
Algorithm Design and Analysis
演算法設計與分析

Yun-Nung (Vivian) Chen 陳縕儂
(Slides modified from Hsu-Chun Hsiao)

5.2

Dynamic Programming

動態規劃 (2)

http://ada.miulab.tw

Breaking News!!

• (2022/10/05) DeepMind proposes AIphaTensor to find efficient ways
for matrix multiplication!

2https://www.deepmind.com/blog/discovering-novel-algorithms-with-alphatensor

Strassen’s Algorithm for Matrix Multiplication

• 𝑇 𝑛 = time for running Strassen(n,A,B)

3https://www.deepmind.com/blog/discovering-novel-algorithms-with-alphatensor

AlphaTensor-Discovered Algorithm

• The traditional algorithm multiplies a 4x5 by
5x5 matrix using 100 multiplications

• 100 was reduced to 80 with human ingenuity

• AlphaTensor found algorithms using just 76
multiplications

4

Current SOTA (80) AlphaTensor-Discovered (76)

AlphaTensor

Exploring the impact on future research and applications

• From a mathematical standpoint, our results can guide further research in complexity theory, which
aims to determine the fastest algorithms for solving computational problems. -- DeepMind

5https://www.deepmind.com/blog/discovering-novel-algorithms-with-alphatensor

動腦一下 – 囚犯問題
• 有100個死囚，隔天執行死刑，典獄長開恩給他們一個存活的機會。

• 當隔天執行死刑時，每人頭上戴一頂帽子(黑或白)排成一隊伍，在死刑執行前，由隊
伍中最後的囚犯開始，每個人可以猜測自己頭上的帽子顏色(只允許說黑或白)，猜對
則免除死刑，猜錯則執行死刑。

• 若這些囚犯可以前一天晚上先聚集討論方案，是否有好的方法可以使總共存活的囚
犯數量期望值最高？

6

猜測規則
• 囚犯排成一排，每個人可以看到前面所有人的帽子，但看不到自己及後面囚犯的。

• 由最後一個囚犯開始猜測，依序往前。

• 每個囚犯皆可聽到之前所有囚犯的猜測內容。

7

……

Example: 奇數者猜測內容為前面一位的帽子顏色→存活期望值為75人

有沒有更多人可以存活的好策略?

Outline
• Dynamic Programming
• DP #1: Rod Cutting

• DP #2: Stamp Problem

• DP #3: Matrix-Chain Multiplication

• DP #4: Weighted Interval Scheduling

• DP #5: Sequence Alignment Problem
• Longest Common Subsequence (LCS) / Edit Distance

• Viterbi Algorithm

• Space Efficient Algorithm

• DP #6: Knapsack Problem
• 0/1 Knapsack

• Unbounded Knapsack

• Multidimensional Knapsack

• Fractional Knapsack

9

DP#4: Weighted Interval Scheduling

10

Textbook Exercise 16.2-2

Slides modified from Prof. Hsu-Chun Hsiao

Interval Scheduling

• Input: 𝑛 job requests with start times 𝑠𝑖, finish times 𝑓𝑖
• Output: the maximum number of compatible jobs

• The interval scheduling problem can be solved using an “early-finish-
time-first” greedy algorithm in 𝑂(𝑛) time

11

“Greedy Algorithm”

Next topic!

time

1

2

3

4

5

6

job index

21 3 4 5 6 7 8 9

Slides modified from Prof. Hsu-Chun Hsiao

Weighted Interval Scheduling

• Input: 𝑛 job requests with start times 𝑠𝑖, finish times 𝑓𝑖, and values 𝑣𝑖
• Output: the maximum total value obtainable from compatible jobs

12

time

1

3

3

4

3

1

1

2

3

4

5

6

job index

21 3 4 5 6 7 8 9

Assume that the requests are sorted in non-decreasing order (𝑓𝑖 ≤ 𝑓𝑗 when 𝑖 < 𝑗)

𝑝(𝑗) = largest index 𝑖 < 𝑗 s.t. jobs 𝑖 and 𝑗 are compatible

e.g. 𝑝 1 = 0, 𝑝 2 = 0, 𝑝 3 = 1, 𝑝 4 = 1, 𝑝 5 = 4, 𝑝 6 = 3

Slides modified from Prof. Hsu-Chun Hsiao

Step 1: Characterize an OPT Solution

• Subproblems
• WIS(i): weighted interval scheduling for the first 𝑖 jobs

• Goal: WIS(n)

• Optimal substructure: suppose OPT is an optimal solution to WIS(i),
there are 2 cases:

• Case 1: job 𝑖 in OPT
• OPT\{𝑖} is an optimal solution of WIS(p(i))

• Case 2: job 𝑖 not in OPT
• OPT is an optimal solution of WIS(i-1)

13

time

1

3

3

4

3

1

1

2

3

4

5

6

job index

21 3 4 5 6 7 8 9

4

1

Weighted Interval Scheduling Problem

Input: 𝑛 jobs with 𝑠𝑖 , 𝑓𝑖 , 𝑣𝑖 , 𝑝(𝑗) = largest index 𝑖 < 𝑗 s.t. jobs 𝑖 and 𝑗 are compatible

Output: the maximum total value obtainable from compatible

Slides modified from Prof. Hsu-Chun Hsiao

3

Step 2: Recursively Define the Value of an
OPT Solution

• Optimal substructure: suppose OPT is an optimal solution to WIS(i),
there are 2 cases:

• Case 1: job 𝑖 in OPT
• OPT\{𝑖} is an optimal solution of WIS(p(i))

• Case 2: job 𝑖 not in OPT
• OPT is an optimal solution of WIS(i-1)

• Recursively define the value

14

Weighted Interval Scheduling Problem

Input: 𝑛 jobs with 𝑠𝑖 , 𝑓𝑖 , 𝑣𝑖 , 𝑝(𝑗) = largest index 𝑖 < 𝑗 s.t. jobs 𝑖 and 𝑗 are compatible

Output: the maximum total value obtainable from compatible

Slides modified from Prof. Hsu-Chun Hsiao

Step 3: Compute Value of an OPT Solution

• Bottom-up method: solve smaller subproblems first

15

i 0 1 2 3 4 5 … n

M[i]

WIS(n, s, f, v, p)

M[0] = 0

for i = 1 to n

M[i] = max(v[i] + M[p[i]], M[i - 1])

return M[n]

Weighted Interval Scheduling Problem

Input: 𝑛 jobs with 𝑠𝑖 , 𝑓𝑖 , 𝑣𝑖 , 𝑝(𝑗) = largest index 𝑖 < 𝑗 s.t. jobs 𝑖 and 𝑗 are compatible

Output: the maximum total value obtainable from compatible

Slides modified from Prof. Hsu-Chun Hsiao

Step 4: Construct an OPT Solution by
Backtracking

• Bottom-up method: solve smaller subproblems first

16

i 0 1 2 3 4 5 6

M[i] 0 1 3 4 5 6 7

time

1

3

3

4

3

1

1

2

3

4

5

6

job index

21 3 4 5 6 7 8 9

Weighted Interval Scheduling Problem

Input: 𝑛 jobs with 𝑠𝑖 , 𝑓𝑖 , 𝑣𝑖 , 𝑝(𝑗) = largest index 𝑖 < 𝑗 s.t. jobs 𝑖 and 𝑗 are compatible

Output: the maximum total value obtainable from compatible

Slides modified from Prof. Hsu-Chun Hsiao

Step 4: Construct an OPT Solution by
Backtracking

17

WIS(n, s, f, v, p)

M[0] = 0

for i = 1 to n

M[i] = max(v[i] + M[p[i]], M[i - 1])

return M[n]

Weighted Interval Scheduling Problem

Input: 𝑛 jobs with 𝑠𝑖 , 𝑓𝑖 , 𝑣𝑖 , 𝑝(𝑗) = largest index 𝑖 < 𝑗 s.t. jobs 𝑖 and 𝑗 are compatible

Output: the maximum total value obtainable from compatible

Find-Solution(M, n)

if n = 0

return {}

if v[n] + M[p[n]] > M[n-1] // case 1

return {n} ∪ Find-Solution(p[n])

return Find-Solution(n-1) // case 2

Slides modified from Prof. Hsu-Chun Hsiao

DP#5: Sequence Alignment

18

Textbook Chapter 15.4 – Longest common subsequence

Textbook Problem 15-5 – Edit distance

Chapter 6.6 in Algorithm Design by Kleinberg & Tardos

Slides modified from Prof. Hsu-Chun Hsiao

Monkey Speech Recognition

• 猴子們各自講話，經過語音辨識系統後，哪一支猴子發出最接近英文
字”banana”的語音為優勝者

• How to evaluate the similarity between two sequences?

19

aeniqadikjaz

svkbrlvpnzanczyqza

banana

Slides modified from Prof. Hsu-Chun Hsiao

Longest Common Subsequence (LCS)

• Input: two sequences

• Output: longest common subsequence of two sequences

• The maximum-length sequence of characters that appear left-to-right (but not
necessarily a continuous string) in both sequences

20

X = banana

Y = svkbrlvpnzanczyqza

X → ---ba---n-an-----a

Y → svkbrlvpnzanczyqza

X = banana

Y = aeniqadikjaz

X → ba-n--an---a-

Y → -aeniqadikjaz

The infinite monkey theorem: a monkey hitting keys at random

for an infinite amount of time will almost surely type a given text

4 5

Slides modified from Prof. Hsu-Chun Hsiao

Edit Distance

• Input: two sequences

• Output: the minimum cost of transformation from X to Y

• Quantifier of the dissimilarity of two strings

21

X = banana

Y = svkbrlvpnzanczyqza

X → ---ba---n-an-----a

Y → svkbrlvpnzanczyqza

X = banana

Y = aeniqadikjaz

X → ba-n--an---a-

Y → -aeniqadikjaz

1 deletion, 7 insertions, 1 substitution 12 insertions, 1 substitution

9 13

Slides modified from Prof. Hsu-Chun Hsiao

Sequence Alignment Problem

• Input: two sequences

• Output: the minimal cost 𝑀𝑚,𝑛 for aligning two sequences

• Cost = #insertions × 𝐶INS + #deletions × 𝐶DEL + #substitutions × 𝐶𝑝,𝑞

22Slides modified from Prof. Hsu-Chun Hsiao

Step 1: Characterize an OPT Solution

• Subproblems
• SA(i, j): sequence alignment between prefix strings 𝑥1, … , 𝑥𝑖 and 𝑦1, … , 𝑦𝑗
• Goal: SA(m, n)

• Optimal substructure: suppose OPT is an optimal solution to SA(i, j),
there are 3 cases:

• Case 1: 𝑥𝑖 and 𝑦𝑗 are aligned in OPT (match or substitution)
• OPT/{𝑥𝑖, , 𝑦𝑗} is an optimal solution of SA(i-1, j-1)

• Case 2: 𝑥𝑖 is aligned with a gap in OPT (deletion)
• OPT is an optimal solution of SA(i-1, j)

• Case 3: 𝑦𝑗 is aligned with a gap in OPT (insertion)
• OPT is an optimal solution of SA(i, j-1)

23

Sequence Alignment Problem

Input: two sequences

Output: the minimal cost 𝑀𝑚,𝑛 for aligning two sequences

Slides modified from Prof. Hsu-Chun Hsiao

Step 2: Recursively Define the Value of an
OPT Solution

• Suppose OPT is an optimal solution to SA(i, j), there are 3 cases:

• Case 1: 𝑥𝑖 and 𝑦𝑗 are aligned in OPT (match or substitution)
• OPT/{𝑥𝑖, , 𝑦𝑗} is an optimal solution of SA(i-1, j-1)

• Case 2: 𝑥𝑖 is aligned with a gap in OPT (deletion)
• OPT is an optimal solution of SA(i-1, j)

• Case 3: 𝑦𝑗 is aligned with a gap in OPT (insertion)
• OPT is an optimal solution of SA(i, j-1)

• Recursively define the value

24

Sequence Alignment Problem

Input: two sequences

Output: the minimal cost 𝑀𝑚,𝑛 for aligning two sequences

Slides modified from Prof. Hsu-Chun Hsiao

Sequence Alignment Problem

Input: two sequences

Output: the minimal cost 𝑀𝑚,𝑛 for aligning two sequences

Step 3: Compute Value of an OPT Solution

• Bottom-up method: solve smaller subproblems first

25

X\Y 0 1 2 3 4 5 … n

0

1

:

m

Slides modified from Prof. Hsu-Chun Hsiao

Step 3: Compute Value of an OPT Solution

• Bottom-up method: solve smaller subproblems first

26

X\Y 0 1 2 3 4 5 6 7 8 9 10 11 12

0 0 4 8 12 16 20 24 28 32 36 40 44 48

1 4 7 11 15 19 23 27 31 35 39 43 47 51

2 8 4 8 12 16 20 23 27 31 35 39 43 47

3 12 8 12 8 12 16 20 24 28 32 36 40 44

4 16 12 15 12 15 19 16 20 24 28 32 36 40

5 20 16 19 15 19 22 20 23 27 31 35 39 43

6 24 20 23 19 22 26 22 26 30 34 38 35 39

a e n i q a d i k j a z

b

a

n

a

n

a

Sequence Alignment Problem

Input: two sequences

Output: the minimal cost 𝑀𝑚,𝑛 for aligning two sequences

Slides modified from Prof. Hsu-Chun Hsiao

Step 3: Compute Value of an OPT Solution

• Bottom-up method: solve smaller subproblems first

27

Seq-Align(X, Y, CDEL, CINS, Cp,q)

for j = 0 to n

M[0][j] = j * CINS // |X|=0, cost=|Y|*penalty

for i = 1 to m

M[i][0] = i * CDEL // |Y|=0, cost=|X|*penalty

for i = 1 to m

for j = 1 to n

M[i][j] = min(M[i-1][j-1]+Cxi,yi, M[i-1][j]+CDEL, M[i][j-1]+CINS)

return M[m][n]

Sequence Alignment Problem

Input: two sequences

Output: the minimal cost 𝑀𝑚,𝑛 for aligning two sequences

Slides modified from Prof. Hsu-Chun Hsiao

Step 4: Construct an OPT Solution by
Backtracking

• Bottom-up method: solve smaller subproblems first

28

Sequence Alignment Problem

Input: two sequences

Output: the minimal cost 𝑀𝑚,𝑛 for aligning two sequences

X\Y 0 1 2 3 4 5 6 7 8 9 10 11 12

0 0 4 8 12 16 20 24 28 32 36 40 44 48

1 4 7 11 15 19 23 27 31 35 39 43 47 51

2 8 4 8 12 16 20 23 27 31 35 39 43 47

3 12 8 12 8 12 16 20 24 28 32 36 40 44

4 16 12 15 12 15 19 16 20 24 28 32 36 40

5 20 16 19 15 19 22 20 23 27 31 35 39 43

6 24 20 23 19 22 26 22 26 30 34 38 35 39

a e n i q a d i k j a z

b

a

n

a

n

a

Slides modified from Prof. Hsu-Chun Hsiao

Sequence Alignment Problem

Input: two sequences

Output: the minimal cost 𝑀𝑚,𝑛 for aligning two sequences

Step 4: Construct an OPT Solution by
Backtracking

• Bottom-up method: solve smaller subproblems first

29

Find-Solution(M)

if m = 0 or n = 0

return {}

v = min(M[m-1][n-1] + Cxm,yn, M[m-1][n] + CDEL, M[m][n-1] + CINS)

if v = M[m-1][n] + CDEL // ↑: deletion

return Find-Solution(m-1, n)

if v = M[m][n-1] + CINS // ←: insertion
return Find-Solution(m, n-1)

return {(m, n)} ∪ Find-Solution(m-1, n-1) // ↖: match/substitution

Slides modified from Prof. Hsu-Chun Hsiao

Step 4: Construct an OPT Solution by
Backtracking

30

Seq-Align(X, Y, CDEL, CINS, Cp,q)

for j = 0 to n

M[0][j] = j * CINS // |X|=0, cost=|Y|*penalty

for i = 1 to m

M[i][0] = i * CDEL // |Y|=0, cost=|X|*penalty

for i = 1 to m

for j = 1 to n

M[i][j] = min(M[i-1][j-1]+Cxi,yi, M[i-1][j]+CDEL, M[i][j-1]+CINS)

return M[m][n]

Find-Solution(M)

if m = 0 or n = 0

return {}

v = min(M[m-1][n-1] + Cxm,yn, M[m-1][n] + CDEL, M[m][n-1] + CINS)

if v = M[m-1][n] + CDEL // ↑: deletion

return Find-Solution(m-1, n)

if v = M[m][n-1] + CINS // ←: insertion
return Find-Solution(m, n-1)

return {(m, n)} ∪ Find-Solution(m-1, n-1) // ↖: match/substitution

Slides modified from Prof. Hsu-Chun Hsiao

Space Complexity

• Space complexity

• If only keeping the most recent two rows: Space-Seq-Align(X, Y)

31

X\Y 0 1 2 3 … j … n

i - 1

i

The optimal value can be computed, but the solution cannot be reconstructed

X\Y 0 1 2 3 4 5 … n

0

1

:

m

Slides modified from Prof. Hsu-Chun Hsiao

Space-Efficient Solution

• Problem: find the min-cost alignment → find the shortest path

32

Divide-and-Conquer

+

Dynamic Programming

a

e

p

p

l

p ea

X\Y 0 1 2 3

0 0 4 8 12

1 4 7 11 15

2 8 4 8 12

3 12 8 12 8

4 16 12 15 12

5 20 16 19 15

a p e

p

p

l

e

a

→ distance = CINS
↓ distance = CDEL
↘ distance = Cu,v for edge (u, v)

START

END

Slides modified from Prof. Hsu-Chun Hsiao

𝐹 2,3 = distance of the

shortest path

Shortest Path in Graph

• Each edge has a length/cost

• 𝐹 𝑖, 𝑗 : length of the shortest path from 0,0 to 𝑖, 𝑗 (START → 𝑖, 𝑗)

• 𝐵 𝑖, 𝑗 : length of the shortest path from 𝑖, 𝑗 to 𝑚,𝑛 (𝑖, 𝑗 → END)

• 𝐹 𝑚, 𝑛 = 𝐵 0,0

33

i = 0

4

1

2

3

j = 0 51 2 3 4 6 7

5

𝐵 2,3 = distance of the

shortest path

Slides modified from Prof. Hsu-Chun Hsiao

Recursive Equation

• Each edge has a length/cost

• 𝐹 𝑖, 𝑗 : length of the shortest path from 0,0 to 𝑖, 𝑗 (START → 𝑖, 𝑗)

• 𝐵 𝑖, 𝑗 : length of the shortest path from 𝑖, 𝑗 to 𝑚,𝑛 (𝑖, 𝑗 → END)

• Forward formulation

• Backward formulation

34

i = 0

4

1

2

3

j = 0 51 2 3 4 6 7

5

Slides modified from Prof. Hsu-Chun Hsiao

Shortest Path Problem

• Observation 1: the length of the shortest path from 0,0 to 𝑚, 𝑛 that
passes through 𝑖, 𝑗 is 𝐹 𝑖, 𝑗 + 𝐵 𝑖, 𝑗

35

𝐹 𝑖, 𝑗 : length of the shortest path from 0,0 to 𝑖, 𝑗
𝐵 𝑖, 𝑗 : length of the shortest path from 𝑖, 𝑗 to 𝑚, 𝑛

i = 0

4

1

2

3

j = 0 51 2 3 4 6 7

5

𝑭 𝒊, 𝒋

𝑩 𝒊, 𝒋

→ optimal substructure

Slides modified from Prof. Hsu-Chun Hsiao

Shortest Path Problem

• Observation 2: for any 𝑣 in {0, … , 𝑛}, there exists a 𝑢 s.t. the shortest
path between (0,0) and 𝑚,𝑛 goes through (𝑢, 𝑣)

36

→ the shortest path must go across a vertical cut

𝐹 𝑖, 𝑗 : length of the shortest path from 0,0 to 𝑖, 𝑗
𝐵 𝑖, 𝑗 : length of the shortest path from 𝑖, 𝑗 to 𝑚, 𝑛

i = 0

4

1

2

3

j = 0 51 2 3 4 6 7

5

Slides modified from Prof. Hsu-Chun Hsiao

Shortest Path Problem

• Observation 1+2:

37

i = 0

4

1

2

3

j = 0 51 2 3 4 6 7

5

i = 0

4

1

2

3

j = 0 51 2 3 4 6 7

5

𝐹 𝑖, 𝑗 : length of the shortest path from 0,0 to 𝑖, 𝑗
𝐵 𝑖, 𝑗 : length of the shortest path from 𝑖, 𝑗 to 𝑚, 𝑛

Slides modified from Prof. Hsu-Chun Hsiao

Divide-and-Conquer Algorithm

• Goal: finds optimal solution

38

How to find the value of 𝑢∗?

▪ Idea: utilize sequence alignment algo.
▪ Call Space-Seq-Align(X,Y[1:v]) to find
𝐹 0, 𝑣 , 𝐹 1, 𝑣 , … , 𝐹 𝑚, 𝑣

▪ Call Back-Space-Seq-Align(X,Y[v+1:n])
to find 𝐵 0, 𝑣 , 𝐵 1, 𝑣 ,… , 𝐵 𝑚, 𝑣

▪ Let 𝑢 be the index minimizing 𝐹 𝑢, 𝑣 + 𝐵 𝑢, 𝑣

Slides modified from Prof. Hsu-Chun Hsiao

Divide-and-Conquer Algorithm

• Goal: finds optimal solution – DC-Align(X, Y)

39

1. Divide

2. Conquer

3. Combine

▪ Divide the sequence of size n into 2
subsequences

▪ Find 𝑢 to minimize 𝐹 𝑢, 𝑣 + 𝐵 𝑢, 𝑣

▪ Recursive case (𝑛 > 1)
▪ prefix

= DC-Align(X[1:u], Y[1:v])

▪ suffix

= DC-Align(X[u+1:m], Y[v+1:n])

▪ Base case (𝑛 = 1)
▪ Return Seq-Align(X, Y)

▪ Return prefix + suffix
▪ 𝑇 𝑚, 𝑛 = time for running DC-
Align(X, Y) with 𝑋 = 𝑚, 𝑌 = 𝑛

Space Complexity:

Slides modified from Prof. Hsu-Chun Hsiao

Time Complexity Analysis

• Theorem

• Proof

• There exists positive constants 𝑎, 𝑏 s.t. all

• Use induction to prove

40

Inductive

hypothesis

when

Practice to check the initial condition

Slides modified from Prof. Hsu-Chun Hsiao

Extension: 注音文 Recognition

• Given a graph 𝐺 = 𝑉, 𝐸 , each edge 𝑢, 𝑣 ∈ 𝐸 has an associated
non-negative probability 𝑝 𝑢, 𝑣 of traversing the edge 𝑢, 𝑣 and
producing the corresponding character. Find the most probable path
with the label 𝑠 = 𝜎1, 𝜎2, … , 𝜎𝑛 .

41

ㄨ ㄅ ㄒ ㄎ ㄕ

START

我

烏

為

問

END

爸

不

想

續

小

考

看

卡

書

試

上

白
鄉

Find the path from START

to END with highest prob

Viterbi Algorithm

42

𝜎1 𝜎2 … … 𝜎𝑛

START END

produce 𝜎1

produce 𝜎𝑗

V: vocabulary size

Viterbi has been applied to many AI applications, e.g. speech recognition

DP#6: Knapsack (背包問題)

43

Textbook Exercise 16.2-2

Slides modified from Prof. Hsu-Chun Hsiao

Knapsack Problem

• Input: 𝑛 items where 𝑖-th item has value 𝑣𝑖 and weighs 𝑤𝑖 (𝑣𝑖 and 𝑤𝑖
are positive integers)

• Output: the maximum value for the knapsack with capacity of 𝑊

• Variants of knapsack problem
• 0-1 Knapsack Problem: 每項物品只能拿一個

• Unbounded Knapsack Problem: 每項物品可以拿多個

• Multidimensional Knapsack Problem: 背包空間有限

• Multiple-Choice Knapsack Problem: 每一類物品最多拿一個

• Fractional Knapsack Problem: 物品可以只拿部分

44Slides modified from Prof. Hsu-Chun Hsiao

Knapsack Problem

• Input: 𝑛 items where 𝑖-th item has value 𝑣𝑖 and weighs 𝑤𝑖 (𝑣𝑖 and 𝑤𝑖
are positive integers)

• Output: the maximum value for the knapsack with capacity of 𝑊

• Variants of knapsack problem
• 0-1 Knapsack Problem: 每項物品只能拿一個

• Unbounded Knapsack Problem: 每項物品可以拿多個

• Multidimensional Knapsack Problem: 背包空間有限

• Multiple-Choice Knapsack Problem: 每一類物品最多拿一個

• Fractional Knapsack Problem: 物品可以只拿部分

45Slides modified from Prof. Hsu-Chun Hsiao

Step 1: Characterize an OPT Solution

• Subproblems

• ZO-KP(i, w): 0-1 knapsack problem within 𝑤 capacity for the first 𝑖 items

• Goal: ZO-KP(n, W)

• Optimal substructure: suppose OPT is an optimal solution to ZO-
KP(i, w), there are 2 cases:

• Case 1: item 𝑖 in OPT
• OPT\{𝑖} is an optimal solution of ZO-KP(i - 1, w - wi)

• Case 2: item 𝑖 not in OPT
• OPT is an optimal solution of ZO-KP(i - 1, w)

46

0-1 Knapsack Problem

Input: 𝑛 items where 𝑖-th item has value 𝑣𝑖 and weighs 𝑤𝑖

Output: the max value within 𝑊 capacity, where each item is chosen at most once

ZO-KP(i) ZO-KP(i, w)

consider the available capacity

Slides modified from Prof. Hsu-Chun Hsiao

Step 2: Recursively Define the Value of an
OPT Solution

• Optimal substructure: suppose OPT is an optimal solution to ZO-
KP(i, w), there are 2 cases:

• Case 1: item 𝑖 in OPT
• OPT\{𝑖} is an optimal solution of ZO-KP(i - 1, w - wi)

• Case 2: item 𝑖 not in OPT
• OPT is an optimal solution of ZO-KP(i - 1, w)

• Recursively define the value

47

0-1 Knapsack Problem

Input: 𝑛 items where 𝑖-th item has value 𝑣𝑖 and weighs 𝑤𝑖

Output: the max value within 𝑊 capacity, where each item is chosen at most once

Slides modified from Prof. Hsu-Chun Hsiao

Step 3: Compute Value of an OPT Solution

• Bottom-up method: solve smaller subproblems first

48

i\w 0 1 2 3 … w … W

0

1

2

i

n

0-1 Knapsack Problem

Input: 𝑛 items where 𝑖-th item has value 𝑣𝑖 and weighs 𝑤𝑖

Output: the max value within 𝑊 capacity, where each item is chosen at most once

Slides modified from Prof. Hsu-Chun Hsiao

Step 3: Compute Value of an OPT Solution

• Bottom-up method: solve smaller subproblems first

49

i\w 0 1 2 3 4 5

0 0 0 0 0 0 0

1 0 4 4 4 4 4

2 0 4 9 13 13 13

3 0 4 9 13 20 24

i wi vi

1 1 4

2 2 9

3 4 20

𝑊 = 5

0-1 Knapsack Problem

Input: 𝑛 items where 𝑖-th item has value 𝑣𝑖 and weighs 𝑤𝑖

Output: the max value within 𝑊 capacity, where each item is chosen at most once

Slides modified from Prof. Hsu-Chun Hsiao

Step 3: Compute Value of an OPT Solution

• Bottom-up method: solve smaller subproblems first

50

ZO-KP(n, v, W)

for w = 0 to W

M[0, w] = 0

for i = 1 to n

for w = 0 to W

if(wi > w)

M[i, w] = M[i-1, w]

else

M[i, w] = max(vi + M[i-1, w-wi], M[i-1, w])

return M[n, W]

0-1 Knapsack Problem

Input: 𝑛 items where 𝑖-th item has value 𝑣𝑖 and weighs 𝑤𝑖

Output: the max value within 𝑊 capacity, where each item is chosen at most once

Slides modified from Prof. Hsu-Chun Hsiao

Step 4: Construct an OPT Solution by
Backtracking

51

ZO-KP(n, v, W)

for w = 0 to W

M[0, w] = 0

for i = 1 to n

for w = 0 to W

if(wi > w)

M[i, w] = M[i-1, w]

else

M[i, w] = max(vi + M[i-1, w-wi], M[i-1, w])

return M[n, W]

Find-Solution(M, n, W)

S = {}

w = W

for i = n to 1

if M[i, w] > M[i – 1, w] // case 1

w = w – wi
S = S ∪ {i}

return S

Slides modified from Prof. Hsu-Chun Hsiao

Knapsack Problem

• Input: 𝑛 items where 𝑖-th item has value 𝑣𝑖 and weighs 𝑤𝑖 (𝑣𝑖 and 𝑤𝑖
are positive integers)

• Output: the maximum value for the knapsack with capacity of 𝑊

• Variants of knapsack problem
• 0-1 Knapsack Problem: 每項物品只能拿一個

• Unbounded Knapsack Problem: 每項物品可以拿多個

• Multidimensional Knapsack Problem: 背包空間有限

• Multiple-Choice Knapsack Problem: 每一類物品最多拿一個

• Fractional Knapsack Problem: 物品可以只拿部分

52Slides modified from Prof. Hsu-Chun Hsiao

Step 1: Characterize an OPT Solution

• Subproblems
• U-KP(i, w): unbounded knapsack problem with 𝑤 capacity for the first 𝑖 items

• Goal: U-KP(n, W)

53

Unbounded Knapsack Problem

Input: 𝑛 items where 𝑖-th item has value 𝑣𝑖 and weighs 𝑤𝑖 has unlimited supplies

Output: the max value within 𝑊 capacity

0-1 Knapsack Problem Unbounded Knapsack Problem

each item can be chosen at most once each item can be chosen multiple times

a sequence of binary choices: whether to

choose item 𝑖
a sequence of 𝑖 choices: which one (from 1
to 𝑖) to choose

Time complexity = Θ 𝑛𝑊 Time complexity = Θ 𝑛2𝑊

Can we do better?

Slides modified from Prof. Hsu-Chun Hsiao

Step 1: Characterize an OPT Solution

• Subproblems
• U-KP(w): unbounded knapsack problem with 𝑤 capacity

• Goal: U-KP(W)

• Optimal substructure: suppose OPT is an optimal solution to U-KP(w),
there are 𝑛 cases:

• Case 1: item 1 in OPT
• Removing an item 1 from OPT is an optimal solution of U-KP(w – w1)

• Case 2: item 2 in OPT
• Removing an item 2 from OPT is an optimal solution of U-KP(w – w2)

:

• Case 𝑛: item 𝑛 in OPT
• Removing an item 𝑛 from OPT is an optimal solution of U-KP(w - wn)

54

Unbounded Knapsack Problem

Input: 𝑛 items where 𝑖-th item has value 𝑣𝑖 and weighs 𝑤𝑖 has unlimited supplies

Output: the max value within 𝑊 capacity

Slides modified from Prof. Hsu-Chun Hsiao

Step 2: Recursively Define the Value of an
OPT Solution

• Optimal substructure: suppose OPT is an optimal solution to U-KP(w),
there are 𝑛 cases:

• Case 𝑖: item 𝑖 in OPT
• Removing an item i from OPT is an optimal solution of U-KP(w – w1)

• Recursively define the value

55

只考慮背包還裝的下的情形

Unbounded Knapsack Problem

Input: 𝑛 items where 𝑖-th item has value 𝑣𝑖 and weighs 𝑤𝑖 has unlimited supplies

Output: the max value within 𝑊 capacity

Slides modified from Prof. Hsu-Chun Hsiao

Step 3: Compute Value of an OPT Solution

• Bottom-up method: solve smaller subproblems first

56

w 0 1 2 3 4 5 … W

M[w]

i wi vi

1 1 4

2 2 9

3 4 17

𝑊 = 5

Unbounded Knapsack Problem

Input: 𝑛 items where 𝑖-th item has value 𝑣𝑖 and weighs 𝑤𝑖 has unlimited supplies

Output: the max value within 𝑊 capacity

Slides modified from Prof. Hsu-Chun Hsiao

Step 3: Compute Value of an OPT Solution

• Bottom-up method: solve smaller subproblems first

57

w 0 1 2 3 4 5

M[w] 0 4 9 13 18 22

Unbounded Knapsack Problem

Input: 𝑛 items where 𝑖-th item has value 𝑣𝑖 and weighs 𝑤𝑖 has unlimited supplies

Output: the max value within 𝑊 capacity

i wi vi

1 1 4

2 2 9

3 4 17

𝑊 = 5

Slides modified from Prof. Hsu-Chun Hsiao

Step 3: Compute Value of an OPT Solution

• Bottom-up method: solve smaller subproblems first

58

U-KP(v, W)

for w = 0 to W

M[w] = 0

for w = 0 to W

for i = 1 to n

if(wi <= w)

tmp = vi + M[w - wi]

M[w] = max(M[w], tmp)

return M[W]

Unbounded Knapsack Problem

Input: 𝑛 items where 𝑖-th item has value 𝑣𝑖 and weighs 𝑤𝑖 has unlimited supplies

Output: the max value within 𝑊 capacity

Slides modified from Prof. Hsu-Chun Hsiao

Step 4: Construct an OPT Solution by
Backtracking

59

U-KP(v, W)

for w = 0 to W

M[w] = 0

for w = 0 to W

for i = 1 to n

if(wi <= w)

tmp = vi + M[w - wi]

M[w] = max(M[w], tmp)

return M[W]

Find-Solution(M, n, W)

for i = 1 to n

C[i] = 0 // C[i] = # of item i in solution

w = W

for i = i to n

while w > 0

if(wi <= w && M[w] == (vi + M[w - wi]))

w = w - wi
C[i] += 1

return C

Slides modified from Prof. Hsu-Chun Hsiao

Knapsack Problem

• Input: 𝑛 items where 𝑖-th item has value 𝑣𝑖 and weighs 𝑤𝑖 (𝑣𝑖 and 𝑤𝑖
are positive integers)

• Output: the maximum value for the knapsack with capacity of 𝑊

• Variants of knapsack problem
• 0-1 Knapsack Problem:每項物品只能拿一個

• Unbounded Knapsack Problem: 每項物品可以拿多個

• Multidimensional Knapsack Problem: 背包空間有限

• Multiple-Choice Knapsack Problem: 每一類物品最多拿一個

• Fractional Knapsack Problem: 物品可以只拿部分

60Slides modified from Prof. Hsu-Chun Hsiao

Step 1: Characterize an OPT Solution

• Subproblems
• M-KP(i, w, d): multidimensional knapsack problem with 𝑤 capacity and 𝑑 size for

the first 𝑖 items

• Goal: M-KP(n, W, D)

• Optimal substructure: suppose OPT is an optimal solution to M-KP(i, w,
d), there are 2 cases:

• Case 1: item 𝑖 in OPT
• OPT\{𝑖} is an optimal solution of M-KP(i - 1, w - wi, d – di)

• Case 2: item 𝑖 not in OPT
• OPT is an optimal solution of M-KP(i - 1, w, d)

61

Multidimensional Knapsack Problem

Input: 𝑛 items where 𝑖-th item has value 𝑣𝑖, weighs 𝑤𝑖, and size 𝑑𝑖
Output: the max value within 𝑊 capacity and with the size of 𝑫, where each item is

chosen at most once

Slides modified from Prof. Hsu-Chun Hsiao

Step 2: Recursively Define the Value of an
OPT Solution

• Optimal substructure: suppose OPT is an optimal solution to M-KP(i,
w, d), there are 2 cases:

• Case 1: item 𝑖 in OPT
• OPT\{𝑖} is an optimal solution of M-KP(i - 1, w - wi, d – di)

• Case 2: item 𝑖 not in OPT
• OPT is an optimal solution of M-KP(i - 1, w, d)

• Recursively define the value

62

Multidimensional Knapsack Problem

Input: 𝑛 items where 𝑖-th item has value 𝑣𝑖, weighs 𝑤𝑖, and size 𝑑𝑖
Output: the max value within 𝑊 capacity and with the size of 𝑫, where each item is

chosen at most once

Slides modified from Prof. Hsu-Chun Hsiao

Exercise

• Step 3: Compute Value of an OPT Solution

• Step 4: Construct an OPT Solution by Backtracking

• What is the time complexity?

63

Multidimensional Knapsack Problem

Input: 𝑛 items where 𝑖-th item has value 𝑣𝑖, weighs 𝑤𝑖, and size 𝑑𝑖
Output: the max value within 𝑊 capacity and with the size of 𝑫, where each item is

chosen at most once

Slides modified from Prof. Hsu-Chun Hsiao

Knapsack Problem

• Input: 𝑛 items where 𝑖-th item has value 𝑣𝑖 and weighs 𝑤𝑖 (𝑣𝑖 and 𝑤𝑖
are positive integers)

• Output: the maximum value for the knapsack with capacity of 𝑊

• Variants of knapsack problem
• 0-1 Knapsack Problem: 每項物品只能拿一個

• Unbounded Knapsack Problem: 每項物品可以拿多個

• Multidimensional Knapsack Problem: 背包空間有限

• Multiple-Choice Knapsack Problem: 每一類物品最多拿一個

• Fractional Knapsack Problem: 物品可以只拿部分

64Slides modified from Prof. Hsu-Chun Hsiao

Multiple-Choice Knapsack Problem

• Input: 𝑛 items
• 𝑣𝑖,𝑗: value of 𝑗-th item in the group 𝑖

• 𝑤𝑖,𝑗: weight of 𝑗-th item in the group 𝑖

• 𝑛𝑖: number of items in group 𝑖

• 𝑛: total number of items (σ𝑛𝑖)

• 𝐺: total number of groups

• Output: the maximum value for the knapsack with capacity of 𝑊,
where the item from each group can be selected at most once

65

group 1 group 2 group 3

Slides modified from Prof. Hsu-Chun Hsiao

Step 1: Characterize an OPT Solution

• Subproblems
• MC-KP(w): 𝑤 capacity

• MC-KP(i, w): 𝑤 capacity for the first 𝑖 groups

• MC-KP(i, j, w): 𝑤 capacity for the first 𝑗 items from first 𝑖 groups

66

Multiple-Choice Knapsack Problem

Input: 𝑛 items with value 𝑣𝑖,𝑗 and weighs 𝑤𝑖,𝑗 (𝑛𝑖: #items in group 𝑖, 𝐺: #groups)

Output: the max value within 𝑊 capacity, where each group is chosen at most once

Which one is more suitable for this problem?

Slides modified from Prof. Hsu-Chun Hsiao

Step 1: Characterize an OPT Solution

• Subproblems
• MC-KP(w): 𝑤 capacity

• MC-KP(i, w): 𝑤 capacity for the first 𝑖 groups

• MC-KP(i, j, w): 𝑤 capacity for the first 𝑗 items from first 𝑖 groups

67

Multiple-Choice Knapsack Problem

Input: 𝑛 items with value 𝑣𝑖,𝑗 and weighs 𝑤𝑖,𝑗 (𝑛𝑖: #items in group 𝑖, 𝐺: #groups)

Output: the max value within 𝑊 capacity, where each group is chosen at most once

Which one is more suitable for this problem?

the constraint is for groups

Slides modified from Prof. Hsu-Chun Hsiao

Step 1: Characterize an OPT Solution

• Subproblems
• MC-KP(i, w): multi-choice knapsack problem with 𝑤 capacity for first 𝑖 groups

• Goal: MC-KP(G, W)

• Optimal substructure: suppose OPT is an optimal solution to MC-KP(i,
w), for the group 𝑖, there are 𝑛𝑖 + 1 cases:

• Case 1: no item from 𝑖-th group in OPT
• OPT is an optimal solution of MC-KP(i - 1, w)

:

• Case 𝑗 + 1: 𝑗-th item from 𝑖-th group (itemi,j) in OPT
• OPT\itemi,j is an optimal solution of MC-KP(i - 1, w – wi,j)

68

Multiple-Choice Knapsack Problem

Input: 𝑛 items with value 𝑣𝑖,𝑗 and weighs 𝑤𝑖,𝑗 (𝑛𝑖: #items in group 𝑖, 𝐺: #groups)

Output: the max value within 𝑊 capacity, where each group is chosen at most once

Slides modified from Prof. Hsu-Chun Hsiao

Step 2: Recursively Define the Value of an
OPT Solution

• Optimal substructure: suppose OPT is an optimal solution to MC-
KP(i, w), for the group 𝑖, there are 𝑛𝑖 + 1 cases:

• Case 1: no item from 𝑖-th group in OPT
• OPT is an optimal solution of MC-KP(i - 1, w)

• Case 𝑗 + 1: 𝑗-th item from 𝑖-th group (itemi,j) in OPT
• OPT\itemi,j is an optimal solution of MC-KP(i - 1, w – wi,j)

• Recursively define the value

69
𝑛𝑖 + 1

Multiple-Choice Knapsack Problem

Input: 𝑛 items with value 𝑣𝑖,𝑗 and weighs 𝑤𝑖,𝑗 (𝑛𝑖: #items in group 𝑖, 𝐺: #groups)

Output: the max value within 𝑊 capacity, where each group is chosen at most once

Slides modified from Prof. Hsu-Chun Hsiao

Step 3: Compute Value of an OPT Solution

• Bottom-up method: solve smaller subproblems first

70

i\w 0 1 2 3 … w … W

0

1

2

i

n

Multiple-Choice Knapsack Problem

Input: 𝑛 items with value 𝑣𝑖,𝑗 and weighs 𝑤𝑖,𝑗 (𝑛𝑖: #items in group 𝑖, 𝐺: #groups)

Output: the max value within 𝑊 capacity, where each group is chosen at most once

Slides modified from Prof. Hsu-Chun Hsiao

Step 3: Compute Value of an OPT Solution

• Bottom-up method: solve smaller subproblems first

71

MC-KP(n, v, W)

for w = 0 to W

M[0, w] = 0

for i = 1 to G // consider groups 1 to i

for w = 0 to W // consider capacity = w

M[i, w] = M[i - 1, w]

for j = 1 to ni // check j-th item in group i

if(vi,j + M[i - 1, w - wi,j] > M[i, w])

M[i, w] = vi,j + M[i - 1, w - wi,j]

return M[G, W]

Multiple-Choice Knapsack Problem

Input: 𝑛 items with value 𝑣𝑖,𝑗 and weighs 𝑤𝑖,𝑗 (𝑛𝑖: #items in group 𝑖, 𝐺: #groups)

Output: the max value within 𝑊 capacity, where each group is chosen at most once

Slides modified from Prof. Hsu-Chun Hsiao

Step 4: Construct an OPT Solution by
Backtracking

72

MC-KP(n, v, W)

for w = 0 to W

M[0, w] = 0

for i = 1 to G // consider groups 1 to i

for w = 0 to W // consider capacity = w

M[i, w] = M[i - 1, w]

for j = 1 to ni // check items in group i

if(vi,j + M[i - 1, w - wi,j] > M[i, w])

M[i, w] = vi,j + M[i - 1, w - wi,j]

B[i, w] = j

return M[G, W], B[G, W]

Practice to write the pseudo code for Find-Solution()

Slides modified from Prof. Hsu-Chun Hsiao

Knapsack Problem

• Input: 𝑛 items where 𝑖-th item has value 𝑣𝑖 and weighs 𝑤𝑖 (𝑣𝑖 and 𝑤𝑖
are positive integers)

• Output: the maximum value for the knapsack with capacity of 𝑊

• Variants of knapsack problem
• 0-1 Knapsack Problem: 每項物品只能拿一個

• Unbounded Knapsack Problem: 每項物品可以拿多個

• Multidimensional Knapsack Problem: 背包空間有限

• Multiple-Choice Knapsack Problem: 每一類物品最多拿一個

• Fractional Knapsack Problem: 物品可以只拿部分

73Slides modified from Prof. Hsu-Chun Hsiao

Fractional Knapsack Problem

• Input: 𝑛 items where 𝑖-th item has value 𝑣𝑖 and weighs 𝑤𝑖 (𝑣𝑖 and 𝑤𝑖
are positive integers)

• Output: the maximum value for the knapsack with capacity of 𝑊,
where we can take any fraction of items

• Dynamic programming algorithm should work

• Choose maximal
𝑣𝑖

𝑤𝑖
(類似CP值) first

74

“Greedy Algorithm”

Next topic!

Can we do better?

Slides modified from Prof. Hsu-Chun Hsiao

Pseudo-Polynomial

75

Pseudo-Polynomial Time

• Polynomial: polynomial in the length of the input (#bits for the input)

• Pseudo-polynomial: polynomial in the numeric value

• The time complexity of 0-1 knapsack problem is Θ 𝑛𝑊
• 𝑛: number of objects

• 𝑊: knapsack’s capacity (non-negative integer)

• polynomial in the numeric value

= pseudo-polynomial in input size

= exponential in the length of the input

76https://youtu.be/9oI7fg-MIpE

Time Complexity Definition

• Time complexity is in measure the time an algorithm takes to run as a
function of

• the length of the input in bits

• the value of the input

77

function(n)

for i = 1 to n

print i

function(a[1…n])

for i = 1 to n

print a[i]

a

𝑛

𝑛 = 4 = 100

𝑛 = 8 = 1000

𝑛 = 16 = 10000

3

4

5

𝑂 𝑛

• n is a value • a is an array
a = [0, 1, 1]

a = [0, 1, 0, 1]

a = [0, 1, 0, 1, 1]

3

4

5

𝑂(𝑛)
= 𝑂 2bits in 𝑛

= 𝑂 2𝑚

Time Complexity Definition

• Time complexity is in measure the time an algorithm takes to run as a
function of

• the length of the input in bits

• the value of the input

• The time complexity of 0-1 knapsack problem is Θ 𝑛𝑊
• 𝑛: number of objects

• 𝑊: knapsack’s capacity (non-negative integer)

78

function(n)

for i = 1 to n

print i

function(a)

for i = 1 to n

print i

𝑂 𝑛

• n is a value • a is an array

𝑂(𝑛)
= 𝑂 2bits in 𝑛

= Θ 𝑛2bits in𝑊

= exponential in the length of the input

= polynomial in the numeric value

= pseudo-polynomial in input size

= 𝑂 2𝑚

= 𝑂 𝑛2𝑚

Concluding Remarks

• “Dynamic Programming”: solve many subproblems in polynomial time for
which a naïve approach would take exponential time

• When to use DP
• Whether subproblem solutions can combine into the original solution

• When subproblems are overlapping

• Whether the problem has optimal substructure

• Common for optimization problem

• Two ways to avoid recomputation
• Top-down with memoization

• Bottom-up method

• Complexity analysis
• Space for tabular filling

• Size of the subproblem graph

79

Question?
Important announcement will be sent to
@ntu.edu.tw mailbox & post to the course website

Course Website: http://ada.miulab.tw

Email: ada-ta@csie.ntu.edu.tw

