Dynamic Programming 動態規劃 (2)

Algorithm Design and Analysis 演算法設計與分析

Yun-Nung (Vivian) Chen 陳縕儂

(Slides modified from Hsu-Chun Hsiao)

http://ada.miulab.tw

Breaking News!!

 (2022/10/05) DeepMind proposes AlphaTensor to find efficient ways for matrix multiplication!

- Research

Discovering novel algorithms with AlphaTensor

October 5, 2022

Strassen's Algorithm for Matrix Multiplication

$$\begin{bmatrix} a_{1,1} & a_{1,2} \\ & & \\ a_{2,1} & a_{2,2} \end{bmatrix} \times \begin{bmatrix} b_{1,1} & b_{1,2} \\ & & \\ b_{2,1} & b_{2,2} \end{bmatrix} = \begin{bmatrix} c_{1,1} & c_{1,2} \\ & & \\ c_{2,1} & c_{2,2} \end{bmatrix}$$

• T(n) = time for running Strassen(n, A, B)

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1\\ 7T(n/2) + \Theta(n^2) & \text{if } n \ge 2 \end{cases}$$

$$\implies \Theta(n^{\log_2 7}) \sim \Theta(n^{2.807})$$

Standard algorithm	Strassen's algorithm
$h_1 = a_{1,1} b_{1,1}$	$h_1 = (a_{1,1} + a_{2,2}) (b_{1,1} + b_{2,2})$
$h_2 = a_{1,1} b_{1,2}$	$h_2 = (a_{2,1} + a_{2,2}) b_{1,1}$
$h_{3} = a_{1,2} b_{2,1}$	$h_{3} = a_{1,1} (b_{1,2} - b_{2,2})$
$h_4 = a_{1,2} b_{2,2}$	$h_{4} = a_{2,2} (-b_{1,1} + b_{2,1})$
$h_5 = a_{2,1} b_{1,1}$	$h_5 = (a_{1,1} + a_{1,2}) b_{2,2}$
$h_6 = a_{2,1} b_{1,2}$	$h_6 = (-a_{1,1} + a_{2,1}) (b_{1,1} + b_{1,2})$
$h_{\gamma} = a_{2,2} b_{2,1}$	$h_{\gamma} = (a_{1,2} - a_{2,2})(b_{2,1} + b_{2,2})$
$h_{8} = a_{2,2} b_{2,2}$	
$\boldsymbol{c}_{1,1} = h_1 + h_3$	$c_{1,1} = h_1 + h_4 - h_5 + h_7$
$c_{1,2} = h_2 + h_4$	$c_{1,2} = h_3 + h_5$
$c_{2,1} = h_5 + h_\gamma$	$c_{2,1} = h_2 + h_4$
$c_{2,2} = h_{\beta} + h_{\beta}$	$c_{2,2} = h_1 - h_2 + h_3 + h_6$

AlphaTensor-Discovered Algorithm

$b_{1,1}$	$b_{1,2}$	$b_{1,3}$	$b_{1,4}$	$b_{1,5}$	c_1
$b_{2,1}$	$b_{2,2}$	$b_{2,3}$	$b_{2,4}$	$b_{2,5}$	C2
$b_{3,1}$	$b_{3,2}$	$b_{3,3}$	$b_{3,4}$	$b_{3,5}$	
$b_{4,1}$	$b_{4,2}$	$b_{4,3}$	$b_{4,4}$	$b_{4,5}$	<i>c</i> ₃
$b_{5,1}$	$b_{5,2}$	$b_{5,3}$	$b_{5,4}$	$b_{5,5}$	c_4

- The traditional algorithm multiplies a 4x5 by 5x5 matrix using 100 multiplications
- 100 was reduced to 80 with human ingenuity
- AlphaTensor found algorithms using just 76 multiplications

Current SOTA (80)

 $h_1 = a_{3,2} \left(-b_{2,1} - b_{2,5} - b_{3,1} \right)$ $h_2 = (a_{2,2} + a_{2,5} - a_{3,5})(-b_{2,5} - b_{5,1})$ $h_3 = (-a_{3,1} - a_{4,1} + a_{4,2})(-b_{1,1} + b_{2,5})$ $h_4 = (a_{1,2} + a_{1,4} + a_{3,4})(-b_{2,5} - b_{4,1})$ $h_5 = (a_{1,5} + a_{2,2} + a_{2,5})(-b_{2,4} + b_{5,1})$ $h_6 = (-a_{2,2} - a_{2,5} - a_{4,5})(b_{2,3} + b_{5,1})$ $h_7 = (-a_{1,1} + a_{4,1} - a_{4,2})(b_{1,1} + b_{2,4})$ $h_8 = (a_{3,2} - a_{3,3} - a_{4,3})(-b_{2,3} + b_{3,1})$ $h_9 = (-a_{1,2} - a_{1,4} + a_{4,4})(b_{2,3} + b_{4,1})$ $h_{10} = (a_{2,2} + a_{2,5}) b_{5,1}$ $h_{11} = (-a_{2,1} - a_{4,1} + a_{4,2})(-b_{1,1} + b_{2,2})$ $h_{12} = (a_{4,1} - a_{4,2}) b_{1,1}$ $h_{13} = (a_{1,2} + a_{1,4} + a_{2,4})(b_{2,2} + b_{4,1})$ $h_{14} = (a_{1,3} - a_{3,2} + a_{3,3})(b_{2,4} + b_{3,1})$ $h_{15} = (-a_{1,2} - a_{1,4}) b_{4,1}$ $h_{16} = (-a_{3,2} + a_{3,3}) b_{3,1}$ $h_{17} = (a_{1,2} + a_{1,4} - a_{2,1} + a_{2,2} - a_{2,3} + a_{2,4} - a_{3,2} + a_{3,3} - a_{4,1} + a_{4,2}) b_{2,2}$ $h_{18} = a_{2,1} (b_{1,1} + b_{1,2} + b_{5,2})$ $h_{19} = -a_{2,3} \left(b_{3,1} + b_{3,2} + b_{5,2} \right)$ $h_{20} = (-a_{1,5} + a_{2,1} + a_{2,3} - a_{2,5})(-b_{1,1} - b_{1,2} + b_{1,4} - b_{5,2})$ $h_{21} = (a_{2,1} + a_{2,3} - a_{2,5}) b_{5,2}$ $h_{22} = (a_{1,3} - a_{1,4} - a_{2,4}) (b_{1,1} + b_{1,2} - b_{1,4} - b_{3,1} - b_{3,2} + b_{3,4} + b_{4,4})$ $h_{23} = a_{1,3} \left(-b_{3,1} + b_{3,4} + b_{4,4} \right)$ $h_{24} = a_{1,5} \left(-b_{4,4} - b_{5,1} + b_{5,4} \right)$ $h_{25} = -a_{1,1} \left(b_{1,1} - b_{1,4} \right)$ $h_{26} = (-a_{1,3} + a_{1,4} + a_{1,5}) b_{4,4}$ $h_{27} = (a_{1,3} - a_{3,1} + a_{3,3})(b_{1,1} - b_{1,4} + b_{1,5} + b_{3,5})$ $h_{28} = -a_{3,4} \left(-b_{3,5} - b_{4,1} - b_{4,5} \right)$ $h_{29} = a_{3,1} (b_{1,1} + b_{1,5} + b_{3,5})$ $h_{30} = (a_{3,1} - a_{3,3} + a_{3,4}) b_{3,5}$ $h_{31} = (-a_{1,4} - a_{1,5} - a_{3,4})(-b_{4,4} - b_{5,1} + b_{5,4} - b_{5,5})$ $h_{32} = (a_{2,1} + a_{4,1} + a_{4,4}) (b_{1,3} - b_{4,1} - b_{4,2} - b_{4,3})$ $h_{33} = a_{4,3} \left(-b_{3,1} - b_{3,3} \right)$ $h_{34} = a_{4,4} \left(-b_{1,3} + b_{4,1} + b_{4,3} \right)$

AlphaTensor-Discovered (76)

 $h_{51} = a_{2,2} \left(b_{2,1} + b_{2,2} - b_{5,1} \right)$ $h_{52} = a_{4,2} \left(b_{1,1} + b_{2,1} + b_{2,3} \right)$ $h_{53} = -a_{1,2} \left(-b_{2,1} + b_{2,4} + b_{4,1} \right)$ $h_{54} = (a_{1,2} + a_{1,4} - a_{2,2} - a_{2,5} - a_{3,2} + a_{3,3} - a_{4,2} + a_{4,3} - a_{4,4} - a_{4,5}) b_{2,3}$ $h_{55} = (a_{1,4} - a_{4,4}) (-b_{2,3} + b_{3,1} + b_{3,3} - b_{3,4} + b_{4,3} - b_{4,4})$ $h_{56} = (a_{1,1} - a_{1,5} - a_{4,1} + a_{4,5}) (b_{3,1} + b_{3,3} - b_{3,4} + b_{5,1} + b_{5,3} - b_{5,4})$ $h_{57} = (-a_{3,1} - a_{4,1}) (-b_{1,3} - b_{1,5} - b_{2,5} - b_{5,1} - b_{5,3} - b_{5,5})$ $h_{58} = (-a_{1,4} - a_{1,5} - a_{3,4} - a_{3,5})(-b_{5,1} + b_{5,4} - b_{5,5})$ $h_{59} = (-a_{3,3} + a_{3,4} - a_{4,3} + a_{4,4})(b_{4,1} + b_{4,3} + b_{4,5} + b_{5,1} + b_{5,3} + b_{5,5})$ $h_{60} = (a_{2,5} + a_{4,5})(b_{2,3} - b_{3,1} - b_{3,2} - b_{3,3} - b_{5,2} - b_{5,3})$ $h_{61} = (a_{1,4} + a_{3,4}) (b_{1,1} - b_{1,4} + b_{1,5} - b_{2,5} - b_{4,4} + b_{4,5} - b_{5,1} + b_{5,4} - b_{5,5})$ $h_{62} = (a_{2,1} + a_{4,1})(b_{1,2} + b_{1,3} + b_{2,2} - b_{4,1} - b_{4,2} - b_{4,3})$ $h_{63} = (-a_{3,3} - a_{4,3}) (-b_{2,3} - b_{3,3} - b_{3,5} - b_{4,1} - b_{4,3} - b_{4,5})$ $h_{64} = (a_{1,1} - a_{1,3} - a_{1,4} + a_{3,1} - a_{3,3} - a_{3,4})(b_{1,1} - b_{1,4} + b_{1,5})$ $h_{65} = (-a_{1,1} + a_{4,1})(-b_{1,3} + b_{1,4} + b_{2,4} - b_{5,1} - b_{5,3} + b_{5,4})$ $h_{66} = (a_{1,1} - a_{1,2} + a_{1,3} - a_{1,5} - a_{2,2} - a_{2,5} - a_{3,2} + a_{3,3} - a_{4,1} + a_{4,2}) b_{2,4}$ $h_{67} = (a_{2,5} - a_{3,5})(b_{1,1} + b_{1,2} + b_{1,5} - b_{2,5} - b_{4,1} - b_{4,2} - b_{4,5} + b_{5,2} + b_{5,5})$ $h_{68} = (a_{1,1} + a_{1,3} - a_{1,4} - a_{1,5} - a_{4,1} - a_{4,3} + a_{4,4} + a_{4,5})(-b_{3,1} - b_{3,3} + b_{3,4})$ $h_{69} = (-a_{1,3} + a_{1,4} - a_{2,3} + a_{2,4}) (-b_{2,4} - b_{3,1} - b_{3,2} + b_{3,4} - b_{5,2} + b_{5,4})$ $h_{70} = (a_{2,3} - a_{2,5} + a_{4,3} - a_{4,5})(-b_{3,1} - b_{3,2} - b_{3,3})$ $h_{71} = (-a_{3,1} + a_{3,3} - a_{3,4} + a_{3,5} - a_{4,1} + a_{4,3} - a_{4,4} + a_{4,5})(-b_{5,1} - b_{5,3} - b_{5,5})$ $h_{72} = (-a_{2,1} - a_{2,4} - a_{4,1} - a_{4,4}) (b_{4,1} + b_{4,2} + b_{4,3})$ $h_{73} = (a_{1,3} - a_{1,4} - a_{1,5} + a_{2,3} - a_{2,4} - a_{2,5})(b_{1,1} + b_{1,2} - b_{1,4} + b_{2,4} + b_{5,2} - b_{5,4})$ $h_{74} = (a_{2,1} - a_{2,3} + a_{2,4} - a_{3,1} + a_{3,3} - a_{3,4})(b_{4,1} + b_{4,2} + b_{4,5})$ $h_{75} = -(a_{1,2} + a_{1,4} - a_{2,2} - a_{2,5} - a_{3,1} + a_{3,2} + a_{3,4} + a_{3,5} - a_{4,1} + a_{4,2}) b_{2,5}$ $h_{76} = (a_{1,3} + a_{3,3})(-b_{1,1} + b_{1,4} - b_{1,5} + b_{2,4} + b_{3,4} - b_{3,5})$ $c_{1,1} = -h_{10} + h_{12} + h_{14} - h_{15} - h_{16} + h_{53} + h_5 - h_{66} - h_7$ $c_{2,1} = h_{10} + h_{11} - h_{12} + h_{13} + h_{15} + h_{16} - h_{17} - h_{44} + h_{51}$ $c_{3,1} = h_{10} - h_{12} + h_{15} + h_{16} - h_1 + h_2 + h_3 - h_4 + h_{75}$ $c_{4,1} = -h_{10} + h_{12} - h_{15} - h_{16} + h_{52} + h_{54} - h_6 - h_8 + h_9$ $c_{1,2} = h_{13} + h_{15} + h_{20} + h_{21} - h_{22} + h_{23} + h_{25} - h_{43} + h_{49} + h_{50}$ $c_{2,2} = -h_{11} + h_{12} - h_{13} - h_{15} - h_{16} + h_{17} + h_{18} - h_{19} - h_{21} + h_{43} + h_{44}$ $c_{3,2} = -h_{16} - h_{19} - h_{21} - h_{28} - h_{29} - h_{38} + h_{42} + h_{44} - h_{47} + h_{48}$ $c_{4,2} = h_{11} - h_{12} - h_{18} + h_{21} - h_{32} + h_{33} - h_{34} - h_{36} + h_{62} - h_{70}$

AlphaTensor

Single-player game played by AlphaTensor, where the goal is to find a correct matrix multiplication algorithm. The state of the game is a cubic array of numbers (shown as grey for O, blue for 1, and green for -1), representing the remaining work to be done.

Exploring the impact on future research and applications

• From a mathematical standpoint, our results can guide further research in complexity theory, which aims to determine the fastest algorithms for solving computational problems. -- DeepMind

動腦一下 – 囚犯問題

- 有100個死囚,隔天執行死刑,典獄長開恩給他們一個存活的機會。
- 當隔天執行死刑時,每人頭上戴一頂帽子(黑或白)排成一隊伍,在死刑執行前,由隊 伍中最後的囚犯開始,每個人可以猜測自己頭上的帽子顏色(只允許說黑或白),猜對 則免除死刑,猜錯則執行死刑。
- 若這些囚犯可以前一天晚上先聚集討論方案,是否有好的方法可以使總共存活的囚犯數量期望值最高?

猜測規則

- 囚犯排成一排,每個人可以看到前面所有人的帽子,但看不到自己及後面囚犯的。
- 由最後一個囚犯開始猜測,依序往前。
- •每個囚犯皆可聽到之前所有囚犯的猜測內容。

Example: 奇數者猜測內容為前面一位的帽子顏色 → 存活期望值為75人

有沒有更多人可以存活的好策略?

Outline

- Dynamic Programming
- DP #1: Rod Cutting
- DP #2: Stamp Problem
- DP #3: Matrix-Chain Multiplication
- DP #4: Weighted Interval Scheduling
- DP #5: Sequence Alignment Problem
 - Longest Common Subsequence (LCS) / Edit Distance
 - Viterbi Algorithm
 - Space Efficient Algorithm
- DP #6: Knapsack Problem
 - 0/1 Knapsack
 - Unbounded Knapsack
 - Multidimensional Knapsack
 - Fractional Knapsack

DP#4: Weighted Interval Scheduling

Textbook Exercise 16.2-2

Slides modified from Prof. Hsu-Chun Hsiao

Interval Scheduling

- Input: *n* job requests with start times s_i , finish times f_i
- Output: the maximum number of compatible jobs
- The interval scheduling problem can be solved using an "early-finish-time-first" greedy algorithm in O(n) time
 "Greedy Algorithm" + A A

Next topic!

Weighted Interval Scheduling

- Input: *n* job requests with start times s_i , finish times f_i , and values v_i
- Output: the maximum total value obtainable from compatible jobs

Assume that the requests are sorted in non-decreasing order ($f_i \le f_j$ when i < j) p(j) = largest index i < j s.t. jobs i and j are compatiblee.g. p(1) = 0, p(2) = 0, p(3) = 1, p(4) = 1, p(5) = 4, p(6) = 3

Step 1: Characterize an OPT Solution

Weighted Interval Scheduling Problem

Input: *n* jobs with $\langle s_i, f_i, v_i \rangle$, p(j) = largest index i < j s.t. jobs *i* and *j* are compatible Output: the maximum total value obtainable from compatible

- Subproblems
 - WIS (i): weighted interval scheduling for the first i jobs
 - Goal: WIS(n)
- Optimal substructure: suppose OPT is an optimal solution to WIS (i), there are 2 cases:
 - Case 1: job *i* in OPT
 - OPT $\{i\}$ is an optimal solution of WIS (p (i))
 - Case 2: job *i* not in OPT
 - OPT is an optimal solution of WIS (i-1)

Step 2: Recursively Define the Value of an OPT Solution

Weighted Interval Scheduling Problem

Input: *n* jobs with $\langle s_i, f_i, v_i \rangle$, p(j) = largest index i < j s.t. jobs *i* and *j* are compatible Output: the maximum total value obtainable from compatible

- Optimal substructure: suppose OPT is an optimal solution to WIS (i), there are 2 cases:
 - Case 1: job *i* in OPT
 - OPT\{i} is an optimal solution of WIS (p(i)) $M_i = v_i + M_{p(i)}$
 - Case 2: job *i* not in OPT
 - OPT is an optimal solution of WIS (i-1)

$$M_i = M_{i-1}$$

• Recursively define the value

$$M_{i} = \begin{cases} 0 & \text{if } i = 0\\ \max(v_{i} + M_{p(i)}, M_{i-1}) & \text{otherwise} \end{cases}$$

Weighted Interval Scheduling Problem

Input: *n* jobs with $\langle s_i, f_i, v_i \rangle$, p(j) = largest index i < j s.t. jobs *i* and *j* are compatible Output: the maximum total value obtainable from compatible

• Bottom-up method: solve smaller subproblems first

$$M_{i} = \begin{cases} 0 & \text{if } i = 0 \\ \max(v_{i} + M_{p(i)}, M_{i-1}) & \text{otherwise} \end{cases}$$

$$i \quad 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad \dots \quad n$$

$$M[i]$$
f, v, p)
0

 $T(n) = \Theta(n)$

WIS(n, s, M[0] =

Weighted Interval Scheduling Problem

Input: *n* jobs with $\langle s_i, f_i, v_i \rangle$, p(j) = largest index i < j s.t. jobs *i* and *j* are compatible Output: the maximum total value obtainable from compatible

Weighted Interval Scheduling Problem

Input: *n* jobs with $\langle s_i, f_i, v_i \rangle$, p(j) = largest index i < j s.t. jobs *i* and *j* are compatible Output: the maximum total value obtainable from compatible

```
WIS(n, s, f, v, p)
M[0] = 0
for i = 1 to n
M[i] = max(v[i] + M[p[i]], M[i - 1])
return M[n]
```

$$T(n) = \Theta(n)$$

```
Find-Solution(M, n)
if n = 0
return {}
if v[n] + M[p[n]] > M[n-1] // case 1
return {n} U Find-Solution(p[n])
return Find-Solution(n-1) // case 2
```

$$T(n) = \Theta(n)$$

DP#5: Sequence Alignment

Textbook Chapter 15.4 – Longest common subsequence Textbook Problem 15-5 – Edit distance

Chapter 6.6 in Algorithm Design by Kleinberg & Tardos

Monkey Speech Recognition

- 猴子們各自講話,經過語音辨識系統後,哪一支猴子發出最接近英文 字"banana"的語音為優勝者
- How to evaluate the similarity between two sequences?

Longest Common Subsequence (LCS)

• Input: two sequences $X = \langle x_1, x_2, \cdots, x_m \rangle$

$$Y = \langle y_1, y_2, \cdots, y_n \rangle$$

- Output: longest common subsequence of two sequences
 - The maximum-length sequence of characters that appear left-to-right (but not necessarily a continuous string) in both sequences

$$X = banana$$

$$Y = aeniqadikjaz$$

$$Y = svkbrlvpnzanczyqza$$

$$X \rightarrow ba-n--an--a-$$

$$X \rightarrow ---ba--n-an---a-$$

$$Y \rightarrow -aeniqadikjaz$$

$$Y \rightarrow svkbrlvpnzanczyqza$$

$$X \rightarrow trandom for an infinite amount of time will almost surely type a given text$$

Edit Distance

- Input: two sequences $X = \langle x_1, x_2, \cdots, x_m \rangle$ $Y = \langle y_1, y_2, \cdots, y_n \rangle$
- Output: the minimum cost of transformation from X to Y
 - Quantifier of the dissimilarity of two strings

Sequence Alignment Problem

- Input: two sequences $X = \langle x_1, x_2, \cdots, x_m \rangle$ $Y = \langle y_1, y_2, \cdots, y_n \rangle$
- Output: the minimal cost $M_{m,n}$ for aligning two sequences
 - Cost = #insertions $\times C_{INS}$ + #deletions $\times C_{DEL}$ + #substitutions $\times C_{p,q}$

Step 1: Characterize an OPT Solution

Sequence Alignment Problem

Input: two sequences $X = \langle x_1, x_2, \cdots, x_m \rangle$ $Y = \langle y_1, y_2, \cdots, y_n \rangle$

Output: the minimal cost $M_{m,n}$ for aligning two sequences

- Subproblems
 - SA(i, j): sequence alignment between prefix strings x_1, \dots, x_i and y_1, \dots, y_j
 - Goal: SA(m, n)
- Optimal substructure: suppose OPT is an optimal solution to SA(i, j), there are 3 cases:
 - Case 1: *x_i* and *y_i* are aligned in OPT (match or substitution)
 - OPT/{ x_i , y_j } is an optimal solution of SA(i-1, j-1)
 - Case 2: x_i is aligned with a gap in OPT (deletion)
 - OPT is an optimal solution of SA(i-1, j)
 - Case 3: y_i is aligned with a gap in OPT (insertion)
 - OPT is an optimal solution of SA(i, j-1)

Step 2: Recursively Define the Value of an **OPT Solution**

Sequence Alignment Problem

Input: two sequences $X = \langle x_1, x_2, \cdots, x_m \rangle$ $Y = \langle y_1, y_2, \cdots, y_n \rangle$

Output: the minimal cost $M_{m,n}$ for aligning two sequences

- Suppose OPT is an optimal solution to SA(i, j), there are 3 cases:
 - Case 1: x_i and y_i are aligned in OPT (match or substitution)
 - OPT/{ x_i , y_j } is an optimal solution of SA (i-1, j-1) $M_{i,j} = M_{i-1,j-1} + C_{x_i,y_j}$
 - Case 2: x_i is aligned with a gap in OPT (deletion)
 - $M_{i,j} = M_{i-1,j} + C_{\text{DEL}}$ • OPT is an optimal solution of SA(i-1, j)
 - Case 3: y_i is aligned with a gap in OPT (insertion) $M_{i,j} = M_{i,j-1} + C_{\rm INS}$
 - OPT is an optimal solution of SA(i, j-1)
- Recursively define the value

$$M_{i,j} = \begin{cases} jC_{\text{INS}} & \text{if } i = 0\\ iC_{\text{DEL}} & \text{if } j = 0\\ \min(M_{i-1,j-1} + C_{x_i,y_j}, M_{i-1,j} + C_{\text{DEL}}, M_{i,j-1} + C_{\text{INS}}) & \text{otherwise} \end{cases}$$

Sequence Alignment Problem

Input: two sequences $X = \langle x_1, x_2, \dots, x_m \rangle$ $Y = \langle y_1, y_2, \dots, y_n \rangle$ Output: the minimal cost $M_{m,n}$ for aligning two sequences

$$M_{i,j} = \begin{cases} jC_{\text{INS}} & \text{if } i = 0\\ iC_{\text{DEL}} & \text{if } j = 0\\ \min(M_{i-1,j-1} + C_{x_i,y_j}, M_{i-1,j} + C_{\text{DEL}}, M_{i,j-1} + C_{\text{INS}}) & \text{otherwise} \end{cases}$$

Sequence Alignment Problem

Input: two sequences $X = \langle x_1, x_2, \dots, x_m \rangle$ $Y = \langle y_1, y_2, \dots, y_n \rangle$ Output: the minimal cost $M_{m,n}$ for aligning two sequences

$$M_{i,j} = \begin{cases} jC_{\text{INS}} & \text{if } i = 0 \\ iC_{\text{DEL}} & \text{if } j = 0 \\ \min(M_{i-1,j-1} + C_{x_i,y_j}, M_{i-1,j} + C_{\text{DEL}}, M_{i,j-1} + C_{\text{INS}}) & \text{otherwise} \\ a e n i q a d i k j a z \\ a e n i q a d i k j a z \\ a e n i q a d i k j a z \\ 0 0 4 8 12 16 20 24 28 32 36 40 44 48 \\ C_{p,q} = 7, \text{if } p \neq q \end{cases}$$

$$D_{a} \left(\begin{array}{c} xv & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\ 0 & 0 & 4 & 8 & 12 & 16 & 20 & 24 & 28 & 32 & 36 & 40 & 44 & 48 \\ 1 & 4 & 7 & 11 & 15 & 19 & 23 & 27 & 31 & 35 & 39 & 43 & 47 & 51 \\ 2 & 8 & 4 & 8 & 12 & 16 & 20 & 23 & 27 & 31 & 35 & 39 & 43 & 47 \\ n & 3 & 12 & 8 & 12 & 8 & 12 & 16 & 20 & 24 & 28 & 32 & 36 & 40 & 44 \\ a & 4 & 16 & 12 & 15 & 12 & 15 & 19 & 16 & 20 & 24 & 28 & 32 & 36 & 40 & 44 \\ n & 5 & 20 & 16 & 19 & 15 & 19 & 22 & 20 & 23 & 27 & 31 & 35 & 39 & 43 \\ a & 6 & 24 & 20 & 23 & 19 & 22 & 26 & 22 & 26 & 30 & 34 & 38 & 35 & 39 \\ \end{array}$$

Sequence Alignment Problem

Input: two sequences $X = \langle x_1, x_2, \dots, x_m \rangle$ $Y = \langle y_1, y_2, \dots, y_n \rangle$ Output: the minimal cost $M_{m,n}$ for aligning two sequences

$$M_{i,j} = \begin{cases} jC_{\text{INS}} & \text{if } i = 0\\ iC_{\text{DEL}} & \text{if } j = 0\\ \min(M_{i-1,j-1} + C_{x_i,y_j}, M_{i-1,j} + C_{\text{DEL}}, M_{i,j-1} + C_{\text{INS}}) & \text{otherwise} \end{cases}$$

Sequence Alignment Problem

Input: two sequences $X = \langle x_1, x_2, \cdots, x_m \rangle$ $Y = \langle y_1, y_2, \cdots, y_n \rangle$

Output: the minimal cost $M_{m,n}$ for aligning two sequences

Sequence Alignment Problem

Input: two sequences $X = \langle x_1, x_2, \cdots, x_m \rangle$ $Y = \langle y_1, y_2, \cdots, y_n \rangle$

Output: the minimal cost $M_{m,n}$ for aligning two sequences

$$M_{i,j} = \begin{cases} jC_{\text{INS}} & \text{if } i = 0\\ iC_{\text{DEL}} & \text{if } j = 0\\ \min(M_{i-1,j-1} + C_{x_i,y_j}, M_{i-1,j} + C_{\text{DEL}}, M_{i,j-1} + C_{\text{INS}}) & \text{otherwise} \end{cases}$$

Find-Solution(M)
if m = 0 or n = 0
return {}
v = min(M[m-1][n-1] + C_{xm,yn}, M[m-1][n] + C_{DEL}, M[m][n-1] + C_{INS})
if v = M[m-1][n] + C_{DEL} // \uparrow: deletion
return Find-Solution(m-1, n)
if v = M[m][n-1] + C_{INS} //
$$\leftarrow$$
: insertion
return Find-Solution(m, n-1)
return {(m, n)} U Find-Solution(m-1, n-1) // \smallsetminus : match/substitution

```
Seq-Align(X, Y, C<sub>DEL</sub>, C<sub>INS</sub>, C<sub>p,q</sub>)
for j = 0 to n
M[0][j] = j * C_{INS} // |X|=0, cost=|Y|*penalty
for i = 1 to m
M[i][0] = i * C_{DEL} // |Y|=0, cost=|X|*penalty
for i = 1 to m
for j = 1 to n
M[i][j] = min(M[i-1][j-1]+C_{xi,yi}, M[i-1][j]+C_{DEL}, M[i][j-1]+C_{INS})
return M[m][n]
```

```
T(n) = \Theta(mn)
```

```
Find-Solution(M)
if m = 0 or n = 0
return {}
v = min(M[m-1][n-1] + C_{xm,yn}, M[m-1][n] + C_{DEL}, M[m][n-1] + C_{INS})
if v = M[m-1][n] + C_{DEL} // \uparrow: deletion
return Find-Solution(m-1, n)
if v = M[m][n-1] + C_{INS} // \leftarrow: insertion
return Find-Solution(m, n-1)
return {(m, n)} U Find-Solution(m-1, n-1) // \searrow: match/substitution
```

Space Complexity

Space complexity

If only keeping the most recent two rows: Space-Seq-Align(X, Y)

The optimal value can be computed, but the solution cannot be reconstructed

Space-Efficient Solution

Divide-and-Conquer + Dynamic Programming

• Problem: find the min-cost alignment \rightarrow find the shortest path

 \searrow distance = $C_{u,v}$ for edge (u, v)

Shortest Path in Graph

- Each edge has a length/cost
- F(i,j): length of the shortest path from (0,0) to (i,j) (START $\rightarrow (i,j)$)
- B(i,j): length of the shortest path from (i,j) to (m,n) $((i,j) \rightarrow END)$
- F(m,n) = B(0,0)

F(2,3) = distance of theshortest path

B(2,3) = distance of the shortest path

Recursive Equation

- Each edge has a length/cost
- F(i,j): length of the shortest path from (0,0) to (i,j) (START $\rightarrow (i,j)$)
- B(i,j): length of the shortest path from (i,j) to (m,n) $((i,j) \rightarrow END)$
- Forward formulation

Shortest Path Problem

F(i, j): length of the shortest path from (0,0) to (i, j)B(i, j): length of the shortest path from (i, j) to (m, n)

- <u>Observation 1</u>: the length of the shortest path from (0,0) to (m,n) that passes through (i,j) is F(i,j) + B(i,j)
 - \rightarrow optimal substructure

Shortest Path Problem

F(i, j): length of the shortest path from (0,0) to (i, j)B(i, j): length of the shortest path from (i, j) to (m, n)

- <u>Observation 2</u>: for any v in $\{0, ..., n\}$, there exists a u s.t. the shortest path between (0,0) and (m,n) goes through (u,v)
 - \rightarrow the shortest path must go across a vertical cut

Shortest Path Problem

F(i,j): length of the shortest path from (0,0) to (i,j)B(i,j): length of the shortest path from (i,j) to (m,n)

Observation 1+2:

 $F(m,n) = \min \left(F(0,v) + B(0,v), F(1,v) + B(1,v), \cdots, F(m,v) + B(m,v) \right)$

Divide-and-Conquer Algorithm

• Goal: finds optimal solution

- Call Space-Seq-Align(X,Y[1:v]) to find F(0,v),F(1,v),...,F(m,v) $\Theta(m \times \frac{n}{2})$
- Call Back-Space-Seq-Align (X, Y[v+1:n]) to find $B(0,v), B(1,v), \dots, B(m,v)$ $\Theta(m \times \frac{n}{2})$
- Let u be the index minimizing F(u, v) + B(u, v)

Divide-and-Conquer Algorithm

• Goal: finds optimal solution – DC-Align(X, Y) Space Complexity: O(m+n)

Time Complexity Analysis

• Theorem $T(m,n) = \begin{cases} O(m) & \text{if } n = 1 \\ T(u,n/2) + T(m-u,n/2) + O(mn) & \text{if } n \ge 2 \end{cases} \implies T(m,n) = O(mn)$

- Proof
 - There exists positive constants a, b s.t. all

$$T(m,n) \leq \begin{cases} a \cdot m & \text{if } n = 1\\ T(u,n/2) + T(m-u,n/2) + b \cdot mn & \text{if } n \ge 2 \end{cases}$$

• Use induction to prove $T(m,n) \leq kmn$

Practice to check the initial condition

$$\begin{split} T(m,n) &\leq T(u,\frac{n}{2}) + T(m-u,\frac{n}{2}) + b \cdot mn \\ & \text{Inductive} \\ & \text{sypothesis} \end{split} \stackrel{\textbf{k}}{\leq} ku\frac{n}{2} + k(m-u)\frac{n}{2} + b \cdot mn \\ & \leq (\frac{k}{2} + b)mn \\ & \leq kmn \text{ when } k \geq 2b \end{split}$$

Extension: 注音文 Recognition

• Given a graph G = (V, E), each edge $(u, v) \in E$ has an associated non-negative probability p(u, v) of traversing the edge (u, v) and producing the corresponding character. Find the most probable path with the label $s = \langle \sigma_1, \sigma_2, ..., \sigma_n \rangle$.

Viterbi Algorithm

DP#6: Knapsack (背包問題)

Textbook Exercise 16.2-2

000

43

Slides modified from Prof. Hsu-Chun Hsiao

Knapsack Problem

- Input: *n* items where *i*-th item has value v_i and weighs w_i (v_i and w_i are positive integers)
- Output: the maximum value for the knapsack with capacity of W
- Variants of knapsack problem
 - 0-1 Knapsack Problem: 每項物品只能拿一個
 - Unbounded Knapsack Problem: 每項物品可以拿多個
 - Multidimensional Knapsack Problem: 背包空間有限
 - Multiple-Choice Knapsack Problem: 每一類物品最多拿一個
 - Fractional Knapsack Problem: 物品可以只拿部分

Knapsack Problem

- Input: *n* items where *i*-th item has value v_i and weighs w_i (v_i and w_i are positive integers)
- Output: the maximum value for the knapsack with capacity of W
- Variants of knapsack problem
 - 0-1 Knapsack Problem: 每項物品只能拿一個
 - Unbounded Knapsack Problem: 每項物品可以拿多個
 - Multidimensional Knapsack Problem: 背包空間有限
 - Multiple-Choice Knapsack Problem: 每一類物品最多拿一個
 - Fractional Knapsack Problem: 物品可以只拿部分

0-1 Knapsack Problem

Input: *n* items where *i*-th item has value v_i and weighs w_i

Output: the max value within W capacity, where each item is chosen at most once

• Subproblems

consider the available capacity

- ZO-KP (i, w): 0-1 knapsack problem within w capacity for the first i items
- Goal: ZO-KP(n, W)
- Optimal substructure: suppose OPT is an optimal solution to ZO-KP(i, w), there are 2 cases:
 - Case 1: item *i* in OPT
 - OPT $\{i\}$ is an optimal solution of ZO-KP (i 1, w w_i)
 - Case 2: item *i* not in OPT
 - OPT is an optimal solution of ZO-KP(i 1, w)

Step 2: Recursively Define the Value of an OPT Solution

0-1 Knapsack Problem

Input: *n* items where *i*-th item has value v_i and weighs w_i

Output: the max value within W capacity, where each item is chosen at most once

- Optimal substructure: suppose OPT is an optimal solution to ZO-KP(i, w), there are 2 cases:
 - Case 1: item *i* in OPT

• OPT\{i} is an optimal solution of ZO-KP (i - 1, w - w_i) $M_{i,w} = v_i + M_{i-1,w-w_i}$

- Case 2: item *i* not in OPT
 - OPT is an optimal solution of ZO-KP (i 1, w)
- Recursively define the value

$$M_{i,w} = \begin{cases} 0 & \text{if } i = 0\\ M_{i-1,w} & \text{if } w_i > w\\ \max(v_i + M_{i-1,w-w_i}, M_{i-1,w}) & \text{otherwise} \end{cases}$$

 $M_{i.w} = M_{i-1,w}$

0-1 Knapsack Problem

Input: *n* items where *i*-th item has value v_i and weighs w_i

Output: the max value within W capacity, where each item is chosen at most once

• Bottom-up method: solve smaller subproblems first

$$M_{i,w} = \begin{cases} 0 & \text{if } i = 0\\ M_{i-1,w} & \text{if } w_i > w\\ \max(v_i + M_{i-1,w-w_i}, M_{i-1,w}) & \text{otherwise} \end{cases}$$

i\w
 0
 1
 2
 3
 ...
 w
 ...
 W

 0
 ...
 ...
 ...
 w
 ...
 W

 1
 ...
 ...
 ...
 ...
 Mi
 ...
 ...

 2

$$M_{i-1,w-w_i}$$
 $M_{i-1,w}$
 ...
 $M_{i,w}$
 ...
 ...

 n
 ...
 ...
 ...
 ...
 ...
 ...
 ...

0-1 Knapsack Problem

Input: *n* items where *i*-th item has value v_i and weighs w_i

Output: the max value within W capacity, where each item is chosen at most once

• Bottom-up method: solve smaller subproblems first

$$M_{i,w} = \begin{cases} 0 & \text{if } i = 0\\ M_{i-1,w} & \text{if } w_i > w\\ \max(v_i + M_{i-1,w-w_i}, M_{i-1,w}) & \text{otherwise} \end{cases}$$

i	w _i	Vi
1	1	4
2	2	9
3	4	20

W = 5

i\w	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	4	4	4	4	4
2	0	4	9	13	13	13
3	0	4	9	13	20	24

0-1 Knapsack Problem

Input: *n* items where *i*-th item has value v_i and weighs w_i

Output: the max value within W capacity, where each item is chosen at most once

• Bottom-up method: solve smaller subproblems first

$$M_{i,w} = \begin{cases} 0 & \text{if } i = 0\\ M_{i-1,w} & \text{if } w_i > w\\ \max(v_i + M_{i-1,w-w_i}, M_{i-1,w}) & \text{otherwise} \end{cases}$$

ZO-KP(n, v, W) for w = 0 to W M[0, w] = 0 for i = 1 to n for w = 0 to W if (w_i > w) M[i, w] = M[i-1, w] else M[i, w] = max(v_i + M[i-1, w-w_i], M[i-1, w]) return M[n, W]

Step 4: Construct an OPT Solution by Backtracking

```
ZO-KP(n, v, W)

for w = 0 to W

M[0, w] = 0

for i = 1 to n

for w = 0 to W

if(w<sub>i</sub> > w)

M[i, w] = M[i-1, w]

else

M[i, w] = max(v_i + M[i-1, w-w_i], M[i-1, w])

return M[n, W]
```

```
Find-Solution(M, n, W)
S = {}
w = W
for i = n to 1
if M[i, w] > M[i - 1, w] // case 1
w = w - w<sub>i</sub>
S = S U {i}
return S
```

$$T(n) = \Theta(nW)$$

$$T(n) = \Theta(n)$$

Knapsack Problem

- Input: *n* items where *i*-th item has value v_i and weighs w_i (v_i and w_i are positive integers)
- Output: the maximum value for the knapsack with capacity of W
- Variants of knapsack problem
 - 0-1 Knapsack Problem: 每項物品只能拿一個
 - Unbounded Knapsack Problem: 每項物品可以拿多個
 - Multidimensional Knapsack Problem: 背包空間有限
 - Multiple-Choice Knapsack Problem: 每一類物品最多拿一個
 - Fractional Knapsack Problem: 物品可以只拿部分

Unbounded Knapsack Problem

Input: *n* items where *i*-th item has value v_i and weighs w_i has **unlimited supplies** Output: the max value within *W* capacity

- Subproblems
 - U-KP(i, w): unbounded knapsack problem with w capacity for the first i items
 - Goal: U-KP(n, W)

0-1 Knapsack Problem	Unbounded Knapsack Problem	
each item can be chosen at most once	each item can be chosen multiple times	
a sequence of binary choices: whether to choose item <i>i</i>	a sequence of <i>i</i> choices: which one (from 1 to <i>i</i>) to choose	
Time complexity = $\Theta(nW)$	Time complexity = $\Theta(n^2 W)$	

Can we do better?

Unbounded Knapsack Problem

Input: *n* items where *i*-th item has value v_i and weighs w_i has **unlimited supplies** Output: the max value within *W* capacity

- Subproblems
 - U-KP (w): unbounded knapsack problem with w capacity
 - Goal: U-KP(W)
- Optimal substructure: suppose OPT is an optimal solution to U-KP(w), there are n cases:
 - Case 1: item 1 in OPT
 - Removing an item 1 from OPT is an optimal solution of $U-KP(w w_1)$
 - Case 2: item 2 in OPT
 - Removing an item 2 from OPT is an optimal solution of $U-KP(w w_2)$
 - Case *n*: item *n* in OPT
 - Removing an item n from OPT is an optimal solution of U-KP (w w_n)

Step 2: Recursively Define the Value of an OPT Solution

Unbounded Knapsack Problem

Input: *n* items where *i*-th item has value v_i and weighs w_i has **unlimited supplies** Output: the max value within *W* capacity

- Optimal substructure: suppose OPT is an optimal solution to U-KP(w), there are *n* cases:
 - Case *i*: item *i* in OPT

• Removing an item i from OPT is an optimal solution of U-KP (w - w₁) $M_w = v_i + M_{w-w_i}$

• Recursively define the value

$$M_{w} = \begin{cases} 0 & \text{if } w = 0 \text{ or } w_{i} > w \text{ for all } i \\ \max_{1 \le i \le n} \underbrace{w_{i} \le w}_{i} (v_{i} + M_{w-w_{i}}) & \text{otherwise} \end{cases}$$

Unbounded Knapsack Problem

Input: *n* items where *i*-th item has value v_i and weighs w_i has **unlimited supplies** Output: the max value within *W* capacity

• Bottom-up method: solve smaller subproblems first

$$M_w = \begin{cases} 0 & \text{if } w = 0 \text{ or } w_i > w \text{ for all } i \\ \max_{1 \le i \le n, w_i \le w} (v_i + M_{w - w_i}) & \text{otherwise} \end{cases}$$

Unbounded Knapsack Problem

Input: *n* items where *i*-th item has value v_i and weighs w_i has **unlimited supplies** Output: the max value within *W* capacity

• Bottom-up method: solve smaller subproblems first

$$M_{w} = \begin{cases} 0 & \text{if } w = 0 \text{ or } w_{i} > w \text{ for all } w \\ \max_{1 \le i \le n, w_{i} \le w} (v_{i} + M_{w - w_{i}}) & \text{otherwise} \end{cases}$$

$$\underbrace{\frac{\mathsf{w} \quad \mathbf{0} \quad \mathbf{1} \quad \mathbf{2} \quad \mathbf{3} \quad \mathbf{4} \quad \mathbf{5}}_{\operatorname{\mathsf{M}[w]} \quad \mathbf{0} \quad \mathbf{4} \quad \mathbf{9} \quad \mathbf{13} \quad \mathbf{18} \quad \mathbf{22}} \\ \max(4 + 0) & \max(4 + 4, 9 + 0) \\ \max(4 + 9, 9 + 4) & \max(4 + 13, 9 + 9, 17 + 0) \end{cases}$$

$$\underbrace{\frac{\mathsf{w} \quad \mathbf{0} \quad \mathbf{1} \quad \mathbf{2} \quad \mathbf{3} \quad \mathbf{4} \quad \mathbf{5}}_{\operatorname{\mathsf{M}[w]} \quad \mathbf{0} \quad \mathbf{4} \quad \mathbf{9} \quad \mathbf{13} \quad \mathbf{18} \quad \mathbf{22}} \\ W = 5$$

 $\max(4+18,9+13,17+4)$

Unbounded Knapsack Problem

Input: *n* items where *i*-th item has value v_i and weighs w_i has **unlimited supplies** Output: the max value within *W* capacity

• Bottom-up method: solve smaller subproblems first

$$M_w = \begin{cases} 0 & \text{if } w = 0 \text{ or } w_i > w \text{ for all } i \\ \max_{1 \le i \le n, w_i \le w} (v_i + M_{w - w_i}) & \text{otherwise} \end{cases}$$

U-KP(v, W)
for w = 0 to W

$$M[w] = 0$$

for w = 0 to W
for i = 1 to n
if(w_i <= w)
tmp = v_i + M[w - w_i]
 $M[w] = max(M[w], tmp)$
return M[W]

 $T(n) = \Theta(nW)$

Step 4: Construct an OPT Solution by Backtracking

```
U-KP(v, W)
for w = 0 to W

M[w] = 0

for w = 0 to W

for i = 1 to n

if(w<sub>i</sub> <= w)

tmp = v<sub>i</sub> + M[w - w<sub>i</sub>]

M[w] = max(M[w], tmp)

return M[W]
```

$$T(n) = \Theta(nW)$$

```
Find-Solution(M, n, W)
for i = 1 to n
    C[i] = 0 // C[i] = # of item i in solution
w = W
for i = i to n
    while w > 0
        if(w<sub>i</sub> <= w && M[w] == (v<sub>i</sub> + M[w - w<sub>i</sub>]))
            w = w - w<sub>i</sub>
            C[i] += 1
return C
```

$$T(n) = \Theta(n+W)$$

Knapsack Problem

- Input: *n* items where *i*-th item has value v_i and weighs w_i (v_i and w_i are positive integers)
- Output: the maximum value for the knapsack with capacity of W
- Variants of knapsack problem
 - 0-1 Knapsack Problem: 每項物品只能拿一個
 - Unbounded Knapsack Problem: 每項物品可以拿多個
 - Multidimensional Knapsack Problem: 背包空間有限
 - Multiple-Choice Knapsack Problem: 每一類物品最多拿一個
 - Fractional Knapsack Problem: 物品可以只拿部分

Multidimensional Knapsack Problem

Input: *n* items where *i*-th item has value v_i , weighs w_i , and size d_i

Output: the max value within W capacity and with the size of D, where each item is chosen at most once

- Subproblems
 - M-KP(i, w, d): multidimensional knapsack problem with w capacity and d size for the first i items
 - Goal: M-KP(n, W, D)
- Optimal substructure: suppose OPT is an optimal solution to M-KP(i, w, d), there are 2 cases:
 - Case 1: item *i* in OPT
 - OPT $\{i\}$ is an optimal solution of M-KP (i 1, w w_i, d d_i)
 - Case 2: item *i* not in OPT
 - OPT is an optimal solution of M-KP(i 1, w, d)

Step 2: Recursively Define the Value of an OPT Solution

Multidimensional Knapsack Problem

Input: *n* items where *i*-th item has value v_i , weighs w_i , and size d_i

Output: the max value within W capacity and with the size of D, where each item is chosen at most once

- Optimal substructure: suppose OPT is an optimal solution to M-KP (i, w, d), there are 2 cases:
 - Case 1: item *i* in OPT
 - OPT $\{i\}$ is an optimal solution of M-KP (i 1, w w_i, d d_i)
 - Case 2: item *i* not in OPT
 - OPT is an optimal solution of M-KP(i 1, w, d)
- Recursively define the value

$$M_{i,w,d} = \begin{cases} 0 & \text{if } i = 0\\ M_{i-1,w,d} & \text{if } w_i > w \text{ or } d_i > d\\ \max(v_i + M_{i-1,w-w_i,d-d_i}, M_{i-1,w,d}) & \text{otherwise} \end{cases}$$

 $M_{i,w,d} = v_i + M_{i-1,w-w_i,d-d_i}$

 $M_{i,w,d} = M_{i-1,w,d}$

Exercise

Multidimensional Knapsack Problem

Input: *n* items where *i*-th item has value v_i , weighs w_i , and size d_i Output: the max value within *W* capacity and with **the size of D**, where each item is chosen at most once

- Step 3: Compute Value of an OPT Solution
- Step 4: Construct an OPT Solution by Backtracking
- What is the time complexity?

Knapsack Problem

- Input: *n* items where *i*-th item has value v_i and weighs w_i (v_i and w_i are positive integers)
- Output: the maximum value for the knapsack with capacity of W
- Variants of knapsack problem
 - 0-1 Knapsack Problem: 每項物品只能拿一個
 - Unbounded Knapsack Problem: 每項物品可以拿多個
 - Multidimensional Knapsack Problem: 背包空間有限
 - Multiple-Choice Knapsack Problem: 每一類物品最多拿一個
 - Fractional Knapsack Problem: 物品可以只拿部分

Multiple-Choice Knapsack Problem

• Input: *n* items

- $v_{i,j}$: value of *j*-th item in the group *i*
- $w_{i,j}$: weight of *j*-th item in the group *i*
- n_i : number of items in group i
- *n*: total number of items $(\sum n_i)$
- G: total number of groups
- Output: the maximum value for the knapsack with capacity of *W*, where **the item from each group can be selected at most once**

Multiple-Choice Knapsack Problem

Input: *n* items with value $v_{i,j}$ and weighs $w_{i,j}$ (n_i : #items in group *i*, *G*: #groups) Output: the max value within *W* capacity, where each group is chosen **at most once**

- Subproblems
 - MC-KP(w): w capacity
 - MC-KP(i, w): w capacity for the first i groups
 - MC-KP(i, j, w): w capacity for the first j items from first i groups

Which one is more suitable for this problem?

Multiple-Choice Knapsack Problem

Input: *n* items with value $v_{i,j}$ and weighs $w_{i,j}$ (n_i : #items in group *i*, *G*: #groups) Output: the max value within *W* capacity, where each group is chosen **at most once**

- Subproblems
 - MC-KP(w): w capacity
 - MC-KP(i, w): w capacity for the first i groups the constraint is for groups
 - MC-KP(i, j, w): w capacity for the first j items from first i groups

Which one is more suitable for this problem?

Multiple-Choice Knapsack Problem

Input: *n* items with value $v_{i,j}$ and weighs $w_{i,j}$ (n_i : #items in group *i*, *G*: #groups) Output: the max value within *W* capacity, where each group is chosen **at most once**

- Subproblems
 - MC-KP(i, w): multi-choice knapsack problem with w capacity for first i groups
 - Goal: MC-KP(G, W)
- Optimal substructure: suppose OPT is an optimal solution to MC-KP(i, w), for the group *i*, there are $n_i + 1$ cases:
 - Case 1: no item from *i*-th group in OPT
 - OPT is an optimal solution of MC-KP (i 1, w)
 - Case j + 1: j-th item from i-th group (item_{i,j}) in OPT
 - OPT\item_{i,j} is an optimal solution of MC-KP (i 1, $w w_{i,j}$)

Slides modified from Prof. Hsu-Chun Hsiao

Step 2: Recursively Define the Value of an OPT Solution

Multiple-Choice Knapsack Problem

Input: *n* items with value $v_{i,j}$ and weighs $w_{i,j}$ (n_i : #items in group *i*, *G*: #groups) Output: the max value within *W* capacity, where each group is chosen **at most once**

- Optimal substructure: suppose OPT is an optimal solution to MC-KP(i, w), for the group *i*, there are $n_i + 1$ cases:
 - Case 1: no item from *i*-th group in OPT
 - OPT is an optimal solution of MC-KP (i 1, w)
 - Case j + 1: j-th item from i-th group (item_{i,i}) in OPT
 - OPT\item_{i,j} is an optimal solution of MC-KP (i 1, $w w_{i,j}$)
- Recursively define the value

$$M_{i,w} = \begin{cases} 0 & \text{if } i = 0\\ M_{i-1,w} & \text{if } w_{i,j} > w \text{ for all } j\\ \max_{1 \le j \le n_i} (v_{i,j} + M_{i-1,w-w_{i,j}}, M_{i-1,w}) & \text{otherwise} \end{cases}$$

$$M_{i,w} = M_{i-1,w}$$

$$M_{i,w} = v_{i,j} + M_{i-1,w-w_{i,j}}$$

Multiple-Choice Knapsack Problem

Input: *n* items with value $v_{i,j}$ and weighs $w_{i,j}$ (n_i : #items in group *i*, *G*: #groups) Output: the max value within *W* capacity, where each group is chosen **at most once**

• Bottom-up method: solve smaller subproblems first

$$M_{i,w} = \begin{cases} 0 & \text{if } i = 0\\ M_{i-1,w} & \text{if } w_{i,j} > w \text{ for all } j\\ \max_{1 \le j \le n_i} (v_{i,j} + M_{i-1,w-w_{i,j}}, M_{i-1,w}) & \text{otherwise} \end{cases}$$

i∖w	0	1	2	3	 w		W
0							
1							
2			$M_{i-1,i}$	$v-w_{i,j}$	$M_{i-1,u}$,	
i				,0	$M_{i,w}$		
n							

Multiple-Choice Knapsack Problem

Input: *n* items with value $v_{i,j}$ and weighs $w_{i,j}$ (n_i : #items in group *i*, *G*: #groups) Output: the max value within *W* capacity, where each group is chosen **at most once**

• Bottom-up method: solve smaller subproblems first

$$T(n) = \Theta(nW)$$

$$\sum_{i=1}^{G} \sum_{w=0}^{W} \sum_{j=1}^{n_i} c = c \sum_{w=0}^{W} \sum_{i=1}^{G} \sum_{j=1}^{n_i} 1 = c \sum_{w=0}^{W} n = cnW$$

Slides modified from Prof. Hsu-Chun Hsiao

Step 4: Construct an OPT Solution by Backtracking

$$\begin{array}{l} \text{MC-KP}(n, v, W) \\ \text{for } w = 0 \text{ to } W \\ \text{M}[0, w] = 0 \\ \text{for } i = 1 \text{ to } \text{G } // \text{ consider groups 1 to } i \\ \text{for } w = 0 \text{ to } W // \text{ consider capacity } = w \\ \text{M}[i, w] = \text{M}[i - 1, w] \\ \text{for } j = 1 \text{ to } n_i // \text{ check items in group } i \\ \text{if}(v_{i,j} + \text{M}[i - 1, w - w_{i,j}] > \text{M}[i, w]) \\ \text{M}[i, w] = v_{i,j} + \text{M}[i - 1, w - w_{i,j}] \\ \text{B}[i, w] = j \\ \text{return M}[G, W], B[G, W] \end{array} \right\} T(n) = \Theta(nV)$$

Practice to write the pseudo code for Find-Solution ()

 $T(n) = \Theta(G + W)$

Knapsack Problem

- Input: *n* items where *i*-th item has value v_i and weighs w_i (v_i and w_i are positive integers)
- Output: the maximum value for the knapsack with capacity of W
- Variants of knapsack problem
 - 0-1 Knapsack Problem: 每項物品只能拿一個
 - Unbounded Knapsack Problem: 每項物品可以拿多個
 - Multidimensional Knapsack Problem: 背包空間有限
 - Multiple-Choice Knapsack Problem: 每一類物品最多拿一個
 - Fractional Knapsack Problem: 物品可以只拿部分
Fractional Knapsack Problem

- Input: *n* items where *i*-th item has value v_i and weighs w_i (v_i and w_i are positive integers)
- Output: the maximum value for the knapsack with capacity of W, where we can take **any fraction of items**
- Dynamic programming algorithm should work

• Choose maximal $\frac{v_i}{w_i}$ (類似CP值) first

Can we do better?

Pseudo-Polynomial

75

Pseudo-Polynomial Time

- Polynomial: polynomial in the length of the input (#bits for the input)
- Pseudo-polynomial: polynomial in the numeric value
- The time complexity of 0-1 knapsack problem is $\Theta(nW)$
 - n: number of objects
 - W: knapsack's capacity (non-negative integer)
 - polynomial in the numeric value
 - = pseudo-polynomial in input size
 - = exponential in the length of the input

Time Complexity Definition

• Time complexity is in measure the time an algorithm takes to run as a function of

the length of the input in bits the value of the input

Time Complexity Definition

- Time complexity is in measure the time an algorithm takes to run as a function of
 - the length of the input in bits the value of the input

- The time complexity of 0-1 knapsack problem is $\Theta(nW)$ $= \Theta(n2^{\text{bits in }W}) = O(n2^m)$
 - *n*: number of objects
 - W: knapsack's capacity (non-negative integer)

= exponential in the length of the input = polynomial in the numeric value = pseudo-polynomial in input size

Concluding Remarks

- "Dynamic Programming": solve many subproblems in polynomial time for which a naïve approach would take exponential time
- When to use DP
 - Whether subproblem solutions can combine into the original solution
 - When subproblems are overlapping
 - Whether the problem has optimal substructure
 - Common for optimization problem
- Two ways to avoid recomputation
 - Top-down with memoization
 - Bottom-up method
- Complexity analysis
 - Space for tabular filling
 - Size of the subproblem graph

Question?

Important announcement will be sent to @ntu.edu.tw mailbox & post to the course website

Course Website: http://ada.miulab.tw Email: ada-ta@csie.ntu.edu.tw