MR.GREEDY

4Gy Foger Hargeawes

Algorithm Design and Analysis
Greedy Algorithms (2)

http://ada.miulab.tw slido: #ADA2020
Yun-Nung (Vivian) Chen




slido event code: #ADA2020

Outline

* Greedy Algorithms
* Greedy #1: Activity-Selection / Interval Scheduling

* Greedy #2: Coin Changing
* Greedy #3: Fractional Knapsack Problem

* Greedy #4: Breakpoint Selection
e Greedy #5: Huffman Codes
* Greedy #6: Task-Scheduling

e Greedy #7: Scheduling to Minimize Lateness O n n?




slido event code: #ADA2020

Algorithm Design Strategy

* Do not focus on “specific algorithms”
e But “some strategies” to “design” algorithms

e First Skill: Divide-and-Conquer (Z{EZ&4 /5078
» Second Skill: Dynamic Programming (EI 88 %3 1))
e Third Skill: Greedy (E25)58)




slido event code: #ADA2020

Greedy #6: Task-Scheduling

Textbook Exercise 16.2-2




slido event code: #ADA2020

Task-Scheduling Problem

* Input: a finite set S = {a4, a,, ..., a, } of n unit-time tasks, their
corresponding integer deadlines d4, d>, ..., d,, (1 < d; < n), and nonnegative
penalties wy, wo, ..., w,, if a; is not finished by time d;

Job 1 2 3 4 5 6 7
Deadline (d;) 1 2 3 4 4 4 6
Penalty (w) 30 60 40 20 50 70 10

e Output: a schedule that minimizes the total penalty
Penalty 20 30

a; jas |4 G5 |Q4 Ja7 |4

0 n



slido event code: #ADA2020

Task-Scheduling Problem

Task-Scheduling Problem

Input: n tasks with their deadlines d,, d,, ..., d,, and penalties wy, w,, ..., w,
Output: the schedule that minimizes the total penalty

e Let a schedule H is the OPT Task 1 2 3 4 5 6 7
* Ataskaq;is latein H if f(H,i) > d; d 1 2 3 4 4 4 6
* Atask a; is early in Hif f(H,i) < d; wi 30 60 40 20 50 70 10
* We can have an early-first schedule H' with the same total penalty (OPT)
H Penalty 20 3

a, a3 §ag jas ay a; aq

W, If the late task proceeds the early task, switching them
0 : makes the early one earlier and late one still late
H' Penalty 2 30
dz a3 106 |As5 A7 104 |01

0 n



slido event code: #ADA2020

Possible Greedy Choices

Task-Scheduling Problem
Input: n tasks with their deadlines d,, d,, ..., d,, and penalties wy, w,, ..., w,
Output: the schedule that minimizes the total penalty

* Rethink the problem: “maximize the total penalty for the set of early tasks”
Task 1 2 3 4 5 6 4
d; 1 2 3 4 4 4 6

w;, 30 60 40 20 50 70 10 Penalty |60 40 70 50 10 |2 30
a2 1937 1% 1as7]az77) a4 §

n

* Greedy idea 0
 Largest-penalty-first w/o idle time?
* Earliest-deadline-first w/o idle time?




slido event code: #ADA2020

Prove Correctness

Task-Scheduling Problem

Input: n tasks with their deadlines d,, d,, ..., d,, and penalties wy, w,, ..., w,
Output: the schedule that minimizes the total penalty

* Greedy choice: select the largest-penalty task into the early set if feasible
* Proof via contradiction

* Assume that there is no OPT including this greedy choice

* If OPT processes a; after d;, we can switch a; and a; into OPT’

* The maximum penalty must be equal or lower, because w; = w;

Penalty w;
_ CIFEEAR BB, wi=weforallay inthe early set
0 di n

Penalty w;




slido event code: #ADA2020

Prove Correctness

Task-Scheduling Problem

Input: n tasks with their deadlines d,, d,, ..., d,, and penalties wy, w,, ..., w,
Output: the schedule that minimizes the total penalty

* Greedy algorithm

Task-Scheduling(n, d[], w[])
sort tasks by penalties s.t. w[l] 2 w[2] 2 .. 2 w[n]
for 1 = 1 to n
find the latest available index j <= d[i] jﬁ(7l)
if 3 >0
A=A U {i}
mark index J unavailable
return A // the set of early tasks




slido event code: #ADA2020

Example lllustration

Job 1
Deadline (d;)) 4 2 4 3 1 4 6

Penalty (w;) 70 60 50 40 30 20 10

5 6

0O 1 Zf?>f4

Total penalty = 30 + 20 =50




slido event code: #ADA2020

Greedy #7:
Scheduling to Minimize Lateness




slido event code: #ADA2020

Scheduling to Minimize Lateness

* Input: a finite set S = {aq, a,, ..., a,} of n tasks, their processing time
ty, ty, ..., ty, and integer deadlines d{, d,, ..., d,

Job 1 2 3 4
Processing Time (t;) 3 5 3 2
Deadline (d;) 4 6 7

e OQutput: a schedule that minimizes the maximum lateness

Lateness 0 1 1 @




slido event code: #ADA2020

Scheduling to Minimize Lateness

Scheduling to Minimize Lateness Problem
Input: n tasks with their processing time ¢, t,, ..., t,, and deadlines d, d,, ..., d,
Output: the schedule that minimizes the maximum lateness

* Let a schedule H contains s(H,j) and f(H,j) as the start time and finish
time of job j
* f(H,j)—s(H,j) =t
* Lateness of jobjin His L(H,j) = maX{O,f(H,j) — dj}
* The goal is to minimize m]ax L(H,j) = m]aX{O,f(H,j) — dj}




slido event code: #ADA2020

Possible Greedy Choices

Scheduling to Minimize Lateness Problem

Input: n tasks with their processing time t,, t,, ..., t,, and deadlines d,, d,, ..., d,,
Output: the schedule that minimizes the maximum lateness

* Greedy idea

* Shortest-processing-time-first w/o idle time?
* Earliest-deadline-first w/o idle time?




slido event code: #ADA2020

Possible Greedy Choices

Scheduling to Minimize Lateness Problem

Input: n tasks with their processing time t,, t,, ..., t,, and deadlines d,, d,, ..., d,,
Output: the schedule that minimizes the maximum lateness

* |dea
* Shortest-processing-time-first w/o idle time?

Lateness
Job 1 2

Processing Time (t;) 1 2

O Lateness . Deadline (d;) 10 2




slido event code: #ADA2020

Possible Greedy Choices

Scheduling to Minimize Lateness Problem

Input: n tasks with their processing time t,, t,, ..., t,, and deadlines d,, d,, ..., d,,
Output: the schedule that minimizes the maximum lateness

* |dea
 Earliest-deadline-first w/o idle time?
* Greedy algorithm

Min-Lateness(n, t[], dI[])
sort tasks by deadlines s.t. d[1]5d[2]% ...<d[n]
ct = 0 // current time
for j =1 ton
assign job j to interval (ct, ct + t[3j]) T(’I’I,) — @(n log n)
s[J] = ct
fi3] = s3] + tl[J]
ct = ct + t[]]
return s[], f[]




slido event code: #ADA2020

Prove Correctness - Greedy-Choice Property

Scheduling to Minimize Lateness Problem
Input: n tasks with their processing time ¢, t,, ..., t,, and deadlines d, d,, ..., d,
Output: the schedule that minimizes the maximum lateness

* Greedy choice: first select the task with the earliest deadline

* Proof via contradiction

* Assume that there is no OPT including this greedy choice
* If OPT processes aq as the i-th task (ay), we can switch a; and a; into OPT’

* The maximum lateness must be equal or lower 2 L(OPT') < L(OPT)

exchange argument




slido event code: #ADA2020

Prove Correctness - Greedy-Choice Property

Scheduling to Minimize Lateness Problem

Input: n tasks with their processing time t,, t,, ..., t,, and deadlines d,, d,, ..., d,,
Output: the schedule that minimizes the maximum lateness

e L(OPT) < L(OPT)
<= max(L(OPT’,1), L(OPT’, k)) < max(L(OPT, k), L(OPT, 1))
< max(L(OPT", 1), L(OPT’, k)) < L(OPT, 1)
~— L(OPT’, k) < L(OPT, 1) -.- L(OPT’,1) < L(OPT, 1)

If a,, is not late in OPT: If a, is late in OPT": L(OPT, k) L(OPT, 1)

LOPT ) =0 LOPT0) = FOPT.) ~di oor
= f(OPT, 1) — dx

------------------------------ < f(OPT, 1) — d L(OPT', 1) L(OPT’, k)

Generalization of = L(OPT, 1) OPT’ - -

this property?




slido event code: #ADA2020

Prove Correctness - No Inversions

Scheduling to Minimize Lateness Problem
Input: n tasks with their processing time ¢, t,, ..., t,, and deadlines d, d,, ..., d,
Output: the schedule that minimizes the maximum lateness

* There is an optimal scheduling w/o inversions givend, < d, < - < d,
* a; and a; are inverted if d; < d; but q; is scheduled before a;
* Proof via contradiction

* Assume that OPT has a; and a; that are inverted
* Let OPT" = OPT but a; and a; are swapped
* OPT’ is equal or better than OPT = L(OPT’) < L(OPT)




slido event code: #ADA2020

Prove Correctness - No Inversions

Scheduling to Minimize Lateness Problem

Input: n tasks with their processing time t,, t,, ..., t,, and deadlines d,, d,, ..., d,,
Output: the schedule that minimizes the maximum lateness

* L(OPT’) < L(OPT)
& max(L(OPT",4), L(OPT", §)) < max(L(OPT, j), L(OPT, 1))
> max(L(OPT’, i), L(OPT’, j)) < L(OPT,4) . d; < d,
= L(OPT’, j) < L(OPT,i) - L(OPT’, i) < L(OPT, 1)

If a; is not late in OPT": If a; is late in OPT":

L(OPT, j) L(OPT, i)
L(OPT’,j) =0 L(OPT",j) = f(OPT",j) —d;  opT [P0 ...
— f(OPTa 7’) o dj

< (OPT 1) —d. L(OPT, i) L(OPT', )

Optimal" @ Greedy + Subproble
Solution B Choice m Solution




slido event code: #ADA2020

Concluding Remarks

* “Greedy”: always makes the choice that looks best at the moment in the
hope that this choice will lead to a globally optimal solution

* When to use greedy
 Whether the problem has optimal substructure

* Whether we can make a greedy choice and remain only one subproblem
 Common for optimization problem

Optimal N Greedy N Subproblem
Solution @ Choice Solution

* Prove for correctness
e Optimal substructure
* Greedy choice property




Question?

Important announcement will be sent to
@ntu.edu.tw mailbox & post to the course website

Course Website: http://ada.miulab.tw
Email: ada-ta@csie.ntu.edu.tw



