
Algorithm Design and Analysis
演算法設計與分析

Yun-Nung (Vivian) Chen 陳縕儂
(Slides modified from Hsu-Chun Hsiao)

7.1

Greedy Algorithm

貪婪演算法 (1)

http://ada.miulab.tw

Outline

• Greedy Algorithms

• Greedy #1: Activity-Selection / Interval Scheduling

• Greedy #2: Coin Changing

• Greedy #3: Huffman Codes

• Greedy #4: Fractional Knapsack Problem

• Greedy #5: Breakpoint Selection

• Greedy #6: Task-Scheduling

• Greedy #7: Scheduling to Minimize Lateness

2

Algorithm Design Strategy

• Do not focus on “specific algorithms”

• But “some strategies” to “design” algorithms

• First Skill: Divide-and-Conquer (各個擊破/分治)

• Second Skill: Dynamic Programming (動態規劃)

• Third Skill: Greedy (貪婪演算法)

3

Greedy Algorithms

4

Textbook Chapter 16 – Greedy Algorithms

Textbook Chapter 16.2 – Elements of the greedy strategy

Slides modified from Prof. Hsu-Chun Hsiao

What is Greedy Algorithms?

• always makes the choice that looks best at the moment

• makes a locally optimal choice in the hope that this choice will lead to
a globally optimal solution

• not always yield optimal solution; may end up at local optimal

5

Greedy: move towards max gradient and hope it is global maximum

local maximal

global maximal

local maximal

Slides modified from Prof. Hsu-Chun Hsiao

Algorithm Design Paradigms

• Dynamic Programming

• has optimal substructure

• make an informed choice after
getting optimal solutions to
subproblems

• dependent or overlapping
subproblems

6

• Greedy Algorithms

• has optimal substructure

• make a greedy choice before
solving the subproblem

• no overlapping subproblems

✓Each round selects only one
subproblem

✓The subproblem size decreases

Optimal

Solution

Possible

Case 1

Possible

Case 2

Possible

Case k

max

/min

Subproblem

Solution

Subproblem

Solution

Subproblem

Solution

+

+

+

= Optimal

Solution

Greedy

Choice

Subproblem

Solution
+=

Slides modified from Prof. Hsu-Chun Hsiao

Greedy Procedure

1. Cast the optimization problem as one in which we make a choice
and remain one subproblem to solve

2. Demonstrate the optimal substructure

✓ Combining an optimal solution to the subproblem via greedy can arrive an
optimal solution to the original problem

3. Prove that there is always an optimal solution to the original problem
that makes the greedy choice

7Slides modified from Prof. Hsu-Chun Hsiao

Greedy Algorithms

To yield an optimal solution, the problem should exhibit

1. Optimal Substructure : an optimal solution to the problem contains
within its optimal solutions to subproblems

2. Greedy-Choice Property : making locally optimal (greedy) choices
leads to a globally optimal solution

8Slides modified from Prof. Hsu-Chun Hsiao

Proof of Correctness Skills

• Optimal Substructure: an optimal solution to the problem contains
within its optimal solutions to subproblems

• Greedy-Choice Property: making locally optimal (greedy) choices
leads to a globally optimal solution

• Show that it exists an optimal solution that “contains” the greedy choice using
exchange argument

• For any optimal solution OPT, the greedy choice 𝑔 has two cases

• 𝑔 is in OPT: done

• 𝑔 not in OPT: modify OPT into OPT’ s.t. OPT’ contains 𝑔 and is at least as good as OPT

9

OPT OPT’

𝑔

✓ If OPT’ is better than OPT, the property is proved by contradiction

✓ If OPT’ is as good as OPT, then we showed that there exists an

optimal solution containing 𝑔 by construction

Slides modified from Prof. Hsu-Chun Hsiao

Greedy #1: Activity-Selection

/ Interval Scheduling

10

Textbook Chapter 16.1 – An activity-selection problem

Chapter 4.1 in Algorithm Design by Kleinberg & Tardos

Slides modified from Prof. Hsu-Chun Hsiao

Activity-Selection/ Interval Scheduling

• Input: 𝑛 activities with start times 𝑠𝑖 and finish times 𝑓𝑖 (the activities are
sorted in monotonically increasing order of finish time 𝑓1 ≤ 𝑓2 ≤ ⋯ ≤ 𝑓𝑛)

• Output: the maximum number of compatible activities

• Without loss of generality: 𝑠1 < 𝑠2 < ⋯ < 𝑠𝑛 and 𝑓1 < 𝑓2 < ⋯ < 𝑓𝑛
• 大的包小的則不考慮大的→用小的取代大的一定不會變差

11

time

1

2

3

4

5

6

activity index

21 3 4 5 6 7 8 9

Slides modified from Prof. Hsu-Chun Hsiao

Weighted Interval Scheduling

• Subproblems
• WIS(i): weighted interval scheduling for the first 𝑖 jobs

• Goal: WIS(n)

• Dynamic programming algorithm

12

i 0 1 2 3 4 5 … n

M[i]

Set 𝑣𝑖 = 1 for all 𝑖 to formulate it into the activity-selection problem

Weighted Interval Scheduling Problem

Input: 𝑛 jobs with 𝑠𝑖 , 𝑓𝑖 , 𝑣𝑖 , 𝑝(𝑗) = largest index 𝑖 < 𝑗 s.t. jobs 𝑖 and 𝑗 are compatible

Output: the maximum total value obtainable from compatible

Slides modified from Prof. Hsu-Chun Hsiao

Activity-Selection Problem

• Dynamic programming

• Optimal substructure is already proved

• Greedy algorithm

13

select the 𝑖-th activity

Why does the 𝑖-th
activity must appear

in an OPT?

Activity-Selection Problem

Input: 𝑛 activities with 𝑠𝑖 , 𝑓𝑖 , 𝑝(𝑗) = largest index 𝑖 < 𝑗 s.t. 𝑖 and 𝑗 are compatible

Output: the maximum number of activities

Slides modified from Prof. Hsu-Chun Hsiao

Greedy-Choice Property

• Goal:

• Proof

• Assume there is an OPT solution for the first 𝑖 − 1 activities (𝑀𝑖−1)

• 𝐴𝑗 is the last activity in the OPT solution →

• Replacing 𝐴𝑗 with 𝐴𝑖 does not make the OPT worse

14

time

1

2

:

i

i - 1

:

activity index

21 3 4 5 6 7 8 9

Slides modified from Prof. Hsu-Chun Hsiao

Pseudo Code

15

Act-Select(n, s, f, v, p)

M[0] = 0

for i = 1 to n

M[i] = 1 + M[p[i]]

return M[n]

Find-Solution(M, n)

if n = 0

return {}

return {n} ∪ Find-Solution(p[n])

Select the last compatible one (←) = Select the first compatible one (→)

Activity-Selection Problem

Input: 𝑛 activities with 𝑠𝑖 , 𝑓𝑖 , 𝑝(𝑗) = largest index 𝑖 < 𝑗 s.t. 𝑖 and 𝑗 are compatible

Output: the maximum number of activities

Slides modified from Prof. Hsu-Chun Hsiao

Greedy #2: Coin Changing

16

Textbook Exercise 16.1

Slides modified from Prof. Hsu-Chun Hsiao

Coin Changing Problem

• Input: 𝑛 dollars and unlimited coins with values 𝑣𝑖 (1, 5, 10, 50)

• Output: the minimum number of coins with the total value 𝑛

• Cashier’s algorithm: at each iteration, add the coin with the largest
value no more than the current total

17

Does this algorithm return the OPT?

Slides modified from Prof. Hsu-Chun Hsiao

Step 1: Cast Optimization Problem

• Subproblems
• C(i): minimal number of coins for the total value 𝑖

• Goal: C(n)

18

Coin Changing Problem

Input: 𝑛 dollars and unlimited coins with values 𝑣𝑖 (1, 5, 10, 50)

Output: the minimum number of coins with the total value 𝑛

Slides modified from Prof. Hsu-Chun Hsiao

Step 2: Prove Optimal Substructure

• Suppose OPT is an optimal solution to C(i), there are 4 cases:

• Case 1: coin 1 in OPT
• OPT\coin1 is an optimal solution of C(i – v1)

• Case 2: coin 2 in OPT
• OPT\coin2 is an optimal solution of C(i – v2)

• Case 3: coin 3 in OPT
• OPT\coin3 is an optimal solution of C(i – v3)

• Case 4: coin 4 in OPT
• OPT\coin4 is an optimal solution of C(i – v4)

19

Coin Changing Problem

Input: 𝑛 dollars and unlimited coins with values 𝑣𝑖 (1, 5, 10, 50)

Output: the minimum number of coins with the total value 𝑛

Slides modified from Prof. Hsu-Chun Hsiao

Step 3: Prove Greedy-Choice Property

• Greedy choice: select the coin with the largest value no more than the
current total

• Proof via contradiction (use the case 10 ≤ 𝑖 < 50 for demo)

• Assume that there is no OPT including this greedy choice (choose 10)

→ all OPT use 1, 5, 50 to pay 𝑖
• 50 cannot be used

• #coins with value 5 < 2 → otherwise we can use a 10 to have a better output

• #coins with value 1 < 5 → otherwise we can use a 5 to have a better output

• We cannot pay 𝑖 with the constraints (at most 5 + 4 = 9)

20

Coin Changing Problem

Input: 𝑛 dollars and unlimited coins with values 𝑣𝑖 (1, 5, 10, 50)

Output: the minimum number of coins with the total value 𝑛

Slides modified from Prof. Hsu-Chun Hsiao

Greedy #3: Huffman Codes

for Prefix Code Problem

21

Textbook Chapter 16.3 – Huffman codes

Chapter 4.8 in Algorithm Design by Kleinberg & Tardos

Huffman Coding

• David A. Huffman published Huffman coding in 1952

• Lossless data compression

• Optimal prefix code

• Efficient to generate codewords

• Efficient to encode and decode

22Slides modified from Prof. Hsu-Chun Hsiao

Encoding & Decoding

• Code (編碼) is a system of rules to convert information—such as a
letter, word, sound, image, or gesture—into another, sometimes
shortened or secret, form or representation for communication through
a channel or storage in a medium.

23

input

message

decoded

message
Encoder Decoder

encoded

message

Slides modified from Prof. Hsu-Chun Hsiao

Encoding & Decoding

• Goal

• Enable communication and storage

• Detect or correct errors introduced during transmission

• Compress data: lossy or lossless

24

Snoopy SnoopyEncoder Decoder
536E6F6F7079

Encoder Decoder

Slides modified from Prof. Hsu-Chun Hsiao

Lossy Data Compression:
Autoencoder

25

Input Sentence

I love you.

Reconstructed Sentence

You love me.

Lossless Data Compression

• Goal: encode each symbol using a unique binary code (w/o ambiguity)

• How to represent symbols?

• How to ensure decode(encode(x))=x?

• How to minimize the number of bits?

26Slides modified from Prof. Hsu-Chun Hsiao

Lossless Data Compression

• Goal: encode each symbol using a unique binary code (w/o ambiguity)

• How to represent symbols?

• How to ensure decode(encode(x))=x?

• How to minimize the number of bits?

27

A G T C

0 1

0 1 0 1

10101101011010100101010010

T T C G G T T T G G G A T

find a binary tree

Slides modified from Prof. Hsu-Chun Hsiao

Code

• Fixed-length: use the same
number of bits for encoding every
symbol

• Ex. ASCII, Big5, UTF

• The length of this sequence is

28

• Variable-length: shorter
codewords for more frequent
symbols

• The length of this sequence is

Symbol A B C D E F

Frequency (K) 45 13 12 16 9 5

Fixed-length 000 001 010 011 100 101

Variable-length 0 101 100 111 1101 1100

E F

0 1

0 1

0 1

A B

0 1

C D

0 1

0

0 1

0

1

0 1

A

1
C D

1

0

E

B

F

0

Slides modified from Prof. Hsu-Chun Hsiao

Lossless Data Compression

• Goal: encode each symbol using a unique binary code (w/o ambiguity)

• How to represent symbols?

• How to ensure decode(encode(x))=x?

• How to minimize the number of bits?

29

use codes that are uniquely decodable

Slides modified from Prof. Hsu-Chun Hsiao

Prefix Code

• Definition: a variable-length code where no codeword is a prefix of some other
codeword

• Ambiguity: decode(1011100) can be ‘BF’ or ‘CDAA’

30

prefix codes are uniquely decodable

Symbol A B C D E F

Frequency (K) 45 13 12 16 9 5

Variable-length
Prefix code 0 101 100 111 1101 1100

Not prefix code 0 101 10 111 1101 1100

Slides modified from Prof. Hsu-Chun Hsiao

Lossless Data Compression

• Goal: encode each symbol using a unique binary code (w/o ambiguity)

• How to represent symbols?

• How to ensure decode(encode(x))=x?

• How to minimize the number of bits?

31

more frequent symbols should use shorter codewords

Letter Frequency Distribution

32

shorter codewords longer codewords

Total Length of Codes

• The weighted depth of a leaf = weight of a leaf (freq) × depth of a leaf

• Total length of codes = Total weighted depth of leaves

• Cost of the tree 𝑇

• Average bits per character

33

0 1

0

1

0 1

A:45

1

C:12 D:16

1

0

E:9

B:13

F:5

0

100

55

25 30

14

How to find the optimal prefix

code to minimize the cost?

Prefix Code Problem

• Input: 𝑛 positive integers 𝑤1, 𝑤2, … , 𝑤𝑛 indicating word frequency

• Output: a binary tree of 𝑛 leaves, whose weights form 𝑤1, 𝑤2, … , 𝑤𝑛 s.t.
the cost of the tree is minimized

34

Step 1: Cast Optimization Problem

• Subproblem: merge two characters into a new one whose weight is
their sum

• PC(i): prefix code problem for 𝑖 leaves

• Goal: PC(n)

• Issues

• It is not the subproblem of the original problem

• The cost of two merged characters should be considered

35

Prefix Code Problem

Input: 𝑛 positive integers 𝑤1, 𝑤2, … , 𝑤𝑛 indicating word frequency

Output: a binary tree of 𝑛 leaves with minimal cost

PC(n)→ PC(n - 1)

Example

36

0 1

0

1

0 1

A:45

1

C:12 D:16

1

0

E:9

B:13

F:5

0

100

55

25 30

14

0 1

1

0 1

A:45

C:12 D:16

1

0

B:13

0

100

55

25 30

EF:14

Step 2: Prove Optimal Substructure

• Suppose 𝑇’ is a solution to
PC(i, {w1…i-1, z})

37

• 𝑇 is a solution to PC(i+1, {w1…i-1,
x, y}) reduced from 𝑇′

z

x y

Prefix Code Problem

Input: 𝑛 positive integers 𝑤1, 𝑤2, … , 𝑤𝑛 indicating word frequency

Output: a binary tree of 𝑛 leaves with minimal cost

Step 2: Prove Optimal Substructure

• 𝑇’

38

• 𝑇

z

x y

Step 2: Prove Optimal Substructure

• Optimal substructure: T’ is OPT if and only if T is OPT

39

The difference is

TT’

Greedy Algorithm Design

• Greedy choice: merge repeatedly until one tree left

• Select two trees 𝑥, 𝑦 with minimal frequency roots freq 𝑥 and freq 𝑦

• Merge into a single tree by adding root 𝑧 with the frequency freq 𝑥 + freq 𝑦

40

Prefix Code Problem

Input: 𝑛 positive integers 𝑤1, 𝑤2, … , 𝑤𝑛 indicating word frequency

Output: a binary tree of 𝑛 leaves with minimal cost

Example

41

4516 14

5 9

12 134516 5 9 12 13

Initial set (store in a priority queue)

Example

42

4516 14

5 9

25

12 13

4516 14

5 9

12 13

Example

43

45

16

30

14

5 9

25

12 13

4516 14

5 9

25

12 13

Example

44

55 45

16

30

14

5 9

25

12 13

45

16

30

14

5 9

25

12 13

Example

45

100

55 45

16

30

14

5 9

25

12 13

55 45

16

30

14

5 9

25

12 13

Step 3: Prove Greedy-Choice Property

• Greedy choice: merge two nodes with min weights repeatedly

• Proof via contradiction

• Assume that there is no OPT including this greedy choice

• 𝑥 and 𝑦 are two symbols with lowest frequencies

• 𝑎 and 𝑏 are siblings with largest depths

• WLOG, assume freq 𝑎 ≤ freq 𝑏 and freq 𝑥 ≤ freq 𝑦

→ freq 𝑥 ≤ freq 𝑎 and freq 𝑦 ≤ freq 𝑏

• Exchanging 𝑎 with 𝑥 and then 𝑏 with 𝑦 can make the tree equally or better

46

x

y

a b

OPT: T

Prefix Code Problem

Input: 𝑛 positive integers 𝑤1, 𝑤2, … , 𝑤𝑛 indicating word frequency

Output: a binary tree of 𝑛 leaves with minimal cost

Step 3: Prove Greedy-Choice Property

47

x

y

a b

OPT: T

a

y

x b

T’

▪ Because T is OPT, T’ must be another optimal solution.

Step 3: Prove Greedy-Choice Property

48

x

y

a b

OPT: T

a

y

x b

T’

a

b

x y

T’’

▪ Because T’ is OPT, T’’ must be another optimal solution.

Practice: prove a binary tree that is not full cannot be optimal

Correctness and Optimality

• Theorem: Huffman coding generates an optimal prefix code

• Proof

• Use induction to prove: Huffman codes are optimal for 𝑛 symbols

• 𝑛 = 2, trivial

• For a set 𝑆 with 𝑛 + 1 symbols,

1. Based on the greedy choice property, two symbols with
minimum frequencies are siblings in T

2. Construct T’ by replacing these two symbols 𝑥 and 𝑦 with 𝑧 s.t.
𝑆′ = (𝑆\{𝑥, 𝑦}) ∪ 𝑧 and freq 𝑧 = freq 𝑥 + freq 𝑦

3. Assume T’ is the optimal tree for 𝑛 symbols by inductive
hypothesis

4. Based on the optimal substructure property, we know that when
T’ is optimal, T is optimal too (case 𝑛 + 1 holds)

49

This induction proof framework can be applied to prove its optimality using

the optimal substructure and the greedy choice property.

Optimal

Solution

Possible

Case 1

Possible

Case 2

Possible

Case k

min

Subproblem

Solution

Subproblem

Solution

Subproblem

Solution

+

+

+

=

𝑺 with 𝒏 + 𝟏 symbols

𝑺′ with 𝒏 symbolsmerge 𝒙, 𝒚

Pseudo Code

50

Huffman(S)

n = |S|

Q = Build-Priority-Queue(S)

for i = 1 to n – 1

allocate a new node z

z.left = x = Extract-Min(Q)

z.right = y = Extract-Min(Q)

freq(z) = freq(x) + freq(y)

Insert(Q, z)

Delete(Q, x)

Delete(Q, y)

return Extract-Min(Q) // return the prefix tree

Prefix Code Problem

Input: 𝑛 positive integers 𝑤1, 𝑤2, … , 𝑤𝑛 indicating word frequency

Output: a binary tree of 𝑛 leaves with minimal cost

Drawbacks of Huffman Codes

• Huffman’s algorithm is optimal for a symbol-by-symbol coding with a
known input probability distribution

• Huffman’s algorithm is sub-optimal when

• allowing multiple-symbol encoding is allowed

• unknown probability distribution

• symbols are not independent

51

Greedy #4:

Fractional Knapsack Problem

52

Textbook Exercise 16.2-2

Knapsack Problem

• Input: 𝑛 items where 𝑖-th item has value 𝑣𝑖 and weighs 𝑤𝑖 (𝑣𝑖 and 𝑤𝑖
are positive integers)

• Output: the maximum value for the knapsack with capacity of 𝑊

• Variants of knapsack problem
• 0-1 Knapsack Problem: 每項物品只能拿一個

• Unbounded Knapsack Problem: 每項物品可以拿多個

• Multidimensional Knapsack Problem: 背包空間有限

• Multiple-Choice Knapsack Problem: 每一類物品最多拿一個

• Fractional Knapsack Problem: 物品可以只拿部分

53

Knapsack Problem

• Input: 𝑛 items where 𝑖-th item has value 𝑣𝑖 and weighs 𝑤𝑖 (𝑣𝑖 and 𝑤𝑖
are positive integers)

• Output: the maximum value for the knapsack with capacity of 𝑊

• Variants of knapsack problem
• 0-1 Knapsack Problem: 每項物品只能拿一個

• Unbounded Knapsack Problem: 每項物品可以拿多個

• Multidimensional Knapsack Problem: 背包空間有限

• Multiple-Choice Knapsack Problem: 每一類物品最多拿一個

• Fractional Knapsack Problem: 物品可以只拿部分

54

Fractional Knapsack Problem

• Input: 𝑛 items where 𝑖-th item has value 𝑣𝑖 and weighs 𝑤𝑖 (𝑣𝑖 and 𝑤𝑖
are positive integers)

• Output: the maximum value for the knapsack with capacity of 𝑊,
where we can take any fraction of items

• Greedy algorithm: at each iteration, choose the item with the highest
𝑣𝑖

𝑤𝑖

and continue when 𝑊 −𝑤𝑖 > 0

55

Step 1: Cast Optimization Problem

• Subproblems
• F-KP(i, w): fractional knapsack problem within 𝑤 capacity for the first 𝑖 items

• Goal: F-KP(n, W)

56

Fractional Knapsack Problem

Input: 𝑛 items where 𝑖-th item has value 𝑣𝑖 and weighs 𝑤𝑖

Output: the max value within 𝑊 capacity, where we can take any fraction of items

Step 2: Prove Optimal Substructure

• Suppose OPT is an optimal solution to F-KP(i, w), there are 2 cases:

• Case 1: full/partial item 𝑖 in OPT
• Remove 𝑤′ of item 𝑖 from OPT is an optimal solution of F-KP(i - 1, w – w’)

• Case 2: item 𝑖 not in OPT
• OPT is an optimal solution of F-KP(i - 1, w)

57

Fractional Knapsack Problem

Input: 𝑛 items where 𝑖-th item has value 𝑣𝑖 and weighs 𝑤𝑖

Output: the max value within 𝑊 capacity, where we can take any fraction of items

Step 3: Prove Greedy-Choice Property

• Greedy choice: select the item with the highest
𝑣𝑖

𝑤𝑖

• Proof via contradiction (𝑗 = argmax
𝑖

𝑣𝑖

𝑤𝑖
)

• Assume that there is no OPT including this greedy choice

• If 𝑊 ≤ 𝑤𝑗, we can replace all items in OPT with item 𝑗

• If 𝑊 > 𝑤𝑗, we can replace any item weighting 𝑤𝑗 in OPT with item 𝑗

• The total value must be equal or higher, because item 𝑗 has the highest
𝑣𝑖

𝑤𝑖

58

Do other knapsack problems have this property?

Fractional Knapsack Problem

Input: 𝑛 items where 𝑖-th item has value 𝑣𝑖 and weighs 𝑤𝑖

Output: the max value within 𝑊 capacity, where we can take any fraction of items

To Be Continued…

59

Question?
Important announcement will be sent to
@ntu.edu.tw mailbox & post to the course website

Course Website: http://ada.miulab.tw

Email: ada-ta@csie.ntu.edu.tw

