
Algorithm Design and Analysis
演算法設計與分析

Yun-Nung (Vivian) Chen 陳縕儂
(Slides modified from Hsu-Chun Hsiao)

5.1

Dynamic Programming

動態規劃 (1)

http://ada.miulab.tw

Outline
• Dynamic Programming
• DP #1: Rod Cutting

• DP #2: Stamp Problem

• DP #3: Matrix-Chain Multiplication

• DP #4: Weighted Interval Scheduling

• DP #5: Sequence Alignment Problem
• Longest Common Subsequence (LCS) / Edit Distance

• Viterbi Algorithm

• Space Efficient Algorithm

• DP #6: Knapsack Problem
• 0/1 Knapsack

• Unbounded Knapsack

• Multidimensional Knapsack

• Fractional Knapsack

2

動腦一下 – 囚犯問題
• 有100個死囚，隔天執行死刑，典獄長開恩給他們一個存活的機會。

• 當隔天執行死刑時，每人頭上戴一頂帽子(黑或白)排成一隊伍，在死刑執行前，由隊
伍中最後的囚犯開始，每個人可以猜測自己頭上的帽子顏色(只允許說黑或白)，猜對
則免除死刑，猜錯則執行死刑。

• 若這些囚犯可以前一天晚上先聚集討論方案，是否有好的方法可以使總共存活的囚
犯數量期望值最高？

3

猜測規則
• 囚犯排成一排，每個人可以看到前面所有人的帽子，但看不到自己及後面囚犯的。

• 由最後一個囚犯開始猜測，依序往前。

• 每個囚犯皆可聽到之前所有囚犯的猜測內容。

4

……

Example: 奇數者猜測內容為前面一位的帽子顏色→存活期望值為75人

有沒有更多人可以存活的好策略?

Algorithm Design Strategy

• Do not focus on “specific algorithms”

• But “some strategies” to “design” algorithms

• First Skill: Divide-and-Conquer (各個擊破/分治法)

• Second Skill: Dynamic Programming (動態規劃)

5

Dynamic Programming

6

Textbook Chapter 15 – Dynamic Programming

Textbook Chapter 15.3 – Elements of dynamic programming

Slides modified from Prof. Hsu-Chun Hsiao

What is Dynamic Programming?

• Dynamic programming, like the divide-and-conquer method, solves
problems by combining the solutions to subproblems.

• 用空間換取時間

• 讓走過的留下痕跡

• “Dynamic”: time-varying

• “Programming”: a tabular method

7

Dynamic Programming: planning over time

Slides modified from Prof. Hsu-Chun Hsiao

Algorithm Design Paradigms

8

• Divide-and-Conquer
• partition the problem into

independent or disjoint
subproblems

• repeatedly solving the common
subsubproblems

→ more work than necessary

• Dynamic Programming
• partition the problem into dependent

or overlapping subproblems

• avoid recomputation
✓Top-down with memoization

✓Bottom-up method

Slides modified from Prof. Hsu-Chun Hsiao

Dynamic Programming Procedure

• Apply four steps

1. Characterize the structure of an optimal solution

2. Recursively define the value of an optimal solution

3. Compute the value of an optimal solution, typically in a bottom-up fashion

4. Construct an optimal solution from computed information

9Slides modified from Prof. Hsu-Chun Hsiao

Rethink Fibonacci Sequence

• Fibonacci sequence (費波那契數列)

• Base case: F(0) = F(1) = 1

• Recursive case: F(n) = F(n-1) + F(n-2)

10

Fibonacci(n)

if n < 2 // base case

return 1

// recursive case

return Fibonacci(n-1)+Fibonacci(n-2)

F(5)

F(4) F(3)

F(3) F(2) F(2) F(1)

F(2) F(1) F(1) F(0) F(1) F(0)

F(1) F(0) Calling overlapping subproblems result in poor efficiency

✓F(3) was computed twice

✓F(2) was computed 3 times

Slides modified from Prof. Hsu-Chun Hsiao

Fibonacci Sequence
Top-Down with Memoization

• Solve the overlapping subproblems recursively with memoization

• Check the memo before making the calls

11

F(5)

F(4) F(3)

F(3) F(2)

F(2) F(1)

F(1) F(0)

備忘錄

n 0 1 2 3 4 5

F(n) 1 1 ? ? ? ?2 3 5 8

Avoid recomputation of the same subproblems using memo

Slides modified from Prof. Hsu-Chun Hsiao

Fibonacci Sequence
Top-Down with Memoization

12

Memoized-Fibonacci(n)

// initialize memo (array a[])

a[0] = 1

a[1] = 1

for i = 2 to n

a[i] = 0

return Memoized-Fibonacci-Aux(n, a)

Memoized-Fibonacci-Aux(n, a)

if a[n] > 0

return a[n]

// save the result to avoid recomputation

a[n] = Memoized-Fibonacci-Aux(n-1, a) + Memoized-Fibonacci-Aux(n-2, a)

return a[n]

Slides modified from Prof. Hsu-Chun Hsiao

Fibonacci Sequence
Bottom-Up Method

• Building up solutions to larger and larger subproblems

13

Bottom-Up-Fibonacci(n)

if n < 2

return 1

a[0] = 1

a[1] = 1

for i = 2 … n

a[i] = a[i-1] + a[i-2]

return a[n]

F(5)

F(4)

F(3)

F(2)

F(1)

F(0) Avoid recomputation of the same subproblems

Slides modified from Prof. Hsu-Chun Hsiao

Optimization Problem

• Principle of Optimality

• Any subpolicy of an optimum policy must itself be an optimum policy with
regard to the initial and terminal states of the subpolicy

• Two key properties of DP for optimization

• Overlapping subproblems

• Optimal substructure – an optimal solution can be constructed from optimal
solutions to subproblems

✓Reduce search space (ignore non-optimal solutions)

14

If the optimal substructure (principle of optimality) does not hold, then it is

incorrect to use DP

Slides modified from Prof. Hsu-Chun Hsiao

Optimal Substructure Example

• Shortest Path Problem

• Input: a graph where the edges have positive costs

• Output: a path from S to T with the smallest cost

15

Taipei (T)

Tainan (S)

M

CS→M

CM→T

C’S→M < CS→M?

The path costing CS→M+ CM→T is the shortest path from S to T

→ The path with the cost CS→M must be a shortest path from S to M

Proof by “Cut-and-Paste” argument (proof by contradiction):

Suppose that it exists a path with smaller cost C’S→M, then we can

“cut” CS→M and “paste” C’S→M to make the original cost smaller

Slides modified from Prof. Hsu-Chun Hsiao

DP#1: Rod Cutting

16

Textbook Chapter 15.1 – Rod Cutting

Slides modified from Prof. Hsu-Chun Hsiao

Rod Cutting Problem

• Input: a rod of length 𝑛 and a table of prices 𝑝𝑖 for 𝑖 = 1,… , 𝑛

• Output: the maximum revenue 𝑟𝑛 obtainable by cutting up the rod and
selling the pieces

17

length 𝑖 (m) 1 2 3 4 5

price 𝑝𝑖 1 5 8 9 10

4m

2m

2m

Slides modified from Prof. Hsu-Chun Hsiao

Brute-Force Algorithm

• A rod with the length = 4

18

4m

3m 1m

2m 2m

3m1m

2m 1m1m

1m1m 2m

2m1m1m

1m1m1m1m

→ 9

→ 8 + 1 = 9

→ 5 + 5 = 10

→ 1 + 8 = 9

→ 5 + 1 + 1 = 7

→ 1 + 5 + 1 = 7

→ 1 + 1 + 5 = 7

→ 1 + 1 + 1 + 1 = 4

length 𝑖 (m) 1 2 3 4 5

price 𝑝𝑖 1 5 8 9 10

Slides modified from Prof. Hsu-Chun Hsiao

Brute-Force Algorithm

• A rod with the length = 𝑛

• For each integer position, we can choose “cut” or “not cut”

• There are 𝑛 – 1 positions for consideration

• The total number of cutting results is 2𝑛−1 = Θ 2𝑛−1

19

n

length 𝑖 (m) 1 2 3 4 5

price 𝑝𝑖 1 5 8 9 10

Slides modified from Prof. Hsu-Chun Hsiao

https://www.dc-dream.com/stkinfo/?kind=sticker&stkno=2325

Recursive Thinking

• We use a recursive function to solve the subproblems

• If we know the answer to the subproblem, can we get the answer to
the original problem?

• Optimal substructure – an optimal solution can be constructed from
optimal solutions to subproblems

20

𝑟𝑛−𝑖𝑟𝑖

no cut

cut at the i-th position (from left to right)

𝑟𝑛: the maximum revenue

obtainable for a rod of

length 𝑛

Slides modified from Prof. Hsu-Chun Hsiao

Recursive Algorithms

• Version 1

• Version 2
• try to reduce the number of subproblems → focus on the left-most cut

21

no cut

cut at the i-th position (from left to right)

left-most value maximum value obtainable from

the remaining part

𝑟𝑛−𝑖𝑝𝑖

Slides modified from Prof. Hsu-Chun Hsiao

Recursive Procedure

• Focus on the left-most cut
• assume that we always cut from left to right → the first cut

22

optimal solution to subproblems

𝑟𝑛−𝑖𝑝𝑖

𝑟𝑛−1𝑝1

𝑟𝑛−2𝑝2
:

:

optimal solution

Rod cutting problem has optimal substructure

Slides modified from Prof. Hsu-Chun Hsiao

Naïve Recursion Algorithm

• 𝑇 𝑛 = time for running Cut-Rod(p, n)

23

Cut-Rod(p, n)

// base case

if n == 0

return 0

// recursive case

q = -∞
for i = 1 to n

q = max(q, p[i] + Cut-Rod(p, n - i))

return q

Slides modified from Prof. Hsu-Chun Hsiao

Naïve Recursion Algorithm

• Rod cutting problem

24

Cut-Rod(p, n)

// base case

if n == 0

return 0

// recursive case

q = -∞
for i = 1 to n

q = max(q, p[i] + Cut-Rod(p, n - i))

return q

CR(4)

CR(3) CR(0)

CR(2) CR(1) CR(1) CR(0)

CR(1) CR(0) CR(0)

CR(0)

CR(0)

Calling overlapping subproblems result in poor efficiency

CR(2) CR(1)

CR(0)

CR(0)

Slides modified from Prof. Hsu-Chun Hsiao

Dynamic Programming

• Idea: use space for better time efficiency

• Rod cutting problem has overlapping subproblems and optimal
substructures → can be solved by DP

• When the number of subproblems is polynomial, the time complexity is
polynomial using DP

• DP algorithm

• Top-down: solve overlapping subproblems recursively with memoization

• Bottom-up: build up solutions to larger and larger subproblems

25Slides modified from Prof. Hsu-Chun Hsiao

Dynamic Programming

26

• Top-Down with Memoization
• Solve recursively and memo the

subsolutions (跳著填表)

• Suitable that not all subproblems
should be solved

• Bottom-Up with Tabulation
• Fill the table from small to large

• Suitable that each small problem
should be solved

f(0) f(1) f(2) … f(n) f(0) f(1) f(2) … f(n)

Slides modified from Prof. Hsu-Chun Hsiao

Algorithm for Rod Cutting Problem
Top-Down with Memoization

• 𝑇 𝑛 = time for running Memoized-Cut-Rod(p, n)

27

Memoized-Cut-Rod(p, n)

// initialize memo (an array r[] to keep max revenue)

r[0] = 0

for i = 1 to n

r[i] = -∞ // r[i] = max revenue for rod with length = i

return Memorized-Cut-Rod-Aux(p, n, r)

Memoized-Cut-Rod-Aux(p, n, r)

if r[n] >= 0

return r[n] // return the saved solution

q = -∞

for i = 1 to n

q = max(q, p[i] + Memoized-Cut-Rod-Aux(p, n-i, r))

r[n] = q // update memo

return q

Slides modified from Prof. Hsu-Chun Hsiao

Algorithm for Rod Cutting Problem
Bottom-Up with Tabulation

• 𝑇 𝑛 = time for running Bottom-Up-Cut-Rod(p, n)

28

Bottom-Up-Cut-Rod(p, n)

r[0] = 0

for j = 1 to n // compute r[1], r[2], ... in order

q = -∞

for i = 1 to j

q = max(q, p[i] + r[j - i])

r[j] = q

return r[n]

Slides modified from Prof. Hsu-Chun Hsiao

Rod Cutting Problem

• Input: a rod of length 𝑛 and a table of prices 𝑝𝑖 for 𝑖 = 1,… , 𝑛

• Output: the maximum revenue 𝑟𝑛 obtainable and the list of cut pieces

29

4m

2m

2m

length 𝑖 (m) 1 2 3 4 5

price 𝑝𝑖 1 5 8 9 10

Slides modified from Prof. Hsu-Chun Hsiao

Algorithm for Rod Cutting Problem
Bottom-Up with Tabulation

• Add an array to keep the cutting positions cut

30

Extended-Bottom-Up-Cut-Rod(p, n)

r[0] = 0

for j = 1 to n //compute r[1], r[2], ... in order

q = -∞

for i = 1 to j

if q < p[i] + r[j - i]

q = p[i] + r[j - i]

cut[j] = i // the best first cut for len j rod

r[i] = q

return r[n], cut

Print-Cut-Rod-Solution(p, n)

(r, cut) = Extended-Bottom-up-Cut-Rod(p, n)

while n > 0

print cut[n]

n = n – cut[n] // remove the first piece

Slides modified from Prof. Hsu-Chun Hsiao

f(0) f(1) f(2) … f(n)

Dynamic Programming

• Top-Down with Memoization

• Better when some subproblems
not be solved at all

• Solve only the required parts of
subproblems

31

• Bottom-Up with Tabulation

• Better when all subproblems must
be solved at least once

• Typically outperform top-down
method by a constant factor

• No overhead for recursive calls

• Less overhead for maintaining the table

f(0) f(1) f(2) … f(n)
F(5)

F(4)

F(3)

F(2)

F(1)

F(0)

Slides modified from Prof. Hsu-Chun Hsiao

Informal Running Time Analysis

• Approach 1: approximate via (#subproblems) * (#choices for each
subproblem)

• For rod cutting

• #subproblems = n

• #choices for each subproblem = O(n)

• → T(n) is about O(n2)

• Approach 2: approximate via subproblem graphs

32Slides modified from Prof. Hsu-Chun Hsiao

Subproblem Graphs

• The size of the subproblem graph allows us to estimate the time
complexity of the DP algorithm

• A graph illustrates the set of subproblems involved and how
subproblems depend on another 𝐺 = 𝑉, 𝐸 (E: edge, V: vertex)

• 𝑉 : #subproblems

• A subproblem is run only once

• |𝐸|: sum of #subsubproblems are needed for each subproblem

• Time complexity: linear to 𝑂(𝐸 + 𝑉)

33

Bottom-up: Reverse Topological Sort

Top-down: Depth First Search
Graph Algorithm

(taught later)

F(5)

F(4)

F(3)

F(2)

F(1)

F(0)

Slides modified from Prof. Hsu-Chun Hsiao

Dynamic Programming Procedure

1. Characterize the structure of an optimal solution

✓ Overlapping subproblems: revisit same subproblems

✓ Optimal substructure: an optimal solution to the problem contains within it
optimal solutions to subproblems

2. Recursively define the value of an optimal solution

✓ Express the solution of the original problem in terms of optimal solutions for
subproblems

3. Compute the value of an optimal solution

✓ Typically in a bottom-up fashion

4. Construct an optimal solution from computed information

✓ Step 3 and 4 may be combined

34Slides modified from Prof. Hsu-Chun Hsiao

Revisit DP for Rod Cutting Problem

1. Characterize the structure of an optimal solution

2. Recursively define the value of an optimal solution

3. Compute the value of an optimal solution

4. Construct an optimal solution from computed information

35Slides modified from Prof. Hsu-Chun Hsiao

Step 1: Characterize an OPT Solution

• Step 1-Q1: What can be the subproblems?

• Step 1-Q2: Does it exhibit optimal structure? (an optimal solution can
be represented by the optimal solutions to subproblems)

• Yes. → continue

• No. → go to Step 1-Q1 or there is no DP solution for this problem

36

Rod Cutting Problem

Input: a rod of length 𝑛 and a table of prices 𝑝𝑖 for 𝑖 = 1,… , 𝑛
Output: the maximum revenue 𝑟𝑛 obtainable

Slides modified from Prof. Hsu-Chun Hsiao

Step 1: Characterize an OPT Solution

• Step 1-Q1: What can be the subproblems?
• Subproblems: Cut-Rod(0), Cut-Rod(1), …, Cut-Rod(n-1)

• Cut-Rod(i): rod cutting problem with length-i rod

• Goal: Cut-Rod(n)

• Suppose we know the optimal solution to Cut-Rod(i), there are i cases:

• Case 1: the first segment in the solution has length 1

• Case 2: the first segment in the solution has length 2

• Case i: the first segment in the solution has length i

37

從solution中拿掉一段長度為1的鐵條, 剩下的部分是Cut-Rod(i-1)的最佳解

從solution中拿掉一段長度為2的鐵條, 剩下的部分是Cut-Rod(i-2)的最佳解

從solution中拿掉一段長度為i的鐵條, 剩下的部分是Cut-Rod(0)的最佳解

Rod Cutting Problem

Input: a rod of length 𝑛 and a table of prices 𝑝𝑖 for 𝑖 = 1,… , 𝑛
Output: the maximum revenue 𝑟𝑛 obtainable

:

Slides modified from Prof. Hsu-Chun Hsiao

Step 1: Characterize an OPT Solution

• Step 1-Q2: Does it exhibit optimal structure? (an optimal solution can
be represented by the optimal solutions to subproblems)

• Yes. Prove by contradiction.

38

Rod Cutting Problem

Input: a rod of length 𝑛 and a table of prices 𝑝𝑖 for 𝑖 = 1,… , 𝑛
Output: the maximum revenue 𝑟𝑛 obtainable

Slides modified from Prof. Hsu-Chun Hsiao

Step 2: Recursively Define the Value of an
OPT Solution

• Suppose we know the optimal solution to Cut-Rod(i), there are i cases:

• Case 1: the first segment in the solution has length 1

• Case 2: the first segment in the solution has length 2

:

• Case i: the first segment in the solution has length i

• Recursively define the value

39

從solution中拿掉一段長度為1的鐵條, 剩下的部分是Cut-Rod(i-1)的最佳解

從solution中拿掉一段長度為2的鐵條, 剩下的部分是Cut-Rod(i-2)的最佳解

從solution中拿掉一段長度為i的鐵條, 剩下的部分是Cut-Rod(0)的最佳解

Rod Cutting Problem

Input: a rod of length 𝑛 and a table of prices 𝑝𝑖 for 𝑖 = 1,… , 𝑛
Output: the maximum revenue 𝑟𝑛 obtainable

Slides modified from Prof. Hsu-Chun Hsiao

Step 3: Compute Value of an OPT Solution

• Bottom-up method: solve smaller subproblems first

40

i 0 1 2 3 4 5 … n

r[i]

Bottom-Up-Cut-Rod(p, n)

r[0] = 0

for j = 1 to n // compute r[1], r[2], ... in order

q = -∞

for i = 1 to j

q = max(q, p[i] + r[j - i])

r[j] = q

return r[n]

Rod Cutting Problem

Input: a rod of length 𝑛 and a table of prices 𝑝𝑖 for 𝑖 = 1,… , 𝑛
Output: the maximum revenue 𝑟𝑛 obtainable

Slides modified from Prof. Hsu-Chun Hsiao

Step 4: Construct an OPT Solution by
Backtracking

• Bottom-up method: solve smaller subproblems first

41

i 0 1 2 3 4 5 … n

r[i] 0

cut[i] 0 1

1

2

5

3

8

2

10

length 𝑖 1 2 3 4 5

price 𝑝𝑖 1 5 8 9 10

Rod Cutting Problem

Input: a rod of length 𝑛 and a table of prices 𝑝𝑖 for 𝑖 = 1,… , 𝑛
Output: the maximum revenue 𝑟𝑛 obtainable

Slides modified from Prof. Hsu-Chun Hsiao

Step 4: Construct an OPT Solution by
Backtracking

42

Cut-Rod(p, n)

r[0] = 0

for j = 1 to n // compute r[1], r[2], ... in order

q = -∞

for i = 1 to j

if q < p[i] + r[j - i]

q = p[i] + r[j - i]

cut[j] = i // the best first cut for len j rod

r[i] = q

return r[n], cut

Print-Cut-Rod-Solution(p, n)

(r, cut) = Cut-Rod(p, n)

while n > 0

print cut[n]

n = n – cut[n] // remove the first piece

Slides modified from Prof. Hsu-Chun Hsiao

DP#2: Stamp Problem

43

Stamp Problem

• Input: the postage 𝑛 and the stamps with values 𝑣1, 𝑣2, … , 𝑣𝑘

• Output: the minimum number of stamps to “exactly” cover the postage

44

A Recursive Algorithm

• The optimal solution 𝑆𝑛 can be recursively defined as

45

Stamp(v, n)

r_min = ∞

if n == 0 // base case

return 0

for i = 1 to k // recursive case

r[i] = Stamp(v, n - v[i])

if r[i] < r_min

r_min = r[i]

return r_min + 1

Step 1: Characterize an OPT Solution

• Subproblems
• S(i): the min #stamps with postage i

• Goal: S(n)

• Optimal substructure: suppose we know the optimal solution to S(i), there are k
cases:

• Case 1: there is a stamp with v1 in OPT

• Case 2: there is a stamp with v2 in OPT

:

• Case k: there is a stamp with vk in OPT

46

Stamp Problem

Input: the postage 𝑛 and the stamps with values 𝑣1, 𝑣2, … , 𝑣𝑘
Output: the minimum number of stamps to cover the postage

從solution中拿掉一張郵資為v1的郵票, 剩下的部分是S(i-v[1])的最佳解

從solution中拿掉一張郵資為v2的郵票, 剩下的部分是S(i-v[2])的最佳解

從solution中拿掉一張郵資為vk的郵票, 剩下的部分是S(i-v[k])的最佳解

Step 2: Recursively Define the Value of an
OPT Solution

• Suppose we know the optimal solution to S(i), there are k cases:

• Case 1: there is a stamp with v1 in OPT

• Case 2: there is a stamp with v2 in OPT

:

• Case k: there is a stamp with vk in OPT

• Recursively define the value

47

從solution中拿掉一張郵資為v1的郵票, 剩下的部分是S(i-v[1])的最佳解

從solution中拿掉一張郵資為v2的郵票, 剩下的部分是S(i-v[2])的最佳解

從solution中拿掉一張郵資為vk的郵票, 剩下的部分是S(i-v[k])的最佳解

Stamp Problem

Input: the postage 𝑛 and the stamps with values 𝑣1, 𝑣2, … , 𝑣𝑘
Output: the minimum number of stamps to cover the postage

Stamp Problem

Input: the postage 𝑛 and the stamps with values 𝑣1, 𝑣2, … , 𝑣𝑘
Output: the minimum number of stamps to cover the postage

Step 3: Compute Value of an OPT Solution

• Bottom-up method: solve smaller subproblems first

48

i 0 1 2 3 4 5 … n

S[i]

Stamp(v, n)

S[0] = 0

for i = 1 to n // compute r[1], r[2], ... in order

r_min = ∞

for j = 1 to k

if S[i - v[j]] < r_min

r_min = 1 + S[i – v[j]]

S[i] = r_min

return S[n]

Step 4: Construct an OPT Solution by
Backtracking

49

Stamp(v, n)

S[0] = 0

for i = 1 to n

r_min = ∞

for j = 1 to k

if S[i - v[j]] < r_min

r_min = 1 + S[i – v[j]]

B[i] = j // backtracking for stamp with v[j]

S[i] = r_min

return S[n], B

Print-Stamp-Selection(v, n)

(S, B) = Stamp(v, n)

while n > 0

print B[n]

n = n – v[B[n]]

DP#3: Matrix-Chain Multiplication

50

Textbook Chapter 15.2 – Matrix-chain multiplication

Matrix-Chain Multiplication

• Input: a sequence of n matrices 𝐴1, … , 𝐴𝑛
• Output: the product of 𝐴1𝐴2…𝐴𝑛

51

𝐴1 𝐴2 𝐴3 𝐴4
𝐴𝑛

……

𝐴1.cols=𝐴2.rows

𝐴1and 𝐴2are compatible.

Observation

• Each entry takes 𝑞 multiplications

• There are total 𝑝𝑟 entries

52

A B C

Matrix multiplication is associative: 𝐴 𝐵𝐶 = (𝐴𝐵)𝐶. The time required by

obtaining 𝐴 × 𝐵 × 𝐶 could be affected by which two matrices multiply first .

Example

• Overall time is

53

= =

Example

• Overall time is

54

= =

Matrix-Chain Multiplication Problem

• Input: a sequence of integers 𝑙0, 𝑙1, … , 𝑙𝑛
• 𝑙𝑖−1 is the number of rows of matrix 𝐴𝑖
• 𝑙𝑖 is the number of columns of matrix 𝐴𝑖

• Output: an order of performing 𝑛 − 1 matrix multiplications in the
minimum number of operations to obtain the product of 𝐴1𝐴2…𝐴𝑛

55

𝐴1 𝐴2 𝐴3 𝐴4
𝐴𝑛

……

𝐴1.cols=𝐴2.rows

𝐴1and 𝐴2are compatible.

Do not need to compute the result but find the fast way to get the result!

(computing “how to fast compute” takes less time than “computing via a bad way”)

Brute-Force Naïve Algorithm

• 𝑃𝑛: how many ways for 𝑛 matrices to be multiplied

• The solution of 𝑃𝑛 is Catalan numbers, Ω
4𝑛

𝑛
3
2

, or is also Ω 2𝑛

56

Exercise 15.2-3

Step 1: Characterize an OPT Solution

• Subproblems

• M(i, j): the min #operations for obtaining the product of 𝐴𝑖 …𝐴𝑗
• Goal: M(1, n)

• Optimal substructure: suppose we know the OPT to M(i, j), there
are k cases:

• Case k: there is a cut right after Ak in OPT

57

Matrix-Chain Multiplication Problem

Input: a sequence of integers 𝑙0, 𝑙1, … , 𝑙𝑛 indicating the dimensionality of 𝐴𝑖
Output: an order of matrix multiplications with the minimum number of operations

左右所花的運算量是M(i, k)及M(k+1, j)的最佳解

𝐴𝑖𝐴𝑖+1…𝐴𝑘 𝐴𝑘+1𝐴𝑘+2…𝐴𝑗

𝑖 ≤ 𝑘 < 𝑗

Step 2: Recursively Define the Value of an
OPT Solution

• Suppose we know the optimal solution to M(i, j), there are k cases:

• Case k: there is a cut right after Ak in OPT

• Recursively define the value

58

左右所花的運算量是M(i, k)及M(k+1, j)的最佳解

𝐴𝑘+1..𝑗
𝐴𝑖.rows

=𝑙𝑖−1

𝐴𝑘.cols=𝑙𝑘

𝐴𝑘+1.rows=𝑙𝑘

𝐴𝑗.cols=𝑙𝑗

𝐴𝑖𝐴𝑖+1…𝐴𝑘 𝐴𝑘+1𝐴𝑘+2…𝐴𝑗 =

Matrix-Chain Multiplication Problem

Input: a sequence of integers 𝑙0, 𝑙1, … , 𝑙𝑛 indicating the dimensionality of 𝐴𝑖
Output: an order of matrix multiplications with the minimum number of operations

Step 3: Compute Value of an OPT Solution

• Bottom-up method: solve smaller subproblems first

• How many subproblems to solve

• #combination of the values 𝑖 and 𝑗 s.t. 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛

59

Matrix-Chain Multiplication Problem

Input: a sequence of integers 𝑙0, 𝑙1, … , 𝑙𝑛 indicating the dimensionality of 𝐴𝑖
Output: an order of matrix multiplications with the minimum number of operations

Step 3: Compute Value of an OPT Solution

60

Matrix-Chain(n, l)

initialize two tables M[1..n][1..n] and B[1..n-1][2..n]

for i = 1 to n

M[i][i] = 0 // boundary case

for p = 2 to n // p is the chain length

for i = 1 to n – p + 1 // all i, j combinations

j = i + p – 1

M[i][j] = ∞
for k = i to j – 1 // find the best k

q = M[i][k] + M[k + 1][j] + l[i - 1] * l[k] * l[j]

if q < M[i][j]

M[i][j] = q

return M

Dynamic Programming Illustration

61

How to decide the

order of the matrix

multiplication?

1 2 3 4 5 6 … n

1 0

2 0

3 0

4 0

5 0

6 0

： 0

n 0

Step 4: Construct an OPT Solution by
Backtracking

62

Matrix-Chain(n, l)

initialize two tables M[1..n][1..n] and B[1..n-1][2..n]

for i = 1 to n

M[i][i] = 0 // boundary case

for p = 2 to n // p is the chain length

for i = 1 to n – p + 1 // all i, j combinations

j = i + p – 1

M[i][j] = ∞
for k = i to j – 1 // find the best k

q = M[i][k] + M[k + 1][j] + l[i - 1] * l[k] * l[j]

if q < M[i][j]

M[i][j] = q

B[i][j] = k // backtracking

return M and B

Print-Optimal-Parens(B, i, j)

if i == j

print 𝐴𝑖
else

print “(”

Print-Optimal-Parens(B, i, B[i][j])

Print-Optimal-Parens(B, B[i][j] + 1, j)

print “)”

Exercise

Matrix 𝑨𝟏 𝑨𝟐 𝑨𝟑 𝑨𝟒 𝑨𝟓 𝑨𝟔

Dimension 30 x 35 35 x 15 15 x 5 5 x 10 10 x 20 20 x 25

63

1 2 3 4 5 6

1 0

2 0

3 0

4 0

5 0

6 0

15,750

2,625

750

1,000

5,000

7,875

4,375

2,500

3,500

9,375

7,125

53,75

11,875

10,500

15,125

1 2 3 4 5 6

1

2

3

4

5

6

1

2

3

4

5

1

3

3

5

3

3

3

3

3

3

To Be Continued…

64

Question?
Important announcement will be sent to
@ntu.edu.tw mailbox & post to the course website

Course Website: http://ada.miulab.tw

Email: ada-ta@csie.ntu.edu.tw

