of the recursion

1. Divide the problem into a number of subproblems that are
smaller instances of the same problem (LLE/)\H Bk B E8)

2. Conquer the subproblems by solving them recursively .

If the subproblem sizes are small enough

» then solve the subproblems base case
* else recursively solve itself recursive case $

3. Combine the solutions to the subproblems into the solution
for the original problem

How to Solve Recurrence Relations?

1. Substitution Method (EXfG%)
» Guess a bound and then prove by induction

2. Recursion-Tree Method ({E @1 %)
« Expand the recurrence into a tree and sum up the cost

3. Master Method (EA T KA/KBDZE)

« Apply Master Theorem to a specific form of recurrences

Master Theorem

The proofisin Ch. 4.6

divide a problem of size n into a subproblems, each of size g Is solved in time T (%) recursively

Let T'(n) be a positive function satisfying the following recurrence relation

T(n) = O(1) if n <1 | Should follow
YT e T(®)+ f(n) ifn>1, | this format

where a > 1 and b > 1 are constants.
e Case 1: If f(n) = O(n'°8» =€) for some constant € > 0, then T'(n) = O(n'°8).
o Case 2: If f(n) = ©(n'°8 %), then T'(n) = O(n!°% ¢ . logn).
e Case 3: If

— f(n) = Q(n'°8 2T) for some constant € > 0, and

—a- f(3) < c- f(n) for some constant ¢ < 1 and all sufficiently large n,

then T'(n) = O(f(n)).

When to Use D&C?

* Analyze the problem about
* Whether the problem with small inputs can be solved directly

* Whether subproblem solutions can be combined into the original
solution

* Whether the overall complexity is better than naive

* |If no, then
* Try to modify it or add more information
 Try another way for dividing
* Do not use D&C

Pseudo-Polynomial Time

* Polynomial: polynomial in the length of the input (#bits for the input)
« Pseudo-polynomial: polynomial in the numeric value

* The time complexity of 0-1 knapsack problem is O(nl/)
* n. number of objects
« W: knapsack’s capacity (non-negative integer)
« polynomial in the numeric value
= pseudo-polynomial in input size
= exponential in the length of the input
* Note: the size of the representation of W is log, W
=2 =m

Dynamic Programming

What 1s Dynamic Programming?

» Dynamic programming, like the divide-and-conquer method, solves
problems by combining the solutions to subproblems

¢ ﬁﬁ?:FEﬁT@HQH%FEﬁ
« EEBRIE MR
 “Dynamic”: time-varying
* “Programming”: a tabular method

Algorithm Design Paradigms

* Divide-and-Conguer « Dynamic Programming
« partition the problem into * partition the problem into
Independent or disjoint dependent or overlapping
subproblems subproblems
* repeatedly solving the common « avoid recomputation
subsubproblems v Top-down with memoization

- more work than necessary v Bottom-up method

Dynamic Programming Procedure

* Apply four steps

Characterize the structure of an optimal solution

Recursively define the value of an optimal solution

Compute the value of an optimal solution, typically in a bottom-up fashion
Construct an optimal solution from computed information

Wk

When to Use DP?

« Analyze the problem about
« Whether subproblem solutions can combine into the original solution
 When subproblems are overlapping
* Whether the problem has optimal substructure
« Common for optimization problem
« Two ways to avoid recomputation
* Top-down with memoization
« Bottom-up method
« Complexity analysis
« Space for tabular filling
 Size of the subproblem graph

Greedy Algorithms

What I1s Greedy Algorithms?

 always makes the choice that looks best at the moment

* makes a locally optimal choice in the hope that this choice will lead to
a globally optimal solution

 not always yield optimal solution; may end up at local optimal

local maximal global maximal

%i &% local maximal
:6"’/

Algorithm Design Paradigms

« Dynamic Programming » Greedy Algorithms
* has optimal substructure * has optimal substructure
 make an informed choice after getting + make a greedy choice before
optimal solutions to subproblems solving the subproblem
« dependent or overlapping * N0 overlapping subproblems
subproblems v'Each round selects only one

subproblem
v The subproblem size decreases

Optimal gl Greedy + Subproblem
Solution M Choice Solution

M Possible + Subproblem
Case 1 Solution

Possible + Subproblem
Case 2 Solution

@ Possible Subproblem
Casek [N Solution

Olaipel] max
Solution /min

Greedy Procedure

1. Cast the optimization problem as one in which we make a choice
and remain one subproblem to solve
2. Demonstrate the optimal substructure

v" Combining an optimal solution to the subproblem via greedy can arrive an
optimal solution to the original problem

3. Prove that there is always an optimal solution to the original problem
that makes the greedy choice

Proof of Correctness Skills

« Optimal Substructure : an optimal solution to the problem contains
within it optimal solutions to subproblems

« Greedy-Choice Property : making locally optimal (greedy) choices
leads to a globally optimal solution

* Show that it exists an optimal solution that “contains” the greedy choice using
exchange argument

* For any optimal solution OPT, the greedy choice g has two cases
« gisin OPT: done
« g notin OPT: modify OPT into OPT’ s.t. OPT’ contains g and is at least as good as OPT

v If OPT is better than OPT, the property is proved by contradiction
=) v If OPT is as good as OPT, then we showed that there exists an
optimal solution containing g by construction

When to Use Greedy?

« Analyze the problem about
* Whether the problem has optimal substructure
 Whether we can make a greedy choice and remain only one subproblem
« Common for optimization problem

Optimal g Greedy + Subproblem
Solution M Choice Solution

Exercises

Short Answer Questions

* In class, we have demonstrated a linear-time divide-and-conquer algorithm for
solving the selection problem, where the numbers are first divided into groups of
5. Now consider a similar algorithm that divides the numbers into groups of 4. In
this algorithm, each odd group treats its second-largest number as the median,
and each even group treats its third-largest number as the median. Please derive
the time complexity of this algorithm by solving its recurrence relation.

« Explain why it is usually easy for a divide-and-conquer algorithm to take
advantage of a multi-core computer system.

« Given N items and a bag of capacity W, explain why the O(NW)-time 0/1 knapsack
algorithm mentioned in class is pseudo-polynomial.

Matrix-Chain Multiplication

* Input: a sequence of integers [y, l4, ..., L,
* [;_41 IS the number of rows of matrix A;
* [; Is the number of columns of matrix A;

« Output: an order of performing n — 1 matrix multiplications in the
maximum number of operations to obtain the product of 4,4, ...A,

Al 1 Az A3 A4 ATL
i<k<j

Q: Does optimal substructure still hold?

Painting

 Put stickers in a single row on each tube to indicate its color.
* There are k types of stickers.

* Tubes with the same color should have the same sticker pattern and
should be prefix free.

Color red pink orange vyellow (green blue purple black

@
#Tubes 25 15 12 19 7 12 8 2

« Minimize the total number of stickers put on all tubes
 3-ary prefix tree (each node can have at most k children).

3-arry Huffman Coding

Color red pink orange yellow (green blue purple black
o
#Tubes 25 15 12 19 7 12 8 2
0/:\ o
: Why?“
* The total length is @

2514+ (124+15+1948+12)-24(74+2)-3= 184

Zh % Practice 1

3. Squid Game (2021 midterm) You accidentally participated in the “Squid Game”,
but it is difficult to escape from the game. Please answer the following questions.

Before the game starts, you find a notebook that records the winners’ occupations of all
previous games using Huffman coding illustrated below.

unemployed

student

worker professor

As a current participant, you want to know more about the previous winners’ informa-
tion. Please explain whether each of following statements is True or False:

e The frequency of unemployed participants is no less than it of students.

e The unemployed participants must have a frequency higher than or equal to 1/3.

e The workers must have a frequency less than 1/8.

Zh 8 Practice 2

1. Maximum Subarray of a Circular Infinite Sequence (2015 midterm) Recall
that a maximum subarray of A is a contiguous subarray as, - -- ,a; of A such that) .., a;
is maximized over all s and ¢, 0 < s < ¢. -

Given a circular infinite sequence A = (ao, a1, as,---) in which a; = a; if i = j mod n,
please answer the following questions.

1. Suppose ZOS@' —n @i > 0. What is the length of the maximum subarray of A7 Briefly
explain your answer.

2. Suppose Zog@' —n @i < 0. Please briefly explain why the length of any maximum
subarray is at most n.

3. Please design an algorithm to find a maximum subarray of the circular infinite se-
quence A in O(nlogn) time. Can you reduce the running time of your algorithm to
O(n)? Please justify the correctness and running time of your algorithm.

Z 8 Practice 3

3. Zombie Apocalypse (2016 midterm) Due to a zombie virus outbreak, some cities
have been occupied by zombies and are no longer safe. You and your survivor team need
to travel through several cities to get to a far away shelter.

There are n cities forming a line topology. You are at city 1 now and the shelter is at

city n. The location of city i is L[i], and L]i| < L[j]| V1 <i < j < n. z[i] = 1 indicates city
i has been occupied by zombies; otherwise, z|i] = 0 indicates the city is still safe to stop at
night.

If you plan to move at most 100km a day, and you need to rest at a safe city at night,
please design a greedy algorithm to pick the cities for resting at night so that you can arrive
at the shelter as soon as possible. Your algorithm should run in O(n) time. Please show
that your algorithm has the greedy choice property.

slido FQ

TE -8
Thank you~

@ What do you want to say to me?

(D Start presenting to display the poll results on this slide.

Question?

Important announcement will be sent to
@ntu.edu.tw mailbox & post to the course website

Course Website: http://ada.miulab.tw
Email: ada-ta@csie.ntu.edu.tw

