
Algorithm Design and Analysis
演算法設計與分析

Yun-Nung (Vivian) Chen 陳縕儂
(Slides modified from Hsu-Chun Hsiao)

7.2

Greedy Algorithm

貪婪演算法 (2)

http://ada.miulab.tw

Outline

• Greedy Algorithms

• Greedy #1: Activity-Selection / Interval Scheduling

• Greedy #2: Coin Changing

• Greedy #3: Huffman Codes

• Greedy #4: Fractional Knapsack Problem

• Greedy #5: Breakpoint Selection

• Greedy #6: Task-Scheduling

• Greedy #7: Scheduling to Minimize Lateness

2

Greedy #3: Huffman Codes

for Prefix Code Problem

3

Textbook Chapter 16.3 – Huffman codes

Chapter 4.8 in Algorithm Design by Kleinberg & Tardos

Multiple Choices

4

OPT for S

Merge a, b

Merge a, c

Merge x, y

min

OPT for S’

OPT for S’

OPT for S’

+

+

+

=

PC(i+1, {w1…i-1, x, y})

PC(i, {w1…i-1, z})

Step 2: Prove Optimal Substructure

• Suppose 𝑇’ is a solution to
PC(i, {w1…i-1, z})

5

• 𝑇 is a solution to PC(i+1, {w1…i-1,
x, y}) reduced from 𝑇′

z

x y

Prefix Code Problem

Input: 𝑛 positive integers 𝑤1, 𝑤2, … , 𝑤𝑛 indicating word frequency

Output: a binary tree of 𝑛 leaves with minimal cost

Multiple Choices

6

OPT for S

Merge a, b

Merge a, c

Merge x, y

min

OPT for S’

OPT for S’

OPT for S’

+

+

+

=

PC(i+1, {w1…i-1, x, y})

PC(i, {w1…i-1, z}) z

x y

Step 2: Prove Optimal Substructure

• 𝑇’

7

• 𝑇

z

x y

Step 2: Prove Optimal Substructure

• Optimal substructure: T’ is OPT if and only if T is OPT

8

The difference is

TT’

Greedy #4:

Fractional Knapsack Problem

9

Textbook Exercise 16.2-2

Knapsack Problem

• Input: 𝑛 items where 𝑖-th item has value 𝑣𝑖 and weighs 𝑤𝑖 (𝑣𝑖 and 𝑤𝑖
are positive integers)

• Output: the maximum value for the knapsack with capacity of 𝑊

• Variants of knapsack problem
• 0-1 Knapsack Problem: 每項物品只能拿一個

• Unbounded Knapsack Problem: 每項物品可以拿多個

• Multidimensional Knapsack Problem: 背包空間有限

• Multiple-Choice Knapsack Problem: 每一類物品最多拿一個

• Fractional Knapsack Problem: 物品可以只拿部分

10

Knapsack Problem

• Input: 𝑛 items where 𝑖-th item has value 𝑣𝑖 and weighs 𝑤𝑖 (𝑣𝑖 and 𝑤𝑖
are positive integers)

• Output: the maximum value for the knapsack with capacity of 𝑊

• Variants of knapsack problem
• 0-1 Knapsack Problem: 每項物品只能拿一個

• Unbounded Knapsack Problem: 每項物品可以拿多個

• Multidimensional Knapsack Problem: 背包空間有限

• Multiple-Choice Knapsack Problem: 每一類物品最多拿一個

• Fractional Knapsack Problem: 物品可以只拿部分

11

Fractional Knapsack Problem

• Input: 𝑛 items where 𝑖-th item has value 𝑣𝑖 and weighs 𝑤𝑖 (𝑣𝑖 and 𝑤𝑖
are positive integers)

• Output: the maximum value for the knapsack with capacity of 𝑊,
where we can take any fraction of items

• Greedy algorithm: at each iteration, choose the item with the highest
𝑣𝑖

𝑤𝑖

and continue when 𝑊 −𝑤𝑖 > 0

12

Step 1: Cast Optimization Problem

• Subproblems
• F-KP(i, w): fractional knapsack problem within 𝑤 capacity for the first 𝑖 items

• Goal: F-KP(n, W)

13

Fractional Knapsack Problem

Input: 𝑛 items where 𝑖-th item has value 𝑣𝑖 and weighs 𝑤𝑖

Output: the max value within 𝑊 capacity, where we can take any fraction of items

Step 2: Prove Optimal Substructure

• Suppose OPT is an optimal solution to F-KP(i, w), there are 2 cases:

• Case 1: full/partial item 𝑖 in OPT
• Remove 𝑤′ of item 𝑖 from OPT is an optimal solution of F-KP(i - 1, w – w’)

• Case 2: item 𝑖 not in OPT
• OPT is an optimal solution of F-KP(i - 1, w)

14

Fractional Knapsack Problem

Input: 𝑛 items where 𝑖-th item has value 𝑣𝑖 and weighs 𝑤𝑖

Output: the max value within 𝑊 capacity, where we can take any fraction of items

Step 3: Prove Greedy-Choice Property

• Greedy choice: select the item with the highest
𝑣𝑖

𝑤𝑖

• Proof via contradiction (𝑗 = argmax
𝑖

𝑣𝑖

𝑤𝑖
)

• Assume that there is no OPT including this greedy choice

• If 𝑊 ≤ 𝑤𝑗, we can replace all items in OPT with item 𝑗

• If 𝑊 > 𝑤𝑗, we can replace any item weighting 𝑤𝑗 in OPT with item 𝑗

• The total value must be equal or higher, because item 𝑗 has the highest
𝑣𝑖

𝑤𝑖

15

Do other knapsack problems have this property?

Fractional Knapsack Problem

Input: 𝑛 items where 𝑖-th item has value 𝑣𝑖 and weighs 𝑤𝑖

Output: the max value within 𝑊 capacity, where we can take any fraction of items

Greedy #5: Breakpoint Selection

16

Breakpoint Selection Problem

• Input: a planned route with 𝑛 + 1 gas stations 𝑏0, … , 𝑏𝑛; the car can go at
most 𝐶 after refueling at a breakpoint

• Output: a refueling schedule (𝑏0→𝑏𝑛) that minimizes the number of stops

• Greedy algorithm: go as far as you can before refueling

17

1 2 3 4 5

Ideally: stop when out of gas

Actually: may not be able to find the gas station when out of gas

1 2 3 4 5 6

Step 1: Cast Optimization Problem

• Subproblems
• B(i): breakpoint selection problem from 𝑏𝑖 to 𝑏𝑛
• Goal: B(0)

18

Breakpoint Selection Problem

Input: 𝑛 + 1 breakpoints 𝑏0, … , 𝑏𝑛; gas storage is 𝐶
Output: a refueling schedule (𝑏0→𝑏𝑛) that minimizes the number of stops

Step 2: Prove Optimal Substructure

• Suppose OPT is an optimal solution to B(i) where 𝑗 is the largest
index satisfying 𝑏𝑗 − 𝑏𝑖 ≤ 𝐶, there are 𝑗 − 𝑖 cases

• Case 1: stop at 𝑏𝑖+1
• OPT\{bi+1} is an optimal solution of B(i + 1)

• Case 2: stop at 𝑏𝑖+2
• OPT\{bi+2} is an optimal solution of B(i + 2)

:

• Case 𝑗 − 𝑖: stop at 𝑏𝑗
• OPT\{bj} is an optimal solution of B(j)

19

Breakpoint Selection Problem

Input: 𝑛 + 1 breakpoints 𝑏0, … , 𝑏𝑛; gas storage is 𝐶
Output: a refueling schedule (𝑏0→𝑏𝑛) that minimizes the number of stops

Step 3: Prove Greedy-Choice Property

• Greedy choice: go as far as you can before refueling (select 𝑏𝑗)

• Proof via contradiction

• Assume that there is no OPT including this greedy choice (after 𝑏𝑖 then stop at
𝑏𝑘, 𝑘 ≠ 𝑗)

• If 𝑘 > 𝑗, we cannot stop at 𝑏𝑘 due to out of gas

• If 𝑘 < 𝑗, we can replace the stop at 𝑏𝑘 with the stop at 𝑏𝑗

• The total value must be equal or higher, because we refuel later (𝑏𝑗 > 𝑏𝑘)

20

Breakpoint Selection Problem

Input: 𝑛 + 1 breakpoints 𝑏0, … , 𝑏𝑛; gas storage is 𝐶
Output: a refueling schedule (𝑏0→𝑏𝑛) that minimizes the number of stops

Pseudo Code

21

BP-Select(C, b)

Sort(b) s.t. b[0] < b[1] < … < b[n]

p = 0

S = {0}

for i = 1 to n - 1

if b[i + 1] – b[p] > C

if i == p

return “no solution”

A = A ∪ {i}

p = i

return A

Breakpoint Selection Problem

Input: 𝑛 + 1 breakpoints 𝑏0, … , 𝑏𝑛; gas storage is 𝐶
Output: a refueling schedule (𝑏0→𝑏𝑛) that minimizes the number of stops

Greedy #6: Task-Scheduling

22

Textbook Exercise 16.2-2

Task-Scheduling Problem

• Input: a finite set 𝑆 = 𝑎1, 𝑎2, … , 𝑎𝑛 of 𝑛 unit-time tasks, their
corresponding integer deadlines 𝑑1, 𝑑2, … , 𝑑𝑛 (1 ≤ 𝑑𝑖 ≤ 𝑛), and
nonnegative penalties 𝑤1, 𝑤2, … , 𝑤𝑛 if 𝑎𝑖 is not finished by time 𝑑𝑖

• Output: a schedule that minimizes the total penalty

23

Job 1 2 3 4 5 6 7

Deadline (𝑑𝑖) 1 2 3 4 4 4 6

Penalty (w𝑖) 30 60 40 20 50 70 10

𝑎2 𝑎3 𝑎6 𝑎5

0 n

Penalty 30

𝑎7 𝑎1𝑎4

20

Task-Scheduling Problem

• Let a schedule 𝐻 is the OPT

• A task 𝑎𝑖 is late in 𝐻 if 𝑓 𝐻, 𝑖 > 𝑑𝑖
• A task 𝑎𝑖 is early in 𝐻 if 𝑓 𝐻, 𝑖 ≤ 𝑑𝑖
• We can have an early-first schedule 𝐻′ with the same total penalty (OPT)

24

Task-Scheduling Problem

Input: 𝑛 tasks with their deadlines 𝑑1, 𝑑2, … , 𝑑𝑛 and penalties 𝑤1, 𝑤2, … , 𝑤𝑛
Output: the schedule that minimizes the total penalty

𝑎2 𝑎3 𝑎6 𝑎5

0 n

Penalty 20

𝑎7 𝑎4

Task 1 2 3 4 5 6 7

𝑑𝑖 1 2 3 4 4 4 6

w𝑖 30 60 40 20 50 70 10

𝑎1

30

𝑎2 𝑎3 𝑎6 𝑎5

0 n

Penalty 30

𝑎7 𝑎1𝑎4

20

𝐻′

𝐻

If the late task proceeds the early task, switching them

makes the early one earlier and late one still late

Possible Greedy Choices

• Rethink the problem: “maximize the total penalty for the set of early tasks”

• Greedy idea

• Largest-penalty-first w/o idle time?

• Earliest-deadline-first w/o idle time?

25

𝑎2 𝑎3 𝑎6 𝑎5

0 n

Penalty 20

𝑎7 𝑎4 𝑎1

30

Task 1 2 3 4 5 6 7

𝑑𝑖 1 2 3 4 4 4 6

w𝑖 30 60 40 20 50 70 10
60 40 70 50 10

Task-Scheduling Problem

Input: 𝑛 tasks with their deadlines 𝑑1, 𝑑2, … , 𝑑𝑛 and penalties 𝑤1, 𝑤2, … , 𝑤𝑛
Output: the schedule that minimizes the total penalty

Prove Correctness

• Greedy choice: select the largest-penalty task into the early set if feasible

• Proof via contradiction

• Assume that there is no OPT including this greedy choice

• If OPT processes 𝑎𝑖 after 𝑑𝑖, we can switch 𝑎𝑗 and 𝑎𝑖 into OPT’

• The maximum penalty must be equal or lower, because 𝑤𝑖 ≥ 𝑤𝑗

26

𝑎𝑗
0 n

Penalty 𝑤𝑖

𝑎𝑖
𝑑𝑖

𝑎𝑖
0 n

Penalty

𝑎𝑗
𝑑𝑖

𝑤𝑗

𝑤𝑖 ≥ 𝑤𝑘 for all 𝑎𝑘 in the early set

Task-Scheduling Problem

Input: 𝑛 tasks with their deadlines 𝑑1, 𝑑2, … , 𝑑𝑛 and penalties 𝑤1, 𝑤2, … , 𝑤𝑛
Output: the schedule that minimizes the total penalty

Prove Correctness

• Greedy algorithm

27

Task-Scheduling(n, d[], w[])

sort tasks by penalties s.t. w[1] ≥ w[2] ≥ … ≥ w[n]

for i = 1 to n

find the latest available index j <= d[i]

if j > 0

A = A ∪ {i}

mark index j unavailable

return A // the set of early tasks

Can it be

better?

Practice: reduce the time for finding the latest available index

Task-Scheduling Problem

Input: 𝑛 tasks with their deadlines 𝑑1, 𝑑2, … , 𝑑𝑛 and penalties 𝑤1, 𝑤2, … , 𝑤𝑛
Output: the schedule that minimizes the total penalty

Example Illustration

28

Job 1 2 3 4 5 6 7

Deadline (𝑑𝑖) 4 2 4 3 1 4 6

Penalty (w𝑖) 70 60 50 40 30 20 10

𝑎1𝑎3𝑎4 𝑎2

0 1 2 3 4 5 6 7

Total penalty = 30 + 20 = 50

2

0𝑎7 𝑎5 𝑎6

30

Practice: how about the greedy algorithm using “earliest-deadline-first”

Greedy #7:

Scheduling to Minimize Lateness

29Slides modified from Prof. Hsu-Chun Hsiao

Scheduling to Minimize Lateness

• Input: a finite set 𝑆 = 𝑎1, 𝑎2, … , 𝑎𝑛 of 𝑛 tasks, their processing time
𝑡1, 𝑡2, … , 𝑡𝑛, and integer deadlines 𝑑1, 𝑑2, … , 𝑑𝑛

• Output: a schedule that minimizes the maximum lateness

30

Job 1 2 3 4

Processing Time (𝑡𝑖) 3 5 3 2

Deadline (𝑑𝑖) 4 6 7 8

𝑎4 𝑎1 𝑎3 𝑎2

0 2 5 8 13

Lateness 0 1 1 7

Slides modified from Prof. Hsu-Chun Hsiao

Scheduling to Minimize Lateness

• Let a schedule 𝐻 contains 𝑠 𝐻, 𝑗 and 𝑓 𝐻, 𝑗 as the start time and
finish time of job 𝑗

• 𝑓 𝐻, 𝑗 − 𝑠 𝐻, 𝑗 = 𝑡𝑗

• Lateness of job 𝑗 in 𝐻 is 𝐿 𝐻, 𝑗 = max 0, 𝑓 𝐻, 𝑗 − 𝑑𝑗

• The goal is to minimize max
𝑗

𝐿 𝐻, 𝑗 = max
𝑗

0, 𝑓 𝐻, 𝑗 − 𝑑𝑗

31

Scheduling to Minimize Lateness Problem

Input: 𝑛 tasks with their processing time 𝑡1, 𝑡2, … , 𝑡𝑛, and deadlines 𝑑1, 𝑑2, … , 𝑑𝑛
Output: the schedule that minimizes the maximum lateness

Slides modified from Prof. Hsu-Chun Hsiao

Possible Greedy Choices

• Greedy idea

• Shortest-processing-time-first w/o idle time?

• Earliest-deadline-first w/o idle time?

32

Practice: prove that any schedule w/ idle is not optimal

Scheduling to Minimize Lateness Problem

Input: 𝑛 tasks with their processing time 𝑡1, 𝑡2, … , 𝑡𝑛, and deadlines 𝑑1, 𝑑2, … , 𝑑𝑛
Output: the schedule that minimizes the maximum lateness

Slides modified from Prof. Hsu-Chun Hsiao

Possible Greedy Choices

• Idea

• Shortest-processing-time-first w/o idle time?

33

Job 1 2

Processing Time (𝑡𝑖) 1 2

Deadline (𝑑𝑖) 10 2

𝑎1 𝑎2

0 1 3

Lateness 0 1

𝑎2 𝑎1

0 2 3

Lateness 0 0

Scheduling to Minimize Lateness Problem

Input: 𝑛 tasks with their processing time 𝑡1, 𝑡2, … , 𝑡𝑛, and deadlines 𝑑1, 𝑑2, … , 𝑑𝑛
Output: the schedule that minimizes the maximum lateness

Slides modified from Prof. Hsu-Chun Hsiao

Possible Greedy Choices

• Idea

• Earliest-deadline-first w/o idle time?

• Greedy algorithm

34

Min-Lateness(n, t[], d[])

sort tasks by deadlines s.t. d[1]≤d[2]≤ ...≤d[n]

ct = 0 // current time

for j = 1 to n

assign job j to interval (ct, ct + t[j])

s[j] = ct

f[j] = s[j] + t[j]

ct = ct + t[j]

return s[], f[]

Scheduling to Minimize Lateness Problem

Input: 𝑛 tasks with their processing time 𝑡1, 𝑡2, … , 𝑡𝑛, and deadlines 𝑑1, 𝑑2, … , 𝑑𝑛
Output: the schedule that minimizes the maximum lateness

Slides modified from Prof. Hsu-Chun Hsiao

Prove Correctness – Greedy-Choice Property

• Greedy choice: first select the task with the earliest deadline

• Proof via contradiction

• Assume that there is no OPT including this greedy choice

• If OPT processes 𝑎1 as the 𝑖-th task (𝑎𝑘), we can switch 𝑎𝑘 and 𝑎1 into OPT’

• The maximum lateness must be equal or lower → 𝐿 OPT′ ≤ 𝐿 OPT

35

exchange argument

Scheduling to Minimize Lateness Problem

Input: 𝑛 tasks with their processing time 𝑡1, 𝑡2, … , 𝑡𝑛, and deadlines 𝑑1, 𝑑2, … , 𝑑𝑛
Output: the schedule that minimizes the maximum lateness

Slides modified from Prof. Hsu-Chun Hsiao

Prove Correctness – Greedy-Choice Property

•

36

𝑎𝑘 𝑎1

L(OPT, k)

𝑎1 𝑎𝑘

L(OPT’, 1) L(OPT’, k)

L(OPT, 1)

OPT

OPT’

If 𝑎𝑘 is not late in OPT’: If 𝑎𝑘 is late in OPT’:

Generalization of

this property?

Scheduling to Minimize Lateness Problem

Input: 𝑛 tasks with their processing time 𝑡1, 𝑡2, … , 𝑡𝑛, and deadlines 𝑑1, 𝑑2, … , 𝑑𝑛
Output: the schedule that minimizes the maximum lateness

Slides modified from Prof. Hsu-Chun Hsiao

Prove Correctness – No Inversions

• There is an optimal scheduling w/o inversions given 𝑑1 ≤ 𝑑2 ≤ ⋯ ≤ 𝑑𝑛
• 𝑎𝑖 and 𝑎𝑗 are inverted if 𝑑𝑖 < 𝑑𝑗 but 𝑎𝑗 is scheduled before 𝑎𝑖

• Proof via contradiction

• Assume that OPT has 𝑎𝑖 and 𝑎𝑗 that are inverted

• Let OPT’ = OPT but 𝑎𝑖 and 𝑎𝑗 are swapped

• OPT’ is equal or better than OPT → 𝐿 OPT′ ≤ 𝐿 OPT

37

Scheduling to Minimize Lateness Problem

Input: 𝑛 tasks with their processing time 𝑡1, 𝑡2, … , 𝑡𝑛, and deadlines 𝑑1, 𝑑2, … , 𝑑𝑛
Output: the schedule that minimizes the maximum lateness

Slides modified from Prof. Hsu-Chun Hsiao

Prove Correctness – No Inversions

•

38

𝑎𝑗 𝑎𝑖

L(OPT, j)

𝑎𝑖 𝑎𝑗

L(OPT’, i) L(OPT’, j)

L(OPT, i)

OPT

OPT’

If 𝑎𝑗 is not late in OPT’: If 𝑎𝑗 is late in OPT’:

……

……

The earliest-deadline-first greedy algorithm is optimal

Optimal

Solution

Greedy

Choice

Subproble

m Solution
+=

Scheduling to Minimize Lateness Problem

Input: 𝑛 tasks with their processing time 𝑡1, 𝑡2, … , 𝑡𝑛, and deadlines 𝑑1, 𝑑2, … , 𝑑𝑛
Output: the schedule that minimizes the maximum lateness

Slides modified from Prof. Hsu-Chun Hsiao

Concluding Remarks

• “Greedy”: always makes the choice that looks best at the moment in
the hope that this choice will lead to a globally optimal solution

• When to use greedy

• Whether the problem has optimal substructure

• Whether we can make a greedy choice and remain only one subproblem

• Common for optimization problem

• Prove for correctness

• Optimal substructure

• Greedy choice property

39

Optimal

Solution

Greedy

Choice

Subproblem

Solution+=

Question?
Important announcement will be sent to
@ntu.edu.tw mailbox & post to the course website

Course Website: http://ada.miulab.tw

Email: ada-ta@csie.ntu.edu.tw

