
Algorithm Design and Analysis
Midterm Review

Yun-Nung (Vivian) Chen

http://ada.miulab.tw slido: #ADA2020

• Homework assignment
• HW2 due on 11/10 14:20

• HW2解答會在死線當天晚上公布

• Midterm announcement
• Next week!!!

Announcement

Midterm!!!

• Date: 11/12 (Thursday)

• Time: 14:20-17:20 (3 hours)

• Location: R102 + R103 + R104 (check the seat assignment before entering the room)

• Content
• Recurrence and Asymptotic Analysis

• Divide and Conquer

• Dynamic Programming

• Greedy

• Based on slides, assignments, and some variations (practice via textbook exercises)

• Format: Yes/No, Multiple-Choice, Short Answer, Prove/Explanation

• Easy: ~65%, Medium: ~25%, Hard: ~10%

• Close book

3

Tip: exam questions are not all of equal difficulty, move on if you get stuck!

Algorithm Design & Analysis Process

1) Formulate a problem

2) Develop an algorithm

3) Prove the correctness

4) Analyze running time/space requirement

4

Design Step

Analysis Step

Algorithm Analysis

• Analysis Skills
• Prove by contradiction

• Induction

• Asymptotic analysis

• Problem instance

• Algorithm Complexity
• In the worst case, what is the growth of function an algorithm takes

• Problem Complexity
• In the worst case, what is the growth of the function the optimal algorithm of the

problem takes

5

Algorithm Design Strategy

• Do not focus on “specific algorithms”

• But “some strategies” to “design” algorithms

• First Skill: Divide-and-Conquer (各個擊破)

• Second Skill: Dynamic Programming (動態規劃)

• Third Skill: Greedy (貪婪法則)

6

Divide-and-Conquer

7

What is Divide-and-Conquer?

• Solve a problem recursively

• Apply three steps at each level of the recursion
1. Divide the problem into a number of subproblems that are smaller

instances of the same problem (比較小的同樣問題)

2. Conquer the subproblems by solving them recursively
If the subproblem sizes are small enough

• then solve the subproblems

• else recursively solve itself

3. Combine the solutions to the subproblems into the solution for
the original problem

8

base case

recursive case

1. Divide

2. Conquer

3. Combine

How to Solve Recurrence Relations?

1. Substitution Method (取代法)
• Guess a bound and then prove by induction

2. Recursion-Tree Method (遞迴樹法)
• Expand the recurrence into a tree and sum up the cost

3. Master Method (套公式大法/大師法)
• Apply Master Theorem to a specific form of recurrences

9

Master Theorem

10

compare 𝑓 𝑛 with 𝑛log𝑏 𝑎

divide a problem of size 𝑛 into 𝑎 subproblems, each of size
𝑛

𝑏
is solved in time 𝑇

𝑛

𝑏
recursively

The proof is in Ch. 4.6

Should follow

this format

When to Use D&C?

• Analyze the problem about
• Whether the problem with small inputs can be solved directly

• Whether subproblem solutions can be combined into the original solution

• Whether the overall complexity is better than naïve

• If no, then
• Try to modify it or add more information

• Try another way for dividing

• Do not use D&C

11

Pseudo-Polynomial Time

• Polynomial: polynomial in the length of the input (#bits for the input)

• Pseudo-polynomial: polynomial in the numeric value

• The time complexity of 0-1 knapsack problem is Θ 𝑛𝑊
• 𝑛: number of objects

• 𝑊: knapsack’s capacity (non-negative integer)

• polynomial in the numeric value

= pseudo-polynomial in input size

= exponential in the length of the input

• Note: the size of the representation of 𝑊 is log2𝑊

12

= 2𝑚 = 𝑚

Dynamic Programming

13

What is Dynamic Programming?

• Dynamic programming, like the divide-and-conquer method, solves problems
by combining the solutions to subproblems

• 用空間換取時間

• 讓走過的留下痕跡

• “Dynamic”: time-varying

• “Programming”: a tabular method

14

Dynamic Programming: planning over time

Algorithm Design Paradigms

• Divide-and-Conquer
• partition the problem into

independent or disjoint subproblems

• repeatedly solving the common
subsubproblems

→more work than necessary

15

• Dynamic Programming
• partition the problem into dependent

or overlapping subproblems

• avoid recomputation
✓Top-down with memoization

✓Bottom-up method

Dynamic Programming Procedure

• Apply four steps
1. Characterize the structure of an optimal solution

2. Recursively define the value of an optimal solution

3. Compute the value of an optimal solution, typically in a bottom-up fashion

4. Construct an optimal solution from computed information

16

When to Use DP?

• Analyze the problem about
• Whether subproblem solutions can combine into the original solution

• When subproblems are overlapping

• Whether the problem has optimal substructure

• Common for optimization problem

• Two ways to avoid recomputation
• Top-down with memoization

• Bottom-up method

• Complexity analysis
• Space for tabular filling

• Size of the subproblem graph

17

Greedy Algorithms

18

What is Greedy Algorithms?

• always makes the choice that looks best at the moment

• makes a locally optimal choice in the hope that this choice will lead to a
globally optimal solution

• not always yield optimal solution; may end up at local optimal

19

local maximal global maximal

local maximal

Algorithm Design Paradigms

• Dynamic Programming
• has optimal substructure

• make an informed choice after getting
optimal solutions to subproblems

• dependent or overlapping
subproblems

20

• Greedy Algorithms
• has optimal substructure

• make a greedy choice before solving
the subproblem

• no overlapping subproblems
✓Each round selects only one subproblem

✓The subproblem size decreases

Optimal

Solution

Possible

Case 1

Possible

Case 2

Possible

Case k

max

/min

Subproblem

Solution

Subproblem

Solution

Subproblem

Solution

+

+

+

= Optimal

Solution

Greedy

Choice

Subproblem

Solution
+=

Greedy Procedure

1. Cast the optimization problem as one in which we make a choice and
remain one subproblem to solve

2. Demonstrate the optimal substructure
✓ Combining an optimal solution to the subproblem via greedy can arrive an optimal

solution to the original problem

3. Prove that there is always an optimal solution to the original problem that
makes the greedy choice

21

Proof of Correctness Skills

• Optimal Substructure : an optimal solution to the problem contains within
it optimal solutions to subproblems

• Greedy-Choice Property : making locally optimal (greedy) choices leads to a
globally optimal solution
• Show that it exists an optimal solution that “contains” the greedy choice using

exchange argument

• For any optimal solution OPT, the greedy choice 𝑔 has two cases
• 𝑔 is in OPT: done

• 𝑔 not in OPT: modify OPT into OPT’ s.t. OPT’ contains 𝑔 and is at least as good as OPT

22

OPT OPT’

𝑔

✓ If OPT’ is better than OPT, the property is proved by contradiction

✓ If OPT’ is as good as OPT, then we showed that there exists an

optimal solution containing 𝑔 by construction

When to Use Greedy?

• Analyze the problem about
• Whether the problem has optimal substructure

• Whether we can make a greedy choice and remain only one subproblem

• Common for optimization problem

23

Optimal

Solution

Greedy

Choice

Subproblem

Solution
+=

Exercises

24

Short Answer Questions

• True or False: To prove the correctness of a greedy algorithm, we must prove that every
optimal solution contains our greedy choice.

• Given the following recurrence relation, provide a valid traversal order to fill the DP table
or justify why no valid traversal exists.

• Explain why it is usually easy for a divide-and-conquer algorithm to take advantage of a
multi-core computer system.

• Given N items and a bag of capacity W, explain why the O(NW)-time 0/1 knapsack
algorithm mentioned in class is pseudo-polynomial.

25

Matrix-Chain Multiplication

• Input: a sequence of integers 𝑙0, 𝑙1, … , 𝑙𝑛
• 𝑙𝑖−1 is the number of rows of matrix 𝐴𝑖
• 𝑙𝑖 is the number of columns of matrix 𝐴𝑖

• Output: an order of performing 𝑛 − 1 matrix multiplications in the maximum
number of operations to obtain the product of 𝐴1𝐴2…𝐴𝑛

26

𝐴1 𝐴2 𝐴3 𝐴4
𝐴𝑛……

𝐴1.cols=𝐴2.rows

𝐴𝑖𝐴𝑖+1…𝐴𝑘 𝐴𝑘+1𝐴𝑘+2…𝐴𝑗

𝑖 ≤ 𝑘 < 𝑗

Q: Does optimal substructure still hold?

Painting

• Put stickers in a single row on each tube to indicate its color.

• There are 𝑘 types of stickers.

• Tubes with the same color should have the same sticker pattern and should
be prefix free.

• Minimize the total number of stickers put on all tubes

• 3-ary prefix tree (each node can have at most 𝑘 children).

27

Color red pink orange yellow green blue purple black

#Tubes 25 15 12 19 7 12 8 2

3-arry Huffman Coding

• The total length is

28

Why?

Color red pink orange yellow green blue purple black

#Tubes 25 15 12 19 7 12 8 2

考古題 Practice 1

29

考古題 Practice 2

30

考古題 Practice 3

31

Question?
Important announcement will be sent to
@ntu.edu.tw mailbox & post to the course website

Course Website: http://ada.miulab.tw

Email: ada-ta@csie.ntu.edu.tw

