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Algorithm Design Strategy

* Do not focus on “specific algorithms”
* But "some strategies” to “design” algorithms

» First Skill: Divide-and-Conquer (B Z#/738
» Second Skill: Dynamic Programming (Ei 2857 2l))
» Third Skill: Greedy (EZ/EE %)




Greedy Algorithms

Textbook Chapter 16 — Greedy Algorithms
Textbook Chapter 16.2 — Elements of the greedy strategy
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What I1s Greedy Algorithms?

 always makes the choice that looks best at the moment

* makes a locally optimal choice in the hope that this choice will lead to
a globally optimal solution

 not always yield optimal solution; may end up at local optimal

global maximal

. local maximal
Jﬁ local maximal
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Algorithm Design Paradigms

« Dynamic Programming » Greedy Algorithms
* has optimal substructure * has optimal substructure
 make an informed choice after  make a greedy choice before
getting optimal solutions to solving the subproblem
subproblems * no overlapping subproblems
« dependent or overlapping v'Each round selects only one
subproblems — . subproblem
i gj; 1e \ ) v’ The subproblem size decreases
Possible ( )
— Max | ety ¥ L ) Optimal Greedy
Solution awinlly Solution [l Choice [N

i Possible
Case k +
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Greedy Procedure

1. Cast the optimization problem as one in which we make a choice
and remain one subproblem to solve
2. Demonstrate the optimal substructure

v" Combining an optimal solution to the subproblem via greedy can arrive an
optimal solution to the original problem

3. Prove that there is always an optimal solution to the original problem
that makes the greedy choice
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Greedy Algorithms

To yield an optimal solution, the problem should exhibit

1. Optimal Substructure : an optimal solution to the problem contains
within its optimal solutions to subproblems

2. Greedy-Choice Property : making locally optimal (greedy) choices
leads to a globally optimal solution
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Proof of Correctness Skills

« Optimal Substructure: an optimal solution to the problem contains
within its optimal solutions to subproblems

« Greedy-Choice Property: making locally optimal (greedy) choices
leads to a globally optimal solution

* Show that it exists an optimal solution that “contains” the greedy choice using
exchange argument

* For any optimal solution OPT, the greedy choice g has two cases
« gisin OPT: done
« g notin OPT: modify OPT into OPT’ s.t. OPT’ contains g and is at least as good as OPT

v If OPT is better than OPT, the property is proved by contradiction
- OPT’ v If OPT is as good as OPT, then we showed that there exists an
@ optimal solution containing g by construction
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Greedy #1:. Activity-Selection
[ Interval Scheduling

Textbook Chapter 16.1 — An activity-selection problem
Chapter 4.1 in Algorithm Design by Kleinberg & Tardos
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Activity-Selection/ Interval Scheduling

* Input: n activities with start times s; and finish times f; (the activities are
sorted in monotonically increasing order of finishtime f; < f, < -+ < f,))

« Output: the maximum number of compatible activities

* Without loss of generality: s; <s, <--<spand f; < f, <--- < fy,
- RWB/MWRIAZEARR > }EH/J\E’]HWJgj(E/] o K e

activity index

O 01 B WM
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Weighted Interval Scheduling

Weighted Interval Scheduling Problem

Input: n jobs with (s;, f;, v;), p(j) = largest index i < j s.t. jobs i and j are compatible
Output: the maximum total value obtainable from compatible

« Subproblems
* WIS (1):weighted interval scheduling for the first i jobs
« Goal: WIS (n)

* Dynamic programming algorithm

v [0 if § = 0
© | max(v; + My, M;—1) otherwise
ENEEENENEN N o — 60
MIi] >
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Activity-Selection Problem

Activity-Selection Problem

Input: n activities with (s;, f;), p(j) = largest index i < j s.t. i and j are compatible
Output: the maximum number of activities

* Dynamic programming
A0 if i =0
" | max(14 My, M;—1) otherwise

 Optimal substructure is already proved

- ~o

° Greedy algorithm W.hy does the i-th
activity must appear )
R in an OPT?
L — 0 iti =20 e
| 1+ My, otherwise e

select the i-th activity
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Greedy-Choice Property

e Goal: 1 + My = M;—

* Proof
« Assume there is an OPT solution for the first i — 1 activities (M;_,)
* 4;is the last activity in the OPT solution > M, _; =1+ M,
* Replacing A; with 4; does not make the OPT worse
1+ Mp(,,;) > 1+ Mp(j) = M;_4

[ activity index | | | )

1 [

i-1 I |

— time
9
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Pseudo Code

Activity-Selection Problem
Input: n activities with (s;, f;), p(j) = largest index i < j s.t. i and j are compatible
Output: the maximum number of activities

Act-Select(n, s, £, v, p)
M[O] = O
for i = 1 to n T(n) :@(n)
M[1] = 1 + M[p[1]]
return M[n]

Find-Solution (M, n)
if n =0

return {} T(?’L) — @(?’L)

return {n} U Find-Solution(pl[n])
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Greedy #2: Coin Changing

Textbook Exercise 16.1




Coin Changing Problem

e Input: n dollars and unlimited coins with values {v;} (1, 5, 10, 50)
« Output: the minimum number of coins with the total value n

« Cashier’s algorithm: at each iteration, add the coin with the largest
value no more than the current total
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Step 1: Cast Optimization Problem

Coin Changing Problem
Input: n dollars and unlimited coins with values {v;} (1, 5, 10, 50)
Output: the minimum number of coins with the total value n

« Subproblems
e C (1) : minimal number of coins for the total value i
e Goal: C (n)
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Step 2: Prove Optimal Substructure

Coin Changing Problem
Input: n dollars and unlimited coins with values {v;} (1, 5, 10, 50)
Output: the minimum number of coins with the total value n

« Suppose OPT is an optimal solutionto C (1), there are 4 cases:

« Case 1: coin 1in OPT
* OPT\coinlis an optimal solutionof C (1 - v;)

« Case 2: coin 2 in OPT
« OPT\coin2 is an optimal solution of C (i - v,) C,; = minj(l + Ci—v-)
« Case 3: coin 3in OPT ’
* OPT\coin3 is an optimal solution of C (i - wv3)

« Case 4: coin 4 in OPT
* OPT\coin4 is an optimal solutionof C (1 - v,)
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Step 3: Prove Greedy-Choice Property

Coin Changing Problem
Input: n dollars and unlimited coins with values {v;} (1, 5, 10, 50)
Output: the minimum number of coins with the total value n

» Greedy choice: select the coin with the largest value no more than the
current total

 Proof via contradiction (use the case 10 < i < 50 for demo)

« Assume that there is no OPT including this greedy choice (choose 10)

- all OPT use 1, 5, 50 to pay i
« 50 cannot be used
* #coins with value 5 < 2 - otherwise we can use a 10 to have a better output
 #coins with value 1 <5 - otherwise we can use a 5 to have a better output

« We cannot pay i with the constraints (at most 5 + 4 = 9)
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Greedy #3: Huffman Codes

for Prefix Code Problem

Textbook Chapter 16.3 — Huffman codes
Chapter 4.8 in Algorithm Design by Kleinberg & Tardos




Huffman Coding

« David A. Huffman published Huffman coding in 1952

» Lossless data compression

« Optimal prefix code

- Efficient to generate codewords
- Efficient to encode and decode
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Encoding & Decoding

» Code (#R5) is a system of rules to convert information—such as a
letter, word, sound, image, or gesture—into another, sometimes
shortened or secret, form or representation for communication through
a channel or storage in a medium.

et ﬂ messa ._4 messag
4 Decoder
message message message
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Encoding & Decoding

« Goal
« Enable communication and storage
» Detect or correct errors introduced during transmission
« Compress data: lossy or lossless

536E6F6F7079

Snoopy Decoder

Decoder
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Lossy Data Compression:
Autoencoder

Input Sentence

NN e
et A\
07 RN

Input Image

X
S

AR
RO e ——%
....... . (LN ‘\"-44*_'1 "\-.ﬂ
— i S N ;
Sl
o 7 Ve
28 28 A 1"%‘:@ "
"l: : :fF. "_.‘,':*\l:- j
j’:.aff’ﬁﬁ f Encoder
{}f?" Hidden layer 2 ;
;.: f 300 neurons
/ Encoder
; Hidden layer 1 :
@, 500 neurons
Input layer :

T84 neurons

SO /AN

"\ N
N7 Noe)i
AN AL
LRI @ PO
N o O
LA\ ol

N Lt
N ORST
T~ A W

2 dimension
Deco

300 neurons

Reconstructed Sentence
You love me.

Reconstructed Image

L %o
X W

;I':'l.‘:'i o
Wt SN 28 28
A ZASOTAN
der L2 2 N

Hidden layer 1 : ‘T\ﬁ
N
Wit

Decoder \ 9
Hidden layer 2 1 ™

500 neurons ()

Reconstruct layer :
T84 neurons




Lossless Data Compression

» Goal: encode each symbol using a unique binary code (w/o ambiguity)
« How to represent symbols?
« How to ensure decode(encode(x))=x?
* How to minimize the number of bits?
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Lossless Data Compression

» Goal: encode each symbol using a unique binary code (w/o ambiguity)
« How to represent symbols?
« How to ensure decode(encode(x))=x?
« How to minimize the number of bits?

___________________________________

10101101011010100101010010
TTCGGTTTGGGAT
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( :O d e Frequency (K)
Fixed-length

* Fixed-length: use the same
number of bits for encoding every
symbol

« Ex. ASCII, Big5, UTF

* The length of this sequence Is
(45 4+ 134+ 12+ 16 +9+5) -3 = 300

Symbol AL B C D E =
45 13 12 16 9 5
000 001 010 011 100 101
Variable-length 0 101 100 111 1101 1100

 Variable-length: shorter
codewords for more frequent

symbols

* The length of this sequence Is
45-14 (134+12+16) -3+ (9+5) -4 = 224
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Lossless Data Compression

« Goal: encode each symbol using a unique binary code (w/o ambiguity)
« How to represent symbols?
« How to ensure decode(encode(x))=x?
* How to minimize the number of bits?

_______________________________________________________________________________________________
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Prefix Code

 Definition: a variable-length code where no codeword is a prefix of some other

codeword
Symbol A B C D = =
Frequency (K) 45 13 12 16 9 5
Prefix code 0 101 100 111 1101 1100

Variable-length )
Not prefix code 0 101 10 111 1101 1100

« Ambiguity: decode(1011100) can be ‘BF’ or ‘CDAA
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Lossless Data Compression

« Goal: encode each symbol using a unique binary code (w/o ambiguity)
« How to represent symbols?
« How to ensure decode(encode(x))=x?
« How to minimize the number of bits?




Letter Frequency Distribution

shorter codewords
12

Unigram Distribution longer codewords

10

8

Frequency (%)
o)
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Total Length of Codes

* The weighted depth of a leaf = weight of a leaf (freq) x depth of a leaf
- Total length of codes = Total weighted depth of leaves
 Costofthetree T

B(T) = 3 freae) - dr(0)

« Average bits per character



Prefix Code Problem

* Input: n positive integers wy, w,, ..., w,, Indicating word frequency

« Output: a binary tree of n leaves, whose weights form wy,w,, ..., w,, S.L.
the cost of the tree Is minimized

T" = arg mjin B(T) = arg mqin Zegfreq(c) - dp(c)




Step 1: Cast Optimization Problem

Prefix Code Problem

Input: n positive integers wy, wo, ..., w,, indicating word frequency

Output: a binary tree of n leaves with minimal cost

« Subproblem: merge two characters into a new one whose weight is

thelr sum

_____________________________________________

e PC (i) : prefix code problem for i leaves | PC(n) 2 PC(n - 1)
 Goal: PC (n)
* [ssues

* |t is not the subproblem of the original problem
* The cost of two merged characters should be considered

_____________________________________________







Step 2: Prove Optimal Substructure

Prefix Code Problem
Input: n positive integers wy, wo, ..., w,, indicating word frequency
Output: a binary tree of n leaves with minimal cost

« Suppose T’ is a solution to * Tisasolutionto PC (i+1, {w, ._,,
PC(i, {w, ., 2}) x, y}) reduced from T’

freq(z) = freq(x) + freq(y)




Step 2: Prove Optimal Substructure

OT, T

B(T) = B(T") — freq(z)dr:(z) + freq(x)dr(x) + freq(y)dr(y)
= B(T") — (freq(x) +freq(y))dr (2) +freq(z) (1 4+ dp (2)) + freq(y) (1 +dp (2))
= B(T") + freq(z) + freq(y)




Step 2: Prove Optimal Substructure

* Optimal substructure: T is OPT ifand only if T is OPT

The difference is freq(z) + freq(y)

™

freq(z) + freq(y)

freq(z) freq(y)




Greedy Algorithm Design

Prefix Code Problem
Input: n positive integers wy, wo, ..., w,, indicating word frequency
Output: a binary tree of n leaves with minimal cost

* Greedy choice: merge repeatedly until one tree left
« Select two trees x, y with minimal frequency roots freq(x) and freq(y)
« Merge into a single tree by adding root z with the frequency freq(x) + freq(y)




Example

00206

D emeee
Initial set (store in a priority queue)
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Step 3: Prove Greedy-Choice Property

Prefix Code Problem
Input: n positive integers wy, wo, ..., w,, indicating word frequency
Output: a binary tree of n leaves with minimal cost

« Greedy choice: merge two nodes with min weights repeatedly

* Proof via contradiction OPT:T

« Assume that there is no OPT including this greedy choice
« x and y are two symbols with lowest frequencies
* a and b are siblings with largest depths
 WLOG, assume freq(a) < freq(b) and freq(x) < freq(y)

- freq(x) < freq(a) and freq(y) < freq(b)

« Exchanging a with x and then b with y can make the tree equally or better

a b




Step 3: Prove Greedy-Choice Property

OPT: T T

a

B(T)—B(T') = > _,cqfreq(s)dr(s) — > .cqfreq(s)dr:(s)
= freq(x)dr(z) + freq(a)dr(a) — freq(z)dr (z) — freq(a)dr (a)
= freq(z)dr(z) + freq(a)dr(a) — freq(z)dr(a) — freq(a)dr(z)
= (freq(a) — freq(z))(dr(a) — dr(x)) >0 . freq(z) < freq(a)
= Because T is OPT, T’ must be another optimal solution.




Step 3: Prove Greedy-Choice Property

OPT: T

B(T") — B(T")= > _scgfreq(s)dr: (s) — > cqfreq(s)dr(s)
= freq(y)dr (y) + freq(b)dr (b) — freq(y)dr(y) — freq(b)dr
= freq(y)dr (y) + freq(b)dr (b) — freq(y)dr (b) — freq(b)dr (y)
— (freq(b) — freq(y))(dr (b) — dr(y)) > 0 freq(y) < freq(b)
= Because T’ is OPT, T” must be another optimal solution.

D)




Correctness and Optimality

 Theorem: Huffman coding generates an optimal prefix code

* Proof ™ >
™ Possible
 Use induction to prove: Huffman codes are optimal for n symbols 0 )
* n =2, trivial .f )
+ For a set S with n + 1 symbols, - min | iy | .
1. Based on the greedy choice property, two symbols with s with n + 1 symbols
minimum frequencies are siblings in T ——
2. Construct T' by replacing these two symbols x and y with z s.t. " { }
S" = (S\{x,y}) U {z} and freq(z) = freq(x) + freq(y) merge x,y S’ with n symbols
3. Assume T’ is the optimal tree for n symbols by inductive
hypothesis
4. Based on the optimal substructure property, we know that when

T is optimal, T is optimal too (case n + 1 holds)

. This induction proof framework can be applied to prove its optimality using

the optimal substructure and the greedy choice property.




Pseudo Code

Prefix Code Problem
Input: n positive integers wy, wo, ..., w,, indicating word frequency
Output: a binary tree of n leaves with minimal cost

Huffman (S)
n = |S]
Q = Build-Priority-Queue (S) O(nlogn)
for 1 =1 ton - 1

allocate a new node z

z.left = x = Extract-Min (Q) O(1) T(n) = O(nlogn)
z.right = y = Extract-Min (Q) ()()

freq(z) = freq(x) + freq(y)

Insert (Q, z) O(logn)

Delete (Q, x) O(logn

Delete (Q, V) O(logn)
return Extract-Min(Q) // return the prefix tree




Drawbacks of Huffman Codes

« Huffman’s algorithm is optimal for a symbol-by-symbol coding with a
Known input probability distribution

« Huffman’s algorithm is sub-optimal when
« allowing multiple-symbol encoding is allowed
« unknown probability distribution

« symbols are not independent




Greedy #4. (@)

Fractional Knapsack Problem

Textbook Exercise 16.2-2




Knapsack Problem (@)

* Input: n items where i-th item has value v; and weighs w; (v; and w;
are positive integers)

 Output: the maximum value for the knapsack with capacity of W

 Variants of knapsack problem
« 0-1 Knapsack Problem: I E¥)mREEE—1A
 Unbounded Knapsack Problem: B8I8¥) ol U Z=Z%1E
« Multidimensional Knapsack Problem: E &2 fEE R
O = £ &

« Multiple-Choice Knapsack Problem: 88— ¥ m&%E=—{E
« Fractional Knapsack Problem: ¥ ol AR ZZ[ 75



Knapsack Problem (@)

* Input: n items where i-th item has value v; and weighs w; (v; and w;
are positive integers)

 Output: the maximum value for the knapsack with capacity of W

 Variants of knapsack problem
« 0-1 Knapsack Problem: I E¥)mREEE—1A
 Unbounded Knapsack Problem: B8I8¥) ol U Z=Z%1E
« Multidimensional Knapsack Problem: E &2 fEE R
O = £ &

« Multiple-Choice Knapsack Problem: 88— ¥ m&%E=—{E
- Fractional Knapsack Problem: ¥)mulIRZ& 5



Fractional Knapsack Problem

* Input: n items where i-th item has value v; and weighs w; (v; and w;
are positive integers)

 Output: the maximum value for the knapsack with capacity of W,
where we can take any fraction of items

» Greedy algorithm: at each iteration, choose the item with the highest —
and continue when W —w; >0

Wi




Step 1: Cast Optimization Problem

Fractional Knapsack Problem
Input: n items where i-th item has value v; and weighs w;
Output: the max value within W capacity, where we can take any fraction of items

« Subproblems
« F-KP (i, w): fractional knapsack problem within w capacity for the first i items

« Goal: F-KP (n, W)




Step 2: Prove Optimal Substructure

Fractional Knapsack Problem
Input: n items where i-th item has value v; and weighs w;
Output: the max value within W capacity, where we can take any fraction of items

« Suppose OPT is an optimal solutionto F-KP (i, w), there are 2 cases:
« Case 1: full/partial item i in OPT
 Remove w' of item i from OPT is an optimal solutionof F-KP (i - 1, w — w')

« Case 2: item i notin OPT
« OPT is an optimal solution of F-KP (1 - 1, w)




Step 3: Prove Greedy-Choice Property

Fractional Knapsack Problem
Input: n items where i-th item has value v; and weighs w;
Output: the max value within W capacity, where we can take any fraction of items

» Greedy choice: select the item with the highest -

Wi

Vi

 Proof via contradiction (j = argmax
i

« Assume that there is no OPT including this greedy choice
* If W < w;, we can replace all items in OPT with item j
* If W > w;, we can replace any item weighting w; in OPT with item j

 The total value must be equal or higher, because item j has the highest %

Wi




To Be Continued...




Question?

Important announcement will be sent to
@ntu.edu.tw mailbox & post to the course website

Course Website: http://ada.miulab.tw
Email: ada-ta@csie.ntu.edu.tw



