Greedy Algorithm 貪婪演算法(2) 7.2

Algorithm Design and Analysis 演算法設計與分析

Yun-Nung (Vivian) Chen 陳縕儂

(Slides modified from Hsu-Chun Hsiao)

http://ada.miulab.tw

Outline

- Greedy Algorithms
- Greedy #1: Activity-Selection / Interval Scheduling
- Greedy #2: Coin Changing
- Greedy #3: Huffman Codes
- Greedy #4: Fractional Knapsack Problem
- Greedy #5: Breakpoint Selection
- Greedy #6: Task-Scheduling
- Greedy #7: Scheduling to Minimize Lateness

Greedy #3: Huffman Codes for Prefix Code Problem

Textbook Chapter 16.3 – Huffman codes Chapter 4.8 in Algorithm Design by Kleinberg & Tardos

Multiple Choices

Step 2: Prove Optimal Substructure

Prefix Code Problem

Input: *n* positive integers $w_1, w_2, ..., w_n$ indicating word frequency Output: a binary tree of *n* leaves with minimal cost

Suppose T' is a solution to
 PC(i, {w_{1...i-1}, z})

T is a solution to PC (i+1, {w_{1...i-1}, x, y}) reduced from T'

Multiple Choices

Step 2: Prove Optimal Substructure

 $B(T) = B(T') - \operatorname{freq}(z)d_{T'}(z) + \operatorname{freq}(x)d_{T}(x) + \operatorname{freq}(y)d_{T}(y)$ = $B(T') - (\operatorname{freq}(x) + \operatorname{freq}(y))d_{T'}(z) + \operatorname{freq}(x)(1 + d_{T'}(z)) + \operatorname{freq}(y)(1 + d_{T'}(z))$ = $B(T') + \operatorname{freq}(x) + \operatorname{freq}(y)$

Step 2: Prove Optimal Substructure

• Optimal substructure: T' is OPT if and only if T is OPT

Greedy #4: Fractional Knapsack Problem

Textbook Exercise 16.2-2

9

Knapsack Problem

- Input: n items where i-th item has value v_i and weighs w_i (v_i and w_i) are positive integers)
- Output: the maximum value for the knapsack with capacity of W
- Variants of knapsack problem
 - 0-1 Knapsack Problem: 每項物品只能拿一個
 - Unbounded Knapsack Problem: 每項物品可以拿多個
 - Multidimensional Knapsack Problem: 背包空間有限
 - Multiple-Choice Knapsack Problem: 每一類物品最多拿一個
 - Fractional Knapsack Problem: 物品可以只拿部分

Knapsack Problem

- Input: n items where i-th item has value v_i and weighs w_i (v_i and w_i) are positive integers)
- Output: the maximum value for the knapsack with capacity of W
- Variants of knapsack problem
 - 0-1 Knapsack Problem: 每項物品只能拿一個
 - Unbounded Knapsack Problem: 每項物品可以拿多個
 - Multidimensional Knapsack Problem: 背包空間有限
 - Multiple-Choice Knapsack Problem: 每一類物品最多拿一個
 - Fractional Knapsack Problem: 物品可以只拿部分

Fractional Knapsack Problem

- Input: *n* items where *i*-th item has value v_i and weighs w_i (v_i and w_i are positive integers)
- Output: the maximum value for the knapsack with capacity of W, where we can take **any fraction of items**
- Greedy algorithm: at each iteration, choose the item with the highest $\frac{v_i}{w_i}$ and continue when $W w_i > 0$

Step 1: Cast Optimization Problem

Fractional Knapsack Problem

Input: *n* items where *i*-th item has value v_i and weighs w_i Output: the max value within *W* capacity, where we can take **any fraction of items**

- Subproblems
 - F-KP(i, w): fractional knapsack problem within w capacity for the first i items
 - Goal: F-KP(n, W)

Step 2: Prove Optimal Substructure

Fractional Knapsack Problem

Input: *n* items where *i*-th item has value v_i and weighs w_i Output: the max value within *W* capacity, where we can take **any fraction of items**

- Suppose OPT is an optimal solution to F-KP(i, w), there are 2 cases:
 - Case 1: full/partial item *i* in OPT
 - Remove w' of item i from OPT is an optimal solution of F-KP (i 1, w w')
 - Case 2: item *i* not in OPT
 - OPT is an optimal solution of F-KP(i 1, w)

Step 3: Prove Greedy-Choice Property

Fractional Knapsack Problem

Input: *n* items where *i*-th item has value v_i and weighs w_i Output: the max value within *W* capacity, where we can take **any fraction of items**

- Greedy choice: select the item with the highest $\frac{v_i}{w_i}$
- Proof via contradiction $(j = \operatorname{argmax}_{i} \frac{v_i}{w_i})$
 - Assume that there is no OPT including this greedy choice
 - If $W \le w_j$, we can replace all items in OPT with item *j*
 - If $W > w_j$, we can replace any item weighting w_j in OPT with item j
 - The total value must be equal or higher, because item j has the highest $\frac{v_i}{w_i}$

Do other knapsack problems have this property?

Greedy #5: Breakpoint Selection

16

Breakpoint Selection Problem

- Input: a planned route with n + 1 gas stations b_0, \dots, b_n ; the car can go at most C after refueling at a breakpoint
- Output: a refueling schedule $(b_0 \rightarrow b_n)$ that minimizes the number of stops

Ideally: stop when out of gas

Actually: may not be able to find the gas station when out of gas

• Greedy algorithm: go as far as you can before refueling

Step 1: Cast Optimization Problem

Breakpoint Selection Problem

Input: n + 1 breakpoints $b_0, ..., b_n$; gas storage is C Output: a refueling schedule $(b_0 \rightarrow b_n)$ that minimizes the number of stops

- Subproblems
 - B(i): breakpoint selection problem from b_i to b_n
 - Goal: B(0)

Step 2: Prove Optimal Substructure

Breakpoint Selection Problem

Input: n + 1 breakpoints $b_0, ..., b_n$; gas storage is C Output: a refueling schedule $(b_0 \rightarrow b_n)$ that minimizes the number of stops

- Suppose OPT is an optimal solution to B(i) where *j* is the largest index satisfying $b_j b_i \le C$, there are j i cases
 - Case 1: stop at b_{i+1}
 - OPT $\{b_{i+1}\}$ is an optimal solution of B (i + 1)
 - Case 2: stop at b_{i+2}
 - OPT $\{b_{i+2}\}$ is an optimal solution of B (i + 2)

$$B_i = \min_{i < k \le j} (1 + B_k)$$

- Case j i: stop at b_j
 - OPT $\{b_i\}$ is an optimal solution of B (j)

Step 3: Prove Greedy-Choice Property

Breakpoint Selection Problem

Input: n + 1 breakpoints $b_0, ..., b_n$; gas storage is C Output: a refueling schedule $(b_0 \rightarrow b_n)$ that minimizes the number of stops

- Greedy choice: go as far as you can before refueling (select b_i)
- Proof via contradiction
 - Assume that there is no OPT including this greedy choice (after b_i then stop at $b_k, k \neq j$)
 - If k > j, we cannot stop at b_k due to out of gas
 - If k < j, we can replace the stop at b_k with the stop at b_j
 - The total value must be equal or higher, because we refuel later $(b_j > b_k)$

 $B_i = \min_{i < k \le j} (1 + B_k) \Longrightarrow B_i = 1 + B_j$

Pseudo Code

Breakpoint Selection Problem

Input: n + 1 breakpoints $b_0, ..., b_n$; gas storage is *C* Output: a refueling schedule $(b_0 \rightarrow b_n)$ that minimizes the number of stops

```
BP-Select(C, b)
Sort(b) s.t. b[0] < b[1] < ... < b[n]
p = 0
S = {0}
for i = 1 to n - 1
if b[i + 1] - b[p] > C
if i == p
return "no solution"
A = A U {i}
p = i
return A
```

$$T(n) = \Theta(n \log n)$$

Greedy #6: Task-Scheduling

Textbook Exercise 16.2-2

22

Task-Scheduling Problem

• Input: a finite set $S = \{a_1, a_2, ..., a_n\}$ of n unit-time tasks, their corresponding integer deadlines $d_1, d_2, ..., d_n$ $(1 \le d_i \le n)$, and nonnegative penalties $w_1, w_2, ..., w_n$ if a_i is not finished by time d_i

Job	1	2	3	4	5	6	7
Deadline (d_i)	1	2	3	4	4	4	6
Penalty (w_i)	30	60	40	20	50	70	10

• Output: a schedule that minimizes the total penalty

Task-Scheduling Problem

Task-Scheduling Problem

Input: *n* tasks with their deadlines $d_1, d_2, ..., d_n$ and penalties $w_1, w_2, ..., w_n$ Output: the schedule that minimizes the total penalty

- Let a schedule *H* is the OPT
 - A task a_i is <u>late</u> in H if $f(H, i) > d_i$
 - A task a_i is <u>early</u> in *H* if $f(H, i) \le d_i$

Task	1	2	3	4	5	6	7
d_i	1	2	3	4	4	4	6
w _i	30	60	40	20	50	70	10

• We can have an **early-first** schedule H' with the same total penalty (OPT)

If the late task proceeds the early task, switching them makes the early one earlier and late one still late

Task-Scheduling Problem

Input: *n* tasks with their deadlines $d_1, d_2, ..., d_n$ and penalties $w_1, w_2, ..., w_n$ Output: the schedule that minimizes the total penalty

Rethink the problem: "maximize the total penalty for the set of early tasks"

Task	1	2	3	4	5	6	7
d_i	1	2	3	4	4	4	6
w _i	30	60	40	20	50	70	10

- Greedy idea
 - Largest-penalty-first w/o idle time?
 - Earliest-deadline-first w/o idle time?

Prove Correctness

Task-Scheduling Problem

Input: *n* tasks with their deadlines $d_1, d_2, ..., d_n$ and penalties $w_1, w_2, ..., w_n$ Output: the schedule that minimizes the total penalty

- Greedy choice: select the largest-penalty task into the early set if feasible
- Proof via contradiction
 - Assume that there is no OPT including this greedy choice
 - If OPT processes a_i after d_i , we can switch a_j and a_i into OPT'
 - The maximum penalty must be equal or lower, because $w_i \ge w_j$

Prove Correctness

Task-Scheduling Problem

Input: *n* tasks with their deadlines $d_1, d_2, ..., d_n$ and penalties $w_1, w_2, ..., w_n$ Output: the schedule that minimizes the total penalty

Greedy algorithm

```
Task-Scheduling(n, d[], w[])
sort tasks by penalties s.t. w[1] ≥ w[2] ≥ ... ≥ w[n]
for i = 1 to n
find the latest available index j <= d[i]
if j > 0
A = A U {i}
mark index j unavailable
return A // the set of early tasks
```

 $T(n) = O(n^2)$

Can it be better?

Practice: reduce the time for finding the latest available index

Example Illustration

Job	1	2	3	4	5	6	7
Deadline (d_i)	4	2	4	3	1	4	6
Penalty (w_i)	70	60	50	40	30	20	10

Practice: how about the greedy algorithm using "earliest-deadline-first"

Greedy #7: Scheduling to Minimize Lateness

Slides modified from Prof. Hsu-Chun Hsiao

Scheduling to Minimize Lateness

• Input: a finite set $S = \{a_1, a_2, ..., a_n\}$ of *n* tasks, their processing time $t_1, t_2, ..., t_n$, and integer deadlines $d_1, d_2, ..., d_n$

Job	1	2	3	4
Processing Time (t_i)	3	5	3	2
Deadline (d_i)	4	6	7	8

• Output: a schedule that minimizes the maximum lateness

Scheduling to Minimize Lateness

Scheduling to Minimize Lateness Problem

Input: *n* tasks with their processing time $t_1, t_2, ..., t_n$, and deadlines $d_1, d_2, ..., d_n$ Output: the schedule that minimizes the maximum lateness

- Let a schedule *H* contains *s*(*H*,*j*) and *f*(*H*,*j*) as the start time and finish time of job *j*
 - $f(H,j) s(H,j) = t_j$
 - Lateness of job *j* in *H* is $L(H, j) = \max\{0, f(H, j) d_j\}$
- The goal is to minimize $\max_{j} L(H,j) = \max_{j} \{0, f(H,j) d_j\}$

Scheduling to Minimize Lateness Problem

Input: *n* tasks with their processing time $t_1, t_2, ..., t_n$, and deadlines $d_1, d_2, ..., d_n$ Output: the schedule that minimizes the maximum lateness

- Greedy idea
 - Shortest-processing-time-first w/o idle time?
 - Earliest-deadline-first w/o idle time?

Practice: prove that any schedule w/ idle is not optimal

Scheduling to Minimize Lateness Problem

Input: *n* tasks with their processing time $t_1, t_2, ..., t_n$, and deadlines $d_1, d_2, ..., d_n$ Output: the schedule that minimizes the maximum lateness

- Idea
 - Shortest-processing-time-first w/o idle time?

Job	1	2
Processing Time (t_i)	1	2
Deadline (d_i)	10	2

Scheduling to Minimize Lateness Problem

Input: *n* tasks with their processing time $t_1, t_2, ..., t_n$, and deadlines $d_1, d_2, ..., d_n$ Output: the schedule that minimizes the maximum lateness

- Idea
 - Earliest-deadline-first w/o idle time?
- Greedy algorithm

```
Min-Lateness(n, t[], d[])
sort tasks by deadlines s.t. d[1]≤d[2]≤ ...≤d[n]
ct = 0 // current time
for j = 1 to n
assign job j to interval (ct, ct + t[j])
s[j] = ct
f[j] = s[j] + t[j]
ct = ct + t[j]
return s[], f[]
```

 $T(n) = \Theta(n \log n)$

Prove Correctness – Greedy-Choice Property

Scheduling to Minimize Lateness Problem

Input: *n* tasks with their processing time $t_1, t_2, ..., t_n$, and deadlines $d_1, d_2, ..., d_n$ Output: the schedule that minimizes the maximum lateness

- Greedy choice: first select the task with the earliest deadline
- Proof via contradiction
 - Assume that there is no OPT including this greedy choice
 - If OPT processes a_1 as the *i*-th task (a_k) , we can switch a_k and a_1 into OPT'
 - The maximum lateness must be equal or lower $\rightarrow L(OPT') \leq L(OPT)$

exchange argument

Prove Correctness – Greedy-Choice Property

Scheduling to Minimize Lateness Problem

Input: *n* tasks with their processing time $t_1, t_2, ..., t_n$, and deadlines $d_1, d_2, ..., d_n$ Output: the schedule that minimizes the maximum lateness

• $L(OPT') \le L(OPT)$

 $\iff \max(L(\text{OPT}', 1), L(\text{OPT}', k)) \le \max(L(\text{OPT}, k), L(\text{OPT}, 1))$

 $\iff \max(L(\text{OPT}', 1), L(\text{OPT}', k)) \le L(\text{OPT}, 1)$

 $\Longleftrightarrow L(\mathrm{OPT'},k) \leq L(\mathrm{OPT},1) \because L(\mathrm{OPT'},1) \leq L(\mathrm{OPT},1)$

Prove Correctness – No Inversions

Scheduling to Minimize Lateness Problem

Input: *n* tasks with their processing time $t_1, t_2, ..., t_n$, and deadlines $d_1, d_2, ..., d_n$ Output: the schedule that minimizes the maximum lateness

- There is an optimal scheduling w/o *inversions* given $d_1 \leq d_2 \leq \cdots \leq d_n$
 - a_i and a_j are *inverted* if $d_i < d_j$ but a_j is scheduled before a_i
- Proof via contradiction
 - Assume that OPT has a_i and a_j that are inverted
 - Let OPT' = OPT but a_i and a_j are swapped
 - OPT' is equal or better than $OPT \rightarrow L(OPT') \leq L(OPT)$

Prove Correctness – No Inversions

Scheduling to Minimize Lateness Problem

Input: *n* tasks with their processing time $t_1, t_2, ..., t_n$, and deadlines $d_1, d_2, ..., d_n$ Output: the schedule that minimizes the maximum lateness

• $L(OPT') \leq L(OPT)$ $\iff \max(L(OPT', i), L(OPT', j)) \leq \max(L(OPT, j), L(OPT, i))$ $\iff \max(L(OPT', i), L(OPT', j)) \leq L(OPT, i) \because d_i < d_j$ $\iff L(OPT', j) \leq L(OPT, i) \because L(OPT', i) \leq L(OPT, i)$

Concluding Remarks

- "Greedy": always makes the choice that looks best at the moment in the hope that this choice will lead to a globally optimal solution
- When to use greedy
 - Whether the problem has optimal substructure
 - Whether we can make a greedy choice and remain only one subproblem
 - Common for optimization problem

- Prove for correctness
 - Optimal substructure
 - Greedy choice property

Question?

Important announcement will be sent to @ntu.edu.tw mailbox & post to the course website

Course Website: http://ada.miulab.tw Email: ada-ta@csie.ntu.edu.tw