
Algorithm Design and Analysis
Greedy Algorithms (2)

Yun-Nung (Vivian) Chen

http://ada.miulab.tw slido: #ADA2020

slido event code: #ADA2020

Outline

• Greedy Algorithms

• Greedy #1: Activity-Selection / Interval Scheduling

• Greedy #2: Coin Changing

• Greedy #3: Fractional Knapsack Problem

• Greedy #4: Breakpoint Selection

• Greedy #5: Huffman Codes

• Greedy #6: Task-Scheduling

• Greedy #7: Scheduling to Minimize Lateness

2

slido event code: #ADA2020

Algorithm Design Strategy

• Do not focus on “specific algorithms”

• But “some strategies” to “design” algorithms

• First Skill: Divide-and-Conquer (各個擊破/分治)

• Second Skill: Dynamic Programming (動態規劃)

• Third Skill: Greedy (貪婪法則)

3

slido event code: #ADA2020

Greedy #6: Task-Scheduling

4

Textbook Exercise 16.2-2

slido event code: #ADA2020

Task-Scheduling Problem

• Input: a finite set 𝑆 = 𝑎1, 𝑎2, … , 𝑎𝑛 of 𝑛 unit-time tasks, their
corresponding integer deadlines 𝑑1, 𝑑2, … , 𝑑𝑛 (1 ≤ 𝑑𝑖 ≤ 𝑛), and nonnegative
penalties 𝑤1, 𝑤2, … , 𝑤𝑛 if 𝑎𝑖 is not finished by time 𝑑𝑖

• Output: a schedule that minimizes the total penalty

5

Job 1 2 3 4 5 6 7

Deadline (𝑑𝑖) 1 2 3 4 4 4 6

Penalty (w𝑖) 30 60 40 20 50 70 10

𝑎2 𝑎3 𝑎6 𝑎5

0 n

Penalty 30

𝑎7 𝑎1𝑎4

20

slido event code: #ADA2020

Task-Scheduling Problem

• Let a schedule 𝐻 is the OPT
• A task 𝑎𝑖 is late in 𝐻 if 𝑓 𝐻, 𝑖 > 𝑑𝑗
• A task 𝑎𝑖 is early in 𝐻 if 𝑓 𝐻, 𝑖 ≤ 𝑑𝑗
• We can have an early-first schedule 𝐻′ with the same total penalty (OPT)

6

Task-Scheduling Problem

Input: 𝑛 tasks with their deadlines 𝑑1, 𝑑2, … , 𝑑𝑛 and penalties 𝑤1, 𝑤2, … , 𝑤𝑛
Output: the schedule that minimizes the total penalty

𝑎2 𝑎3 𝑎6 𝑎5

0 n

Penalty 2

0𝑎7 𝑎4

Task 1 2 3 4 5 6 7

𝑑𝑖 1 2 3 4 4 4 6

w𝑖 30 60 40 20 50 70 10

𝑎1

30

𝑎2 𝑎3 𝑎6 𝑎5

0 n

Penalty 3

0𝑎7 𝑎1𝑎4

20

𝐻′

𝐻

If the late task proceeds the early task, switching them

makes the early one earlier and late one still late

slido event code: #ADA2020

Possible Greedy Choices

• Rethink the problem: “maximize the total penalty for the set of early tasks”

• Greedy idea
• Largest-penalty-first w/o idle time?

• Earliest-deadline-first w/o idle time?

7

𝑎2 𝑎3 𝑎6 𝑎5

0 n

Penalty 2

0𝑎7 𝑎4 𝑎1

30

Task 1 2 3 4 5 6 7

𝑑𝑖 1 2 3 4 4 4 6

w𝑖 30 60 40 20 50 70 10
60 40 70 50 10

Task-Scheduling Problem

Input: 𝑛 tasks with their deadlines 𝑑1, 𝑑2, … , 𝑑𝑛 and penalties 𝑤1, 𝑤2, … , 𝑤𝑛
Output: the schedule that minimizes the total penalty

slido event code: #ADA2020

Prove Correctness

• Greedy choice: select the largest-penalty task into the early set if feasible

• Proof via contradiction
• Assume that there is no OPT including this greedy choice

• If OPT processes 𝑎𝑖 after 𝑑𝑖, we can switch 𝑎𝑗 and 𝑎𝑖 into OPT’

• The maximum penalty must be equal or lower, because 𝑤𝑖 ≥ 𝑤𝑗

8

𝑎𝑗
0 n

Penalty 𝑤𝑖

𝑎𝑖
𝑑𝑖

𝑎𝑖
0 n

Penalty

𝑎𝑗
𝑑𝑖

𝑤𝑗

𝑤𝑖 ≥ 𝑤𝑘 for all 𝑎𝑘 in the early set

Task-Scheduling Problem

Input: 𝑛 tasks with their deadlines 𝑑1, 𝑑2, … , 𝑑𝑛 and penalties 𝑤1, 𝑤2, … , 𝑤𝑛
Output: the schedule that minimizes the total penalty

slido event code: #ADA2020

Prove Correctness

• Greedy algorithm

9

Task-Scheduling(n, d[], w[])

sort tasks by penalties s.t. w[1] ≥ w[2] ≥ … ≥ w[n]

for i = 1 to n

find the latest available index j <= d[i]

if j > 0

A = A ∪ {i}

mark index j unavailable

return A // the set of early tasks

Can it be

better?

Practice: reduce the time for finding the latest available index

Task-Scheduling Problem

Input: 𝑛 tasks with their deadlines 𝑑1, 𝑑2, … , 𝑑𝑛 and penalties 𝑤1, 𝑤2, … , 𝑤𝑛
Output: the schedule that minimizes the total penalty

slido event code: #ADA2020

Example Illustration

10

Job 1 2 3 4 5 6 7

Deadline (𝑑𝑖) 4 2 4 3 1 4 6

Penalty (w𝑖) 70 60 50 40 30 20 10

𝑎1𝑎3𝑎4 𝑎2

0 1 2 3 4 5 6 7

Total penalty = 30 + 20 = 50

2

0𝑎7 𝑎5 𝑎6

30

Practice: how about the greedy algorithm using “earliest-deadline-first”

slido event code: #ADA2020

Greedy #7:

Scheduling to Minimize Lateness

11

slido event code: #ADA2020

Scheduling to Minimize Lateness

• Input: a finite set 𝑆 = 𝑎1, 𝑎2, … , 𝑎𝑛 of 𝑛 tasks, their processing time
𝑡1, 𝑡2, … , 𝑡𝑛, and integer deadlines 𝑑1, 𝑑2, … , 𝑑𝑛

• Output: a schedule that minimizes the maximum lateness

12

Job 1 2 3 4

Processing Time (𝑡𝑖) 3 5 3 2

Deadline (𝑑𝑖) 4 6 7 8

𝑎4 𝑎1 𝑎3 𝑎2

0 2 5 8 13

Lateness 0 1 1 7

slido event code: #ADA2020

Scheduling to Minimize Lateness

• Let a schedule 𝐻 contains 𝑠 𝐻, 𝑗 and 𝑓 𝐻, 𝑗 as the start time and finish
time of job 𝑗

• 𝑓 𝐻, 𝑗 − 𝑠 𝐻, 𝑗 = 𝑡𝑗

• Lateness of job 𝑗 in 𝐻 is 𝐿 𝐻, 𝑗 = max 0, 𝑓 𝐻, 𝑗 − 𝑑𝑗

• The goal is to minimize max
𝑗

𝐿 𝐻, 𝑗 = max
𝑗

0, 𝑓 𝐻, 𝑗 − 𝑑𝑗

13

Scheduling to Minimize Lateness Problem

Input: 𝑛 tasks with their processing time 𝑡1, 𝑡2, … , 𝑡𝑛, and deadlines 𝑑1, 𝑑2, … , 𝑑𝑛
Output: the schedule that minimizes the maximum lateness

slido event code: #ADA2020

Possible Greedy Choices

• Greedy idea
• Shortest-processing-time-first w/o idle time?

• Earliest-deadline-first w/o idle time?

14

Practice: prove that any schedule w/ idle is not optimal

Scheduling to Minimize Lateness Problem

Input: 𝑛 tasks with their processing time 𝑡1, 𝑡2, … , 𝑡𝑛, and deadlines 𝑑1, 𝑑2, … , 𝑑𝑛
Output: the schedule that minimizes the maximum lateness

slido event code: #ADA2020

Possible Greedy Choices

• Idea
• Shortest-processing-time-first w/o idle time?

15

Job 1 2

Processing Time (𝑡𝑖) 1 2

Deadline (𝑑𝑖) 10 2

𝑎1 𝑎2

0 1 3

Lateness 0 1

𝑎2 𝑎1

0 2 3

Lateness 0 0

Scheduling to Minimize Lateness Problem

Input: 𝑛 tasks with their processing time 𝑡1, 𝑡2, … , 𝑡𝑛, and deadlines 𝑑1, 𝑑2, … , 𝑑𝑛
Output: the schedule that minimizes the maximum lateness

slido event code: #ADA2020

Possible Greedy Choices

• Idea
• Earliest-deadline-first w/o idle time?

• Greedy algorithm

16

Min-Lateness(n, t[], d[])

sort tasks by deadlines s.t. d[1]≤d[2]≤ ...≤d[n]

ct = 0 // current time

for j = 1 to n

assign job j to interval (ct, ct + t[j])

s[j] = ct

f[j] = s[j] + t[j]

ct = ct + t[j]

return s[], f[]

Scheduling to Minimize Lateness Problem

Input: 𝑛 tasks with their processing time 𝑡1, 𝑡2, … , 𝑡𝑛, and deadlines 𝑑1, 𝑑2, … , 𝑑𝑛
Output: the schedule that minimizes the maximum lateness

slido event code: #ADA2020

Prove Correctness – Greedy-Choice Property

• Greedy choice: first select the task with the earliest deadline

• Proof via contradiction
• Assume that there is no OPT including this greedy choice

• If OPT processes 𝑎1 as the 𝑖-th task (𝑎𝑘), we can switch 𝑎𝑘 and 𝑎1 into OPT’

• The maximum lateness must be equal or lower→ 𝐿 OPT′ ≤ 𝐿 OPT

17

exchange argument

Scheduling to Minimize Lateness Problem

Input: 𝑛 tasks with their processing time 𝑡1, 𝑡2, … , 𝑡𝑛, and deadlines 𝑑1, 𝑑2, … , 𝑑𝑛
Output: the schedule that minimizes the maximum lateness

slido event code: #ADA2020

Prove Correctness – Greedy-Choice Property

•

18

𝑎𝑘 𝑎1

L(OPT, k)

𝑎1 𝑎𝑘

L(OPT’, 1) L(OPT’, k)

L(OPT, 1)

OPT

OPT’

If 𝑎𝑘 is not late in OPT’: If 𝑎𝑘 is late in OPT’:

Generalization of

this property?

Scheduling to Minimize Lateness Problem

Input: 𝑛 tasks with their processing time 𝑡1, 𝑡2, … , 𝑡𝑛, and deadlines 𝑑1, 𝑑2, … , 𝑑𝑛
Output: the schedule that minimizes the maximum lateness

slido event code: #ADA2020

Prove Correctness – No Inversions

• There is an optimal scheduling w/o inversions given 𝑑1 ≤ 𝑑2 ≤ ⋯ ≤ 𝑑𝑛
• 𝑎𝑖 and 𝑎𝑗 are inverted if 𝑑𝑖 < 𝑑𝑗 but 𝑎𝑗 is scheduled before 𝑎𝑖

• Proof via contradiction
• Assume that OPT has 𝑎𝑖 and 𝑎𝑗 that are inverted

• Let OPT’ = OPT but 𝑎𝑖 and 𝑎𝑗 are swapped

• OPT’ is equal or better than OPT → 𝐿 OPT′ ≤ 𝐿 OPT

19

Scheduling to Minimize Lateness Problem

Input: 𝑛 tasks with their processing time 𝑡1, 𝑡2, … , 𝑡𝑛, and deadlines 𝑑1, 𝑑2, … , 𝑑𝑛
Output: the schedule that minimizes the maximum lateness

slido event code: #ADA2020

Prove Correctness – No Inversions

•

20

𝑎𝑗 𝑎𝑖

L(OPT, j)

𝑎𝑖 𝑎𝑗

L(OPT’, i) L(OPT’, j)

L(OPT, i)

OPT

OPT’

If 𝑎𝑗 is not late in OPT’: If 𝑎𝑗 is late in OPT’:

……

……

The earliest-deadline-first greedy algorithm is optimal

Optimal

Solution

Greedy

Choice

Subproble

m Solution
+=

Scheduling to Minimize Lateness Problem

Input: 𝑛 tasks with their processing time 𝑡1, 𝑡2, … , 𝑡𝑛, and deadlines 𝑑1, 𝑑2, … , 𝑑𝑛
Output: the schedule that minimizes the maximum lateness

slido event code: #ADA2020

Concluding Remarks

• “Greedy”: always makes the choice that looks best at the moment in the
hope that this choice will lead to a globally optimal solution

• When to use greedy
• Whether the problem has optimal substructure

• Whether we can make a greedy choice and remain only one subproblem

• Common for optimization problem

• Prove for correctness
• Optimal substructure

• Greedy choice property

21

Optimal

Solution

Greedy

Choice

Subproblem

Solution+=

Question?
Important announcement will be sent to
@ntu.edu.tw mailbox & post to the course website

Course Website: http://ada.miulab.tw

Email: ada-ta@csie.ntu.edu.tw

