
Algorithm Design and Analysis
Divide and Conquer (3)

Yun-Nung (Vivian) Chen
(Slides modified from hil, hchsiao)

http://ada.miulab.tw slido: #ADA2022

Outline
• Recurrence (遞迴)
• Divide-and-Conquer

• D&C #1: Tower of Hanoi (河內塔)

• D&C #2: Merge Sort

• D&C #3: Bitonic Champion

• D&C #4: Maximum Subarray

• Solving Recurrences
• Substitution Method

• Recursion-Tree Method

• Master Method

• D&C #5: Matrix Multiplication
• D&C #6: Selection Problem
• D&C #7: Closest Pair of Points Problem

2

Divide-and-Conquer

之神乎奇技

Divide-and-Conquer 首部曲

D&C #5: Matrix Multiplication

3

Textbook Chapter 4.2 – Strassen’s algorithm for matrix multiplication

Matrix Multiplication Problem

• Input: two 𝑛 × 𝑛 matrices, 𝐴 and 𝐵.

• Output: a matrix 𝐶 = 𝐴 × 𝐵.

4

Naïve Algorithm

• Each entry takes 𝑛 multiplications

• There are total 𝑛2 entries

5

A B C

Matrix Multi. Problem Complexity

6

Why?

Divide-and-Conquer

• We can assume that 𝑛 = 2𝑘 for simplicity

• Otherwise, we can increase 𝑛 s.t. 𝑛 = 2 log2 𝑛

• 𝑛 may not be twice large as the original in this modification

7

A11 A12

A21 A22

B11 B12

B21 B22

C11 C12

C21 C22

Combine

Conquer

Divide

Algorithm Time Complexity

8

MatrixMultiply(n, A, B)

//base case

if n == 1

__ _return AB

//recursive case

Divide A and B into n/2 by n/2 submatrices

C11 = MatrixMultiply(n/2,A11,B11) + MatrixMultiply(n/2,A12,B21)

C12 = MatrixMultiply(n/2,A11,B12) + MatrixMultiply(n/2,A12,B22)

C21 = MatrixMultiply(n/2,A21,B11) + MatrixMultiply(n/2,A22,B21)

C22 = MatrixMultiply(n/2,A21,B12) + MatrixMultiply(n/2,A22,B22)

return C

▪ 𝑇 𝑛 = time for running MatrixMultiply(n, A, B)

Strassen’s Technique

• Important theoretical breakthrough by Volker Strassen in 1969

• Reduces the running time from Θ(𝑛3) to Θ(𝑛𝑙𝑜𝑔
27

) ≈ Θ(𝑛2.807)

• The key idea is to reduce the number of recursive calls

• From 8 recursive calls to 7 recursive calls

• At the cost of extra addition and subtraction operations

9

4 multiplications

3 additions

1 multiplication

2 additions

Intuition:

Strassen’s Algorithm

• 𝐶 = 𝐴 × 𝐵

10

2 + 1×

1 + 1×

1 − 1×

1 + 1 − 1×

1 + 1 − 1×

1 − 1×

1 + 1×

12 + 6 − 7×

2 + 1 −

1 +

1 +

2 + 1 −

Verification of Strassen’s Algorithm

• Practice

11

Combine

Conquer

Divide

Strassen’s Algorithm Time Complexity

12

Strassen(n, A, B)

// base case

if n == 1

___ return AB

// recursive case

Divide A and B into n/2 by n/2 submatrices

M1 = Strassen(n/2, A11+A22, B11+B22)

M2 = Strassen(n/2, A21+A22, B11)

M3 = Strassen(n/2, A11, B12-B22)

M4 = Strassen(n/2, A22, B21-B11)

M5 = Strassen(n/2, A11+A12, B22)

M6 = Strassen(n/2, A11-A21, B11+B12)

M7 = Strassen(n/2, A12-A22, B21+B22)

C11 = M1 + M4 - M5 + M7
C12 = M3 + M5
C21 = M2 + M4
C22 = M1 – M2 + M3 + M6
return C

▪ 𝑇 𝑛 = time for running
Strassen(n,A,B)

Practicability of Strassen’s Algorithm

• Disadvantages

1. Larger constant factor than it in the naïve approach

2. Less numerical stable than the naïve approach

• Larger errors accumulate in non-integer computation due to limited precision

3. The submatrices at the levels of recursion consume space

4. Faster algorithms exist for sparse matrices

• Advantages: find the crossover point and combine two subproblems

13

Matrix Multiplication Upper Bounds

• Each algorithm gives an upper bound

14

Current lowest upper bound

Matrix Multi. Problem Complexity

15

D&C #6: Selection Problem

16

Textbook Chapter 9.3 – Selection in worst-case linear time

Selection Problem

• Input

• A set 𝐴 of 𝑛 (distinct) numbers.

• An integer 𝑘, with 0 ≤ 𝑘 < 𝑛.

• Output

• The 𝑘-th largest element in 𝐴.

17

n = 10, k = 4

18

3 7 9 17 5 2 21 18 33 4

Selection Problem ≦ Sorting Problem

• If the sorting problem can be solved in 𝑂 𝑓 𝑛 , so can the selection
problem based on the algorithm design

• Step 1: sort A into increasing order

• Step 2: output 𝐴[𝑛 − 𝑘 + 1]

19

Selection Problem Complexity

20

Can we make the upper bound

better if we do not sort them?

Divide-and-Conquer

• Idea

• Select a pivot and divide the inputs into two subproblems

• If 𝑘 ≤ 𝑋> , we find the 𝑘-th largest

• If 𝑘 > 𝑋> , we find the 𝑘 − 𝑋> -th largest

21

pivot

We want these subproblems to have similar size

→ The better pivot is the medium in the input array

a

(1) Five Guys per Group

22

(2) A Median per Group

23

small number → large number

(3) Median of Medians (MoM)

24

small number → large number

(4) Partition via MoM

25

Larger than MoMSmaller than MoM

MoM

(5) Recursion

• Three cases

1. If 𝑘 ≤ 𝑋> , then output the 𝑘-th largest number in 𝑋>
2. If 𝑘 = 𝑋> + 1, then output MoM

3. If 𝑘 > 𝑋> + 1, then output the 𝑘 − 𝑋> − 1 -th largest number in 𝑋<

• Practice to prove by induction

26

Smaller than MoM Larger than MoM

MoM

Two Recursive Steps

• Step (2): Determining MoM

• Step (5): Selection in X< or X>

27

Divide-and-Conquer for Selection

28

Selection(X, k)

// base case

if |X| <= 4

__ sort X and return X[k]

// recursive case

Divide X into |X|/5 groups with size 5

M[i] = median from group i

MoM = Selection(M, |M|/2)

for i = 1 … |X|

if X[i] > MoM

insert X[i] into X2

else

insert X[i] into X1

if |X2| == k – 1

return x

if |X2| > k – 1

return Selection(X2, k)

return Selection(X1, k - |X2| - 1)

Candidates for Consideration

29

• If 𝑘 ≤ 𝑋> , then output the 𝑘-th largest number in 𝑋>
• If 𝑘 > 𝑋> + 1, then output the 𝑘 − 𝑋> − 1 -th largest number in 𝑋<

delete

delete

Deleting at least
𝑛

5
÷ 2 × 3 =

3

10
𝑛 guys

D&C Algorithm Complexity

• 𝑇 𝑛 = time for running Selection(X, k) with |X| = n

• Intuition

30

Theorem

• Theorem

• Proof

• There exists positive constant 𝑎, 𝑏 s.t.

• Use induction to prove

• n = 1, 𝑎 > 𝑐

• n > 1,

31

Inductive hypothesis

select 𝑐 > 10𝑏

Selection Problem Complexity

32

D&C #7: Closest Pair of Points

33

Textbook Chapter 33.4 – Finding the closest pair of points

Section 5.4 of Algorithm Design by Kleinberg & Tardos

Slides modified from Prof. Hsu-Chun Hsiao

Closest Pair of Points Problem

• Input: 𝑛 ≥ 2 points, where 𝑝𝑖 = 𝑥𝑖 , 𝑦𝑖 for 0 ≤ 𝑖 < 𝑛

• Output: two points 𝑝𝑖 and 𝑝𝑗 that are closest

• “Closest”: smallest Euclidean distance

• Euclidean distance between 𝑝𝑖 and 𝑝𝑗:

34

▪ Brute-force algorithm
▪ Check all pairs of points:
Θ 𝐶2

𝑛 = Θ 𝑛2

Slides modified from Prof. Hsu-Chun Hsiao

Closest Pair of Points Problem

• 1D:

• Sort all points

• Scan the sorted points to find the closest pair in one pass

• We only need to examine the adjacent points

• 2D:

35Slides modified from Prof. Hsu-Chun Hsiao

Divide-and-Conquer Algorithm

• Divide: divide points evenly along x-coordinate

• Conquer: find closest pair in each region recursively

• Combine: find closet pair with one point in each region, and return the
best of three solutions

36

left-min = 10

right-min = 13cross-min = 7

Slides modified from Prof. Hsu-Chun Hsiao

Cross Two Regions

• Algo 1: check all pairs that cross two regions → 𝑛/2 × 𝑛/2 combinations

• Algo 2: only consider points within 𝛿 of the cut, 𝛿 = min{l−min, r−min}
• Other pairs of points must have distance larger than 𝛿

37

left-min = 10

right-min = 13
cross-min = 7

𝛿 𝛿

縮小搜尋範圍!

Slides modified from Prof. Hsu-Chun Hsiao

Cross Two Regions

• Algo 1: check all pairs that cross two regions → 𝑛/2 × 𝑛/2 combinations

• Algo 2: only consider points within 𝛿 of the cut, 𝛿 = min{l−min, r−min}

• Algo 3: only consider pairs within 𝛿 × 2𝛿 blocks

• Obs 1: every pair with smaller than 𝛿 distance must appear in a 𝛿 × 2𝛿 block

38

要是很倒霉，所有的
點都聚集在某個𝛿 ×
2𝛿區塊內怎麼辦

縮小搜尋範圍!

Slides modified from Prof. Hsu-Chun Hsiao

Cross Two Regions

• Algo 1: check all pairs that cross two regions → 𝑛/2 × 𝑛/2 combinations

• Algo 2: only consider points within 𝛿 of the cut, 𝛿 = min{l−min, r−min}

• Algo 3: only consider pairs within 𝛿 × 2𝛿 blocks

• Obs 1: every pair with smaller than 𝛿 distance must appear in a 𝛿 × 2𝛿 block

• Obs 2: there are at most 8 points in a 𝛿 × 2𝛿 block

• Each 𝛿/2 × 𝛿/2 block contains at most 1 point, otherwise the distance returned from
left/right region should be smaller than 𝛿

39Slides modified from Prof. Hsu-Chun Hsiao

Cross Two Regions

• Algo 1: check all pairs that cross two regions → 𝑛/2 × 𝑛/2 combinations

• Algo 2: only consider points within 𝛿 of the cut, 𝛿 = min{l−min, r−min}

• Algo 3: only consider pairs within 𝛿 × 2𝛿 blocks

• Obs 1: every pair with smaller than 𝛿 distance must appear in a 𝛿 × 2𝛿 block

• Obs 2: there are at most 8 points in a 𝛿 × 2𝛿 block

40

pi

pi+4

pi+2

pi+5

pi+3

Find-closet-pair-across-regions

1. Sort the points by y-values within 𝛿 of the cut (yellow region)

2. For the sorted point 𝑝𝑖, compute the distance with 𝑝𝑖+1,

𝑝𝑖+2, …, 𝑝𝑖+7
3. Return the smallest one

At most 7 distance calculations needed

Slides modified from Prof. Hsu-Chun Hsiao

Algorithm Complexity

• 𝑇 𝑛 = time for running Closest-Pair(P) with |P| = n

41

Closest-Pair(P)

// termination condition (base case)

if |P| <= 3 brute-force finding closest pair and return it

// Divide

find a vertical line L s.t. both planes_contain half of the points

// Conquer (by recursion)

left-pair, left-min = Closest-Pair(points in the left)

right-pair, right-min = Closest-Pair(points in the right)

// Combine

delta = min{left-min, right-min}

remove points that are delta or more away from L // Obs 1

sort remaining points by y-coordinate into p0, …, pk
for point pi:

____compute distances with pi+1, pi+2, …, pi+7_// Obs 2

____update delta if a closer pair is found

return the closest pair and its distance

Exercise 4.6-2

Slides modified from Prof. Hsu-Chun Hsiao

Preprocessing

• Idea: do not sort inside the recursive case

42

sort P by x- and y-coordinate and store in Px and Py

Closest-Pair(P)

// termination condition (base case)

if |P| <= 3 brute-force finding closest pair and return it

// Divide

find a vertical line L s.t. both planes_contain half of the points

// Conquer (by recursion)

left-pair, left-min = Closest-Pair(points in the left)

right-pair, right-min = Closest-Pair(points in the right)

// Combine

delta = min{left-min, right-min}

remove points that are delta or more away from L // Obs 1

for point pi in sorted candidates

____compute distances with pi+1, pi+2, …, pi+7_// Obs 2

____update delta if a closer pair is found

return the closest pair and its distance

Slides modified from Prof. Hsu-Chun Hsiao

Closest Pair of Points Problem

• 𝑂(𝑛) algorithm

• Taking advantage of randomization

• Chapter 13.7 of Algorithm Design by Kleinberg & Tardos

• Samir Khuller and Yossi Matias. 1995. A simple randomized sieve algorithm for the closest-pair
problem. Inf. Comput. 118, 1 (April 1995), 34-37.

43Slides modified from Prof. Hsu-Chun Hsiao

Concluding Remarks

• When to use D&C

• Whether the problem with small inputs can be solved directly

• Whether subproblem solutions can be combined into the original solution

• Whether the overall complexity is better than naïve

• Note

• Try different ways of dividing

• D&C may be suboptimal due to repetitive computations

• Example.

• D&C algo for Fibonacci:

• Bottom-up algo for Fibonacci:

44

1. Divide

2. Conquer

3.
Combine

Fibonacci(n)

if n < 2

____return 1

a[0]=1

a[1]=1

for i = 2 … n

____a[i]=a[i-1]+a[i-2]

return a[n]

Our next topic: Dynamic Programming

“a technique for solving problems with overlapping subproblems”

Slides modified from Prof. Hsu-Chun Hsiao

Question?
Important announcement will be sent to
@ntu.edu.tw mailbox & post to the course website

Course Website: http://ada.miulab.tw

Email: ada-ta@csie.ntu.edu.tw

