

http://ada.miulab.tw slido: #ADA2020

Yun-Nung (Vivian) Chen

Outline

- Greedy Algorithms
- Greedy #1: Activity-Selection / Interval Scheduling
- Greedy #2: Coin Changing
- Greedy #3: Fractional Knapsack Problem
- Greedy #4: Breakpoint Selection
- Greedy #5: Huffman Codes
- Greedy #6: Task-Scheduling
- Greedy #7: Scheduling to Minimize Lateness

Algorithm Design Strategy

- Do not focus on "specific algorithms"
- But "some strategies" to "design" algorithms
- First Skill: Divide-and-Conquer (各個擊破/分治)
- Second Skill: Dynamic Programming (動態規劃)
- Third Skill: Greedy (貪婪法則)

slido event code: #ADA2020

Greedy #6: Task-Scheduling

Textbook Exercise 16.2-2

Task-Scheduling Problem

• Input: a finite set $S = \{a_1, a_2, ..., a_n\}$ of n unit-time tasks, their corresponding integer deadlines $d_1, d_2, ..., d_n$ $(1 \le d_i \le n)$, and nonnegative penalties $w_1, w_2, ..., w_n$ if a_i is not finished by time d_i

Job	1	2	3	4	5	6	7
Deadline (d_i)	1	2	3	4	4	4	6
Penalty (w_i)	30	60	40	20	50	70	10

• Output: a schedule that minimizes the total penalty

Task-Scheduling Problem

Task-Scheduling Problem

Input: *n* tasks with their deadlines $d_1, d_2, ..., d_n$ and penalties $w_1, w_2, ..., w_n$ Output: the schedule that minimizes the total penalty

- Let a schedule *H* is the OPT
 - A task a_i is <u>late</u> in H if $f(H, i) > d_j$
 - A task a_i is <u>early</u> in H if $f(H, i) \le d_j$

Task	1	2	3	4	5	6	7
d_i	1	2	3	4	4	4	6
w _i	30	60	40	20	50	70	10

• We can have an **early-first** schedule H' with the same total penalty (OPT)

If the late task proceeds the early task, switching them makes the early one earlier and late one still late

Task-Scheduling Problem

Input: *n* tasks with their deadlines $d_1, d_2, ..., d_n$ and penalties $w_1, w_2, ..., w_n$ Output: the schedule that minimizes the total penalty

• Rethink the problem: "maximize the total penalty for the set of early tasks"

Task	1	2	3	4	5	6	7
d_i	1	2	3	4	4	4	6
w _i	30	60	40	20	50	70	10

- Greedy idea
 - Largest-penalty-first w/o idle time?
 - Earliest-deadline-first w/o idle time?

Prove Correctness

Task-Scheduling Problem

Input: *n* tasks with their deadlines $d_1, d_2, ..., d_n$ and penalties $w_1, w_2, ..., w_n$ Output: the schedule that minimizes the total penalty

- Greedy choice: select the largest-penalty task into the early set if *feasible*
- Proof via contradiction
 - Assume that there is no OPT including this greedy choice
 - If OPT processes a_i after d_i , we can switch a_j and a_i into OPT'
 - The maximum penalty must be equal or lower, because $w_i \ge w_j$

Prove Correctness

Task-Scheduling Problem

Input: *n* tasks with their deadlines $d_1, d_2, ..., d_n$ and penalties $w_1, w_2, ..., w_n$ Output: the schedule that minimizes the total penalty

• Greedy algorithm

```
Task-Scheduling(n, d[], w[])
sort tasks by penalties s.t. w[1] ≥ w[2] ≥ ... ≥ w[n]
for i = 1 to n
find the latest available index j <= d[i]
if j > 0
A = A U {i}
mark index j unavailable
return A // the set of early tasks
```

 $T(n) = O(n^2)$

Can it be

better?

Practice: reduce the time for finding the latest available index

slido event code: #ADA2020

Example Illustration

Job	1	2	3	4	5	6	7
Deadline (d_i)	4	2	4	3	1	4	6
Penalty (w_i)	70	60	50	40	30	20	10

Total penalty = 30 + 20 = 50

Practice: how about the greedy algorithm using "earliest-deadline-first"

slido event code: #ADA2020

Greedy #7: Scheduling to Minimize Lateness

Scheduling to Minimize Lateness

• Input: a finite set $S = \{a_1, a_2, \dots, a_n\}$ of n tasks, their processing time t_1, t_2, \dots, t_n , and integer deadlines d_1, d_2, \dots, d_n

Job	1	2	3	4
Processing Time (t_i)	3	5	3	2
Deadline (d_i)	4	6	7	8

• Output: a schedule that minimizes the maximum lateness

Scheduling to Minimize Lateness

Scheduling to Minimize Lateness Problem

Input: *n* tasks with their processing time $t_1, t_2, ..., t_n$, and deadlines $d_1, d_2, ..., d_n$ Output: the schedule that minimizes the maximum lateness

- Let a schedule *H* contains *s*(*H*, *j*) and *f*(*H*, *j*) as the start time and finish time of job *j*
 - $f(H,j) s(H,j) = t_j$
 - Lateness of job j in H is $L(H, j) = \max\{0, f(H, j) d_j\}$
- The goal is to minimize $\max_{j} L(H, j) = \max_{j} \{0, f(H, j) d_j\}$

Scheduling to Minimize Lateness Problem

Input: *n* tasks with their processing time $t_1, t_2, ..., t_n$, and deadlines $d_1, d_2, ..., d_n$ Output: the schedule that minimizes the maximum lateness

- Greedy idea
 - Shortest-processing-time-first w/o idle time?
 - Earliest-deadline-first w/o idle time?

Practice: prove that any schedule w/ idle is not optimal

Scheduling to Minimize Lateness Problem

Input: *n* tasks with their processing time $t_1, t_2, ..., t_n$, and deadlines $d_1, d_2, ..., d_n$ Output: the schedule that minimizes the maximum lateness

- Idea
 - Shortest-processing-time-first w/o idle time?

Job	1	2
Processing Time (t_i)	1	2
Deadline (d_i)	10	2

Scheduling to Minimize Lateness Problem

Input: *n* tasks with their processing time $t_1, t_2, ..., t_n$, and deadlines $d_1, d_2, ..., d_n$ Output: the schedule that minimizes the maximum lateness

- Idea
 - Earliest-deadline-first w/o idle time?
- Greedy algorithm

```
Min-Lateness(n, t[], d[])
sort tasks by deadlines s.t. d[1]≤d[2]≤ ...≤d[n]
ct = 0 // current time
for j = 1 to n
assign job j to interval (ct, ct + t[j])
s[j] = ct
f[j] = s[j] + t[j]
ct = ct + t[j]
return s[], f[]
```

```
T(n) = \Theta(n \log n)
```

Prove Correctness – Greedy-Choice Property

Scheduling to Minimize Lateness Problem

Input: *n* tasks with their processing time $t_1, t_2, ..., t_n$, and deadlines $d_1, d_2, ..., d_n$ Output: the schedule that minimizes the maximum lateness

- Greedy choice: first select the task with the earliest deadline
- Proof via contradiction
 - Assume that there is no OPT including this greedy choice
 - If OPT processes a_1 as the *i*-th task (a_k) , we can switch a_k and a_1 into OPT'
 - The maximum lateness must be equal or lower $\rightarrow L(OPT') \leq L(OPT)$

exchange argument

Prove Correctness – Greedy-Choice Property

Scheduling to Minimize Lateness Problem

Input: *n* tasks with their processing time $t_1, t_2, ..., t_n$, and deadlines $d_1, d_2, ..., d_n$ Output: the schedule that minimizes the maximum lateness

• $L(OPT') \le L(OPT)$

```
\iff \max(L(\mathsf{OPT'}, 1), L(\mathsf{OPT'}, k)) \le \max(L(\mathsf{OPT}, k), L(\mathsf{OPT}, 1))
```

 $\iff \max(L(\text{OPT}', 1), L(\text{OPT}', k)) \le L(\text{OPT}, 1)$

 $\Longleftrightarrow L(\mathrm{OPT'},k) \leq L(\mathrm{OPT},1) \because L(\mathrm{OPT'},1) \leq L(\mathrm{OPT},1)$

Prove Correctness – No Inversions

Scheduling to Minimize Lateness Problem

Input: *n* tasks with their processing time $t_1, t_2, ..., t_n$, and deadlines $d_1, d_2, ..., d_n$ Output: the schedule that minimizes the maximum lateness

- There is an optimal scheduling w/o *inversions* given $d_1 \leq d_2 \leq \cdots \leq d_n$
 - a_i and a_j are *inverted* if $d_i < d_j$ but a_j is scheduled before a_i
- Proof via contradiction
 - Assume that OPT has a_i and a_j that are inverted
 - Let OPT' = OPT but a_i and a_j are swapped
 - OPT' is equal or better than OPT $\rightarrow L(OPT') \leq L(OPT)$

Prove Correctness – No Inversions

Scheduling to Minimize Lateness Problem

Input: *n* tasks with their processing time $t_1, t_2, ..., t_n$, and deadlines $d_1, d_2, ..., d_n$ Output: the schedule that minimizes the maximum lateness

• $L(OPT') \leq L(OPT)$ $\iff \max(L(OPT', i), L(OPT', j)) \leq \max(L(OPT, j), L(OPT, i))$ $\iff \max(L(OPT', i), L(OPT', j)) \leq L(OPT, i) \because d_i < d_j$ $\iff L(OPT', j) \leq L(OPT, i) \because L(OPT', i) \leq L(OPT, i)$

Concluding Remarks

- "Greedy": always makes the choice that looks best at the moment in the hope that this choice will lead to a globally optimal solution
- When to use greedy
 - Whether the problem has optimal substructure
 - Whether we can make a greedy choice and remain only one subproblem
 - Common for <u>optimization</u> problem

- Prove for correctness
 - Optimal substructure
 - Greedy choice property

Question?

Important announcement will be sent to @ntu.edu.tw mailbox & post to the course website

Course Website: http://ada.miulab.tw Email: ada-ta@csie.ntu.edu.tw