Greedy Algorithm
BEREEZE (2

Algorithm Design and Analysis

l¢~§/ —"'— ¢~/-\1ﬁ

Yun-Nung (V|V|an) Chen BRERI=
(Slides modified from Hsu-Chun Hsiao) http://ada.miulab.tw

Outline

* Greedy Algorithms
» Greedy #1: Activity-Selection / Interval Scheduling

« Greedy #2: Coin Changing

* Greedy #3: Huffman Codes

» Greedy #4: Fractional Knapsack Problem
* Greedy #5: Breakpoint Selection

« Greedy #6: Task-Scheduling

» Greedy #7: Scheduling to Minimize Lateness /\O n n?
~ \7\&:&!&/

2

Greedy #3: Huffman Codes

for Prefix Code Problem

Textbook Chapter 16.3 — Huffman codes
Chapter 4.8 in Algorithm Design by Kleinberg & Tardos

Multiple Choices

—

Merge a, b [

Merge a, ¢ |

Merge X,V { }

PC(i, {w; ;,, 2})

OPT for S = min -

PC(i+1, {Wl...i—lf X, Y})

~—

@ D
- 4

Step 2: Prove Optimal Substructure

Prefix Code Problem
Input: n positive integers wy, wo, ..., w,, indicating word frequency
Output: a binary tree of n leaves with minimal cost

« Suppose T’ is a solution to * Tisasolutionto PC (i+1, {w, ._,,
PC(i, {w, ., 2}) x, y}) reduced from T’

freq(z) = freq(x) + freq(y)

Multiple Choices

—

Merge a, b [

Merge a, ¢ |

Merge X,V { }

PC(i, {w; ;,, 2}) O

OPT for S = min -

PC(i+1, {Wl...i—lf X, Y})

~—

@ D
- 4

Step 2: Prove Optimal Substructure

OT, T

B(T) = B(T") — freq(z)dr:(z) + freq(x)dr(x) + freq(y)dr(y)
= B(T") — (freq(x) +freq(y))dr (2) +freq(z) (1 4+ dp (2)) + freq(y) (1 +dp (2))
= B(T") + freq(z) + freq(y)

Step 2: Prove Optimal Substructure

* Optimal substructure: T is OPT ifand only if T is OPT

The difference is freq(z) + freq(y)

™

freq(z) + freq(y)

freq(z) freq(y)

Greedy #4. (@)

Fractional Knapsack Problem

Textbook Exercise 16.2-2

Knapsack Problem (@)

* Input: n items where i-th item has value v; and weighs w; (v; and w;
are positive integers)

 Output: the maximum value for the knapsack with capacity of W

 Variants of knapsack problem
« 0-1 Knapsack Problem: I E¥)mREEE—1A
 Unbounded Knapsack Problem: B8I8¥) ol U Z=Z%1E
« Multidimensional Knapsack Problem: E &2 fEE R
O = £ &

« Multiple-Choice Knapsack Problem: 88— ¥ m&%E=—{E
« Fractional Knapsack Problem: ¥ ol AR ZZ[75

Knapsack Problem (@)

* Input: n items where i-th item has value v; and weighs w; (v; and w;
are positive integers)

 Output: the maximum value for the knapsack with capacity of W

 Variants of knapsack problem
« 0-1 Knapsack Problem: I E¥)mREEE—1A
 Unbounded Knapsack Problem: B8I8¥) ol U Z=Z%1E
« Multidimensional Knapsack Problem: E &2 fEE R
O = £ &

« Multiple-Choice Knapsack Problem: 88— ¥ m&%E=—{E
- Fractional Knapsack Problem: ¥)mulIRZ& 5

Fractional Knapsack Problem

* Input: n items where i-th item has value v; and weighs w; (v; and w;
are positive integers)

 Output: the maximum value for the knapsack with capacity of W,
where we can take any fraction of items

» Greedy algorithm: at each iteration, choose the item with the highest —
and continue when W —w; >0

Wi

Step 1: Cast Optimization Problem

Fractional Knapsack Problem
Input: n items where i-th item has value v; and weighs w;
Output: the max value within W capacity, where we can take any fraction of items

« Subproblems
« F-KP (i, w): fractional knapsack problem within w capacity for the first i items

« Goal: F-KP (n, W)

Step 2: Prove Optimal Substructure

Fractional Knapsack Problem
Input: n items where i-th item has value v; and weighs w;
Output: the max value within W capacity, where we can take any fraction of items

« Suppose OPT is an optimal solutionto F-KP (i, w), there are 2 cases:
« Case 1: full/partial item i in OPT
 Remove w' of item i from OPT is an optimal solutionof F-KP (i - 1, w — w')

« Case 2: item i notin OPT
« OPT is an optimal solution of F-KP (1 - 1, w)

Step 3: Prove Greedy-Choice Property

Fractional Knapsack Problem
Input: n items where i-th item has value v; and weighs w;
Output: the max value within W capacity, where we can take any fraction of items

» Greedy choice: select the item with the highest -

Wi

Vi

 Proof via contradiction (j = argmax
i

« Assume that there is no OPT including this greedy choice
* If W < w;, we can replace all items in OPT with item j
* If W > w;, we can replace any item weighting w; in OPT with item j

 The total value must be equal or higher, because item j has the highest %

Wi

Greedy #5:. Breakpoint Selection

Breakpoint Selection Problem

* Input: a planned route with n 4+ 1 gas stations by, ..., b,; the car can go at
most C after refueling at a breakpoint

« Output: a refueling schedule (by=2b,,) that minimizes the number of stops

Ideally: stop when out of gas

<« »

Actually: may not be able to find the gas station when out of gas

« Greedy algorithm: go as far as you can before refueling

Step 1: Cast Optimization Problem

Breakpoint Selection Problem
Input: n + 1 breakpoints by, ..., b,;; gas storage is C
Output: a refueling schedule (by—=2b,,) that minimizes the number of stops

« Subproblems
* B (i) : breakpoint selection problem from b; to b,
« Goal: B(0)

Step 2: Prove Optimal Substructure

Breakpoint Selection Problem
Input: n + 1 breakpoints by, ..., b,;; gas storage is C
Output: a refueling schedule (by—=2b,,) that minimizes the number of stops

« Suppose OPT is an optimal solution to B (1) where j is the largest
Index satisfying b; — b; < C, there are j — i cases
 Case 1: stop at b; ;4
 OPT\{b,,,}is an optimal solutionof B (i + 1)

» Case 2: stop at b; .,
* OPT\{b,,,} is an optimal solution of B (i + 2)

B, = min@-<k§j(1 - Bk)

« Case j —i: stop at by
« OPT\{bj} is an optimal solution of B (3)

Step 3: Prove Greedy-Choice Property

Breakpoint Selection Problem
Input: n + 1 breakpoints by, ..., b,;; gas storage is C
Output: a refueling schedule (by—=2b,,) that minimizes the number of stops

* Greedy choice: go as far as you can before refueling (select b;)

* Proof via contradiction

« Assume that there is no OPT including this greedy choice (after b; then stop at
by, k # j)
 If kK > j, we cannot stop at b, due to out of gas
* If k <j, we can replace the stop at b;, with the stop at b;

* The total value must be equal or higher, because we refuel later (b; > by)

B;, = mini<k§j(1 + Bk)‘Bz =14 Bj

Pseudo Code

Breakpoint Selection Problem
Input: n + 1 breakpoints by, ..., b,;; gas storage is C
Output: a refueling schedule (by—=2b,,) that minimizes the number of stops

BP-Select (C, b)
Sort(b) s.t. b[0] < b[l] < .. < b[n]
p = 0
S = {0}
for i =1 ton - 1
if b[i + 1] - blp] > C T(n) =06 (nlogn)
if 1 ==p
return “no solution”
AU {1}
i

A

|
return A

Greedy #6: Task-Scheduling

Textbook Exercise 16.2-2

Task-Scheduling Problem

* Input: a finite set S = {a4, a,, ..., a,} of n unit-time tasks, their
corresponding integer deadlines d,, d>, ...,d,, (1 < d; < n), and
nonnegative penalties wy, w,, ..., w,, If a; IS not finished by time d;

Job 1 2 3 4 5 6 7
Deadline (d;) 1 2 3 4 4 4 6
Penalty (w) 30 60 40 20 50 70 10

 Output: a schedule that minimizes the total penalty
Penalty 20 30

a; jasz jag |as jas a7z gaq

0 n

Task-Scheduling Problem

Task-Scheduling Problem

Input: n tasks with their deadlines d,, d,, ..., d,, and penalties wy, w,, ..., w,
Output: the schedule that minimizes the total penalty

 Let a schedule H is the OPT

Task 1 2 3 4 5 6 7
« Atask aq; islate in H if f(H,i) > d; d; 1 2 3 4 4 4 6
« Atask a; isearlyin H if f(H,i) < d; w; 30 60 40 20 50 70 10
« We can have an early-first schedule H' with the same total penalty (OPT)

H Penalty 20 30

Az 143 Qe |A5 |As |47 QA1

W, If the late task proceeds the early task, switching them
0 : makes the early one earlier and late one still late
H' Penalty 20 30
0 n

Possible Greedy Choices

Task-Scheduling Problem
Input: n tasks with their deadlines d,, d,, ..., d,, and penalties wy, w,, ..., w,
Output: the schedule that minimizes the total penalty

* Rethink the problem: “maximize the total penalty for the set of early tasks”

Task 1 2 3 4 5 6 o/
d; 1 2 3 4 4 4 6

w, 30 60 40 20 50 70 10 Penalty 60 40 70 50 10|20 30
: Az 123 % 1495 a7z Jas [Qq
« Greedy idea

0 n

 Largest-penalty-first w/o idle time?
» Earliest-deadline-first w/o idle time?

Prove Correctness

Task-Scheduling Problem

Input: n tasks with their deadlines d,, d,, ..., d,, and penalties wy, w,, ..., w,
Output: the schedule that minimizes the total penalty

* Greedy choice: select the largest-penalty task into the early set if feasible
* Proof via contradiction

« Assume that there is no OPT including this greedy choice
* If OPT processes a; after d;, we can switch a; and a; into OPT’

« The maximum penalty must be equal or lower, because w; = w;

Penalty w;
_ IEEEART B, w > w forall g, in the early set
0 di n

Penalty w;

Prove Correctness

Task-Scheduling Problem

Input: n tasks with their deadlines d,, d,, ..., d,, and penalties wy, w,, ..., w,
Output: the schedule that minimizes the total penalty

» Greedy algorithm

Task-Scheduling(n, d[], w[])
sort tasks by penalties s.t. w[l] 2 w[2] 2 .. 2 w[n]
for 1 = 1 to n
find the latest available index j <= d[i] jp(?l)
if 3 >0
A =AU {i}
mark index J unavailable
return A // the set of early tasks

Example lllustration

Job 1
Deadline (d;) 4 2 4 3 1 4 6

Penalty (w;) 70 60 50 40 30 20 10

M2
m
0 1 2|3|4 5 6 7

Total penalty = 30 + 20 = 50

Greedy #7.
Scheduling to Minimize Lateness

Slides modified from Prof. Hsu-Chun Hsiao

Scheduling to Minimize Lateness

* Input: a finite set S = {a4, a,, ..., a,} of n tasks, their processing time
ty,t,, ..., t,, and integer deadlines d, d-, ..., d,,

Job 1
Processing Time (t;) 3
Deadline (d;) 4 6

« Output: a schedule that minimizes the maximum lateness

Lateness 0 1 1 @

Slides modified from Prof. Hsu-Chun Hsiao

Scheduling to Minimize Lateness

Scheduling to Minimize Lateness Problem
Input: n tasks with their processing time t4, t,, ..., t,,, and deadlines d,, d>, ..., d,
Output: the schedule that minimizes the maximum lateness

* Let a schedule H contains s(H,j) and f(H,j) as the start time and
finish time of job j
* f(H,j)—s(H,j) =t
- Lateness of job j in H is L(H,j) = max{0, f(H,)) — d;}
* The goal is to minimize m]ax L(H,j) = m]ax{O,f(H,j) — dj}

Slides modified from Prof. Hsu-Chun Hsiao

Possible Greedy Choices

Scheduling to Minimize Lateness Problem
Input: n tasks with their processing time t4, t,, ..., t,,, and deadlines d,, d>, ..., d,
Output: the schedule that minimizes the maximum lateness

* Greedy idea

» Shortest-processing-time-first w/o idle time?
 Earliest-deadline-first w/o idle time?

Slides modified from Prof. Hsu-Chun Hsiao

Possible Greedy Choices

Scheduling to Minimize Lateness Problem
Input: n tasks with their processing time t4, t,, ..., t,,, and deadlines d,, d>, ..., d,
Output: the schedule that minimizes the maximum lateness

* |dea
« Shortest-processing-time-first w/o idle time?

Lateness
Job 1 2

Processing Time (t;) 1 2

O Lateness . Deadline (d;) 10 2

Slides modified from Prof. Hsu-Chun Hsiao

Possible Greedy Choices

Scheduling to Minimize Lateness Problem
Input: n tasks with their processing time t4, t,, ..., t,,, and deadlines d,, d>, ..., d,
Output: the schedule that minimizes the maximum lateness

* |dea
 Earliest-deadline-first w/o idle time?

» Greedy algorithm

Min-Lateness(n, tl[], dI[])
sort tasks by deadlines s.t. d[1]=d[2]% ...Z<d[n]
ct = 0 // current time
for j = 1 ton
assign job j to interval (ct, ct + t[J]) T(n) — @(’)’L log ’n)
s[j] = ct
f(3] = si3l + tl3j]
ct = ct + t[j]
return s[], fI]

Slides modified from Prof. Hsu-Chun Hsiao

Prove Correctness - Greedy-Choice Property

Scheduling to Minimize Lateness Problem
Input: n tasks with their processing time t4, t,, ..., t,,, and deadlines d,, d>, ..., d,
Output: the schedule that minimizes the maximum lateness

« Greedy choice: first select the task with the earliest deadline
 Proof via contradiction

« Assume that there is no OPT including this greedy choice
* If OPT processes a, as the i-th task (a,), we can switch a; and a; into OPT’

« The maximum lateness must be equal or lower - L(OPT’) < L(OPT)

exchange argument

Slides modified from Prof. Hsu-Chun Hsiao

Prove Correctness - Greedy-Choice Property

Scheduling to Minimize Lateness Problem

Input: n tasks with their processing time t4, t,, ..., t,,, and deadlines d,, d>, ..., d,
Output: the schedule that minimizes the maximum lateness

e L(OPT’) < L(OPT)
< max(L(OPT’, 1), L(OPT’, k)) < max(L(OPT, k), L(OPT, 1))
<= max(L(OPT", 1), L(OPT’, k)) < L(OPT, 1)
«— L(OPT’, k) < L(OPT,1) .- L(OPT’,1) < L(OPT, 1)

If a, is not late in OPT: If a, is late in OPT": L(OPT, k) L(OPT, 1)
L(OPT", k) =0 L(OPT’, k) = f(OPT", k) — dy OPT a a,
— f(OPT, 1) — dy
e I < f(OPT,1) — d; L(OPT’, 1) L(OPT’, k)
Generalization of — L(OPT, 1) OPT’ ay Ay

this property?

Slides modified from Prof. Hsu-Chun Hsiao

Prove Correctness - No Inversions

Scheduling to Minimize Lateness Problem
Input: n tasks with their processing time t4, t,, ..., t,,, and deadlines d,, d>, ..., d,
Output: the schedule that minimizes the maximum lateness

* There is an optimal scheduling w/o inversions givend; <d, <---<d,
* a; and a; are inverted If d; < d; but a; Is scheduled before a;
 Proof via contradiction
 Assume that OPT has a; and q; that are inverted
* Let OPT = OPT but a; and a; are swapped
« OPT is equal or better than OPT = L(OPT’) < L(OPT)

Slides modified from Prof. Hsu-Chun Hsiao

Prove Correctness - No Inversions

Scheduling to Minimize Lateness Problem

Input: n tasks with their processing time t4, t,, ..., t,,, and deadlines d,, d>, ..., d,
Output: the schedule that minimizes the maximum lateness

* L(OPT’) < L(OPT)
& max(L(OPT",4), L(OPT", §)) < max(L(OPT, j), L(OPT, 1))
> max(L(OPT’,4), L(OPT’, j)) < L(OPT,q) . d; < d,
= L(OPT’,j) < L(OPT,) - L(OPT",i) < L(OPT, i)

If ¢; is not late in OPT: If a; is late in OPT":

L(OPT,) L(OPT, i)
L(OPT’, j) = 0 L(OPT’,j) = f(OPT",j) —d; opT [P0 ..
— f(OPT, i) — d, |
Optimal Wl Greedy J Subproble < f(OPT, i) — d; L(OPT’, i) L(OPT’, j)
Solution M Choice m Solution - ’ ‘

orra " opr N ...

Slides modified from Prof. Hsu-Chun Hsiao

Concluding Remarks

« “Greedy”: always makes the choice that looks best at the moment in
the hope that this choice will lead to a globally optimal solution
* When to use greedy
* Whether the problem has optimal substructure
* Whether we can make a greedy choice and remain only one subproblem
« Common for optimization problem

Optimal N Greedy N Subproblem
Solution m Choice Solution

* Prove for correctness
« Optimal substructure
« Greedy choice property

Question?

Important announcement will be sent to
@ntu.edu.tw mailbox & post to the course website

Course Website: http://ada.miulab.tw
Email: ada-ta@csie.ntu.edu.tw

