

Algorithm Design and Analysis Greedy Algorithms (1)

http://ada.miulab.tw slido: #ADA2020

Yun-Nung (Vivian) Chen

Outline

- Greedy Algorithms
- Greedy #1: Activity-Selection / Interval Scheduling
- Greedy #2: Coin Changing
- Greedy #3: Fractional Knapsack Problem
- Greedy #4: Breakpoint Selection
- Greedy #5: Huffman Codes
- Greedy #6: Task-Scheduling
- Greedy #7: Scheduling to Minimize Lateness

Algorithm Design Strategy

- Do not focus on "specific algorithms"
- But "some strategies" to "design" algorithms
- First Skill: Divide-and-Conquer (各個擊破/分治)
- Second Skill: Dynamic Programming (動態規劃)
- Third Skill: Greedy (貪婪法則)

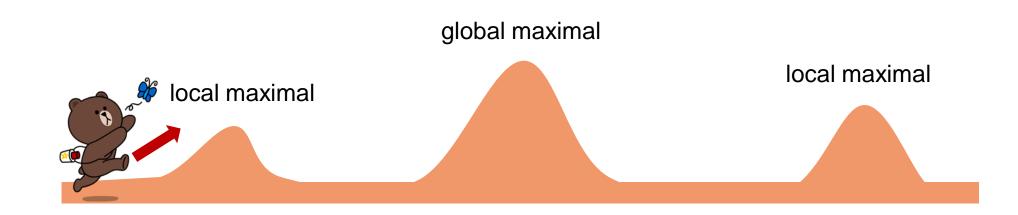
Greedy Algorithms

Textbook Chapter 16 – Greedy Algorithms

Textbook Chapter 16.2 – Elements of the greedy strategy

What is Greedy Algorithms?

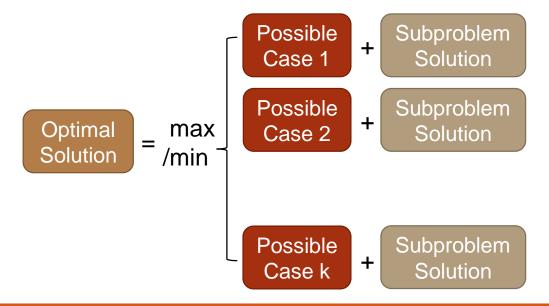
- always makes the choice that looks best at the moment
- makes a locally optimal choice in the hope that this choice will lead to a globally optimal solution
 - not always yield optimal solution; may end up at local optimal



Greedy: move towards max gradient and hope it is global maximum

Algorithm Design Paradigms

- Dynamic Programming
 - has optimal substructure
 - make an informed choice after getting optimal solutions to subproblems
 - dependent or overlapping subproblems



- Greedy Algorithms
 - has optimal substructure
 - make a greedy choice before solving the subproblem
 - no overlapping subproblems
 - ✓ Each round selects only one subproblem
 - ✓ The subproblem size decreases

Greedy Procedure

- 1. Cast the optimization problem as one in which we make a choice and remain one subproblem to solve
- 2. Demonstrate the optimal substructure
 - ✓ Combining an optimal solution to the subproblem via greedy can arrive an optimal solution to the original problem
- 3. Prove that there is always an optimal solution to the original problem that makes the greedy choice

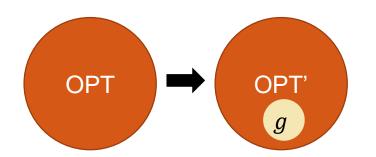
Greedy Algorithms

To yield an optimal solution, the problem should exhibit

- 1. Optimal Substructure: an optimal solution to the problem contains within its optimal solutions to subproblems
- 2. Greedy-Choice Property: making locally optimal (greedy) choices leads to a globally optimal solution

Proof of Correctness Skills

- Optimal Substructure: an optimal solution to the problem contains within its optimal solutions to subproblems
- Greedy-Choice Property: making locally optimal (greedy) choices leads to a globally optimal solution
 - Show that it exists an optimal solution that "contains" the greedy choice using exchange argument
 - For any optimal solution OPT, the greedy choice g has two cases
 - *g* is in OPT: done
 - g not in OPT: modify OPT into OPT' s.t. OPT' contains g and is at least as good as OPT



- ✓ If OPT' is better than OPT, the property is proved by contradiction
- ✓ If OPT' is as good as OPT, then we showed that there exists an optimal solution containing g by construction

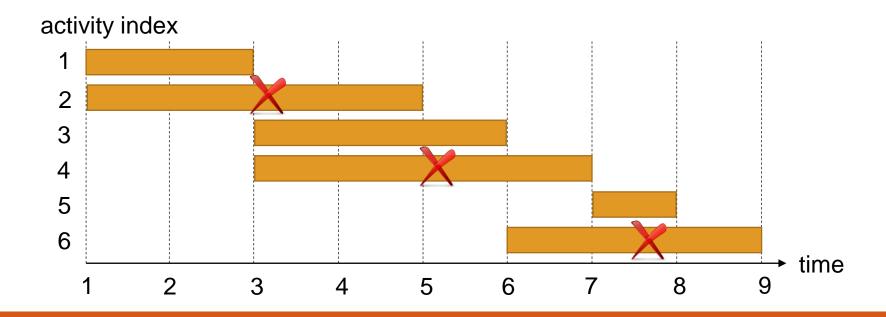


Greedy #1: Activity-Selection / Interval Scheduling

Textbook Chapter 16.1 – An activity-selection problem

Activity-Selection/Interval Scheduling

- Input: n activities with start times s_i and finish times f_i (the activities are sorted in monotonically increasing order of finish time $f_1 \le f_2 \le \cdots \le f_n$)
- Output: the <u>maximum number</u> of compatible activities
- Without loss of generality: $s_1 < s_2 < \dots < s_n$ and $f_1 < f_2 < \dots < f_n$
 - 大的包小的則不考慮大的 > 用小的取代大的一定不會變差

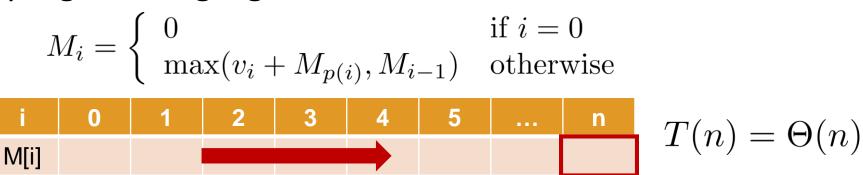


Weighted Interval Scheduling

Weighted Interval Scheduling Problem

Input: n jobs with $\langle s_i, f_i, v_i \rangle$, p(j) = largest index i < j s.t. jobs i and j are compatible Output: the maximum total value obtainable from compatible

- Subproblems
 - WIS (i): weighted interval scheduling for the first i jobs
 - Goal: WIS(n)
- Dynamic programming algorithm



Set $v_i = 1$ for all i to formulate it into the activity-selection problem

Activity-Selection Problem

Activity-Selection Problem

Input: n activities with $\langle s_i, f_i \rangle$, p(j) = largest index i < j s.t. i and j are compatibleOutput: the maximum number of activities

Dynamic programming

$$M_i = \begin{cases} 0 & \text{if } i = 0\\ \max(1 + M_{p(i)}, M_{i-1}) & \text{otherwise} \end{cases}$$

- Optimal substructure is already proved
- Greedy algorithm

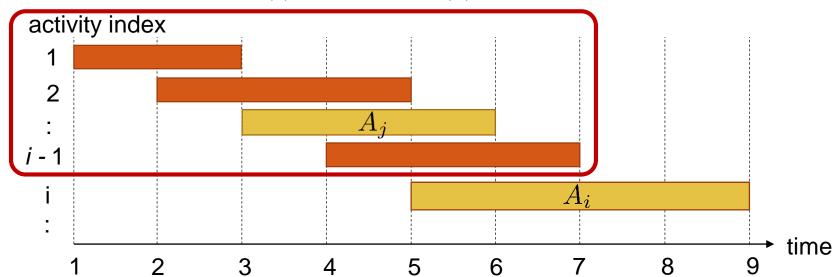
$$M_i = \left\{ egin{array}{ll} 0 & ext{if } i = 0 \ 1 + M_{p(i)} & ext{otherwise} \end{array}
ight.$$
 select the i -th activity

Why does the *i*-th activity must appear in an OPT?

Greedy-Choice Property

- Goal: $1 + M_{p(i)} \ge M_{i-1}$
- Proof
 - Assume there is an OPT solution for the first i-1 activities (M_{i-1})
 - A_j is the last activity in the OPT solution $\rightarrow M_{i-1} = 1 + M_{p(j)}$
 - Replacing A_i with A_i does not make the OPT worse

$$1 + M_{p(i)} \ge 1 + M_{p(j)} = M_{i-1}$$



Pseudo Code

Activity-Selection Problem

Input: n activities with $\langle s_i, f_i \rangle$, p(j) = largest index i < j s.t. i and j are compatibleOutput: the maximum number of activities

```
Act-Select(n, s, f, v, p)
  M[0] = 0
  for i = 1 to n
     M[i] = 1 + M[p[i]]
  return M[n]
```

$$T(n) = \Theta(n)$$

```
Find-Solution(M, n)
  if n = 0
    return {}
  return {n} U Find-Solution(p[n])
```

$$T(n) = \Theta(n)$$

Select the **last** compatible one (\leftarrow) = Select the **first** compatible one (\rightarrow)

Greedy #2: Coin Changing

Textbook Exercise 16.1

Coin Changing Problem

- Input: n dollars and unlimited coins with values $\{v_i\}$ (1, 5, 10, 50)
- ullet Output: the minimum number of coins with the total value n
- Cashier's algorithm: at each iteration, add the coin with the largest value no more than the current total

Does this algorithm return the OPT?

Step 1: Cast Optimization Problem

Coin Changing Problem

Input: n dollars and unlimited coins with values $\{v_i\}$ (1, 5, 10, 50)

Output: the minimum number of coins with the total value n

Subproblems

- C(i): minimal number of coins for the total value i
- Goal: C(n)

Step 2: Prove Optimal Substructure

Coin Changing Problem

Input: n dollars and unlimited coins with values $\{v_i\}$ (1, 5, 10, 50)

Output: the minimum number of coins with the total value n

- Suppose OPT is an optimal solution to $\mathbb{C}(1)$, there are 4 cases:
 - Case 1: coin 1 in OPT
 - OPT\coin1 is an optimal solution of C (i − v₁)
 - Case 2: coin 2 in OPT
 - OPT\coin2 is an optimal solution of C (i − v₂)
 - Case 3: coin 3 in OPT
 - OPT\coin3 is an optimal solution of C (i − v₃)
 - Case 4: coin 4 in OPT
 - OPT\coin4 is an optimal solution of C (i − v₄)

$$C_i = \min_j (1 + C_{i-v_j})$$

Step 3: Prove Greedy-Choice Property

Coin Changing Problem

Input: n dollars and unlimited coins with values $\{v_i\}$ (1, 5, 10, 50)

Output: the minimum number of coins with the total value n

- Greedy choice: select the coin with the largest value no more than the current total
- Proof via contradiction (use the case $10 \le i < 50$ for demo)
 - Assume that there is no OPT including this greedy choice (choose 10)
 - \rightarrow all OPT use 1, 5, 50 to pay i
 - 50 cannot be used
 - #coins with value $5 < 2 \rightarrow$ otherwise we can use a 10 to have a better output
 - #coins with value $1 < 5 \rightarrow$ otherwise we can use a 5 to have a better output
 - We cannot pay i with the constraints (at most 5 + 4 = 9)

Greedy #3: Fractional Knapsack Problem

Textbook Exercise 16.2-2

Knapsack Problem

- Input: n items where i-th item has value v_i and weighs w_i (v_i and w_i are positive integers)
- Output: the maximum value for the knapsack with capacity of W
- Variants of knapsack problem
 - 0-1 Knapsack Problem: 每項物品只能拿一個
 - Unbounded Knapsack Problem: 每項物品可以拿多個
 - Multidimensional Knapsack Problem: 背包空間有限
 - Multiple-Choice Knapsack Problem: 每一類物品最多拿一個
 - Fractional Knapsack Problem: 物品可以只拿部分

Knapsack Problem

- Input: n items where i-th item has value v_i and weighs w_i (v_i and w_i are positive integers)
- Output: the maximum value for the knapsack with capacity of W
- Variants of knapsack problem
 - 0-1 Knapsack Problem: 每項物品只能拿一個
 - Unbounded Knapsack Problem: 每項物品可以拿多個
 - Multidimensional Knapsack Problem: 背包空間有限
 - Multiple-Choice Knapsack Problem: 每一類物品最多拿一個
 - Fractional Knapsack Problem: 物品可以只拿部分

Fractional Knapsack Problem

- Input: n items where i-th item has value v_i and weighs w_i (v_i and w_i are positive integers)
- Output: the $\underline{\text{maximum value}}$ for the knapsack with capacity of W, where we can take $\underline{\text{any fraction of items}}$
- Greedy algorithm: at each iteration, choose the item with the highest $\frac{v_i}{w_i}$ and continue when $W-w_i>0$

Step 1: Cast Optimization Problem

Fractional Knapsack Problem

Input: n items where i-th item has value v_i and weighs w_i Output: the max value within W capacity, where we can take **any fraction of items**

- Subproblems
 - F-KP (i, w): fractional knapsack problem within w capacity for the first i items
 - Goal: F-KP(n, W)

Step 2: Prove Optimal Substructure

Fractional Knapsack Problem

Input: n items where i-th item has value v_i and weighs w_i Output: the max value within W capacity, where we can take **any fraction of items**

- Suppose OPT is an optimal solution to F-KP(i, w), there are 2 cases:
 - Case 1: full/partial item i in OPT
 - Remove w' of item i from OPT is an optimal solution of F-KP (i 1, w w')
 - Case 2: item i not in OPT
 - OPT is an optimal solution of F-KP(i 1, w)

Step 3: Prove Greedy-Choice Property

Fractional Knapsack Problem

Input: n items where i-th item has value v_i and weighs w_i

Output: the max value within W capacity, where we can take **any fraction of items**

- Greedy choice: select the item with the highest $\frac{v_i}{w_i}$
- Proof via contradiction $(j = \underset{i}{\operatorname{argmax}} \frac{v_i}{w_i})$
 - Assume that there is no OPT including this greedy choice
 - If $W \le w_j$, we can replace all items in OPT with item j
 - If $W > w_j$, we can replace any item weighting w_j in OPT with item j
 - The total value must be equal or higher, because item j has the highest $\frac{v_i}{w_i}$

Do other knapsack problems have this property?

Greedy #4: Breakpoint Selection

Breakpoint Selection Problem

- Input: a planned route with n+1 gas stations b_0,\ldots,b_n ; the car can go at most C after refueling at a breakpoint
- Output: a refueling schedule $(b_0 \rightarrow b_n)$ that minimizes the number of stops

Ideally: stop when out of gas

Actually: may not be able to find the gas station when out of gas

Greedy algorithm: go as far as you can before refueling

Step 1: Cast Optimization Problem

Breakpoint Selection Problem

Input: n+1 breakpoints $b_0, ..., b_n$; gas storage is COutput: a refueling schedule $(b_0 \rightarrow b_n)$ that minimizes the number of stops

Subproblems

- B (i): breakpoint selection problem from b_i to b_n
- Goal: B(0)

Step 2: Prove Optimal Substructure

Breakpoint Selection Problem

```
Input: n+1 breakpoints b_0, ..., b_n; gas storage is C
Output: a refueling schedule (b_0 \rightarrow b_n) that minimizes the number of stops
```

- Suppose OPT is an optimal solution to $\mathbb{B}\left(\frac{1}{2}\right)$ where j is the largest index satisfying $b_{j}-b_{i}\leq C$, there are j-i cases
 - Case 1: stop at b_{i+1}
 - OPT+ $\{b_{i+1}\}$ is an optimal solution of B (i + 1)
 - Case 2: stop at b_{i+2}
 - OPT+ $\{b_{i+2}\}$ is an optimal solution of B (i + 2)

• Case
$$j - i$$
: stop at b_i

• OPT+ $\{b_i\}$ is an optimal solution of $\mathbb{B}(j)$

$$B_i = \min_{i < k \le j} (1 + B_k)$$

Step 3: Prove Greedy-Choice Property

Breakpoint Selection Problem

Input: n + 1 breakpoints $b_0, ..., b_n$; gas storage is C

Output: a refueling schedule $(b_0 \rightarrow b_n)$ that minimizes the number of stops

- Greedy choice: go as far as you can before refueling (select b_i)
- Proof via contradiction
 - Assume that there is no OPT including this greedy choice (after b_i then stop at b_k , $k \neq j$)
 - If k > j, we cannot stop at b_k due to out of gas
 - If k < j, we can replace the stop at b_k with the stop at b_j
 - The total value must be equal or higher, because we refuel later ($b_i > b_k$)

$$B_i = \min_{i < k \le j} (1 + B_k) \longrightarrow B_i = 1 + B_j$$

Pseudo Code

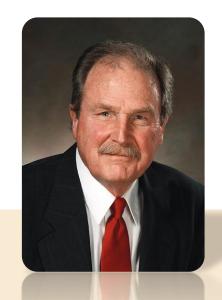
Breakpoint Selection Problem

Input: n + 1 breakpoints $b_0, ..., b_n$; gas storage is C

Output: a refueling schedule $(b_0 \rightarrow b_n)$ that minimizes the number of stops

```
BP-Select(C, b)
   Sort(b) s.t. b[0] < b[1] < ... < b[n]
   p = 0
   S = {0}
   for i = 1 to n - 1
      if b[i + 1] - b[p] > C
      if i == p
        return "no solution"
      A = A U {i}
      p = i
   return A
```

$$T(n) = \Theta(n \log n)$$

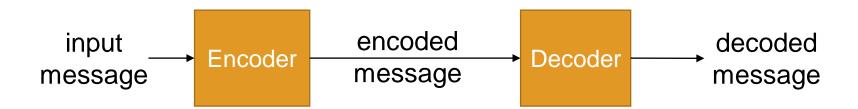


Greedy #5: Huffman Codes

Textbook Chapter 16.3 – Huffman codes

Encoding & Decoding

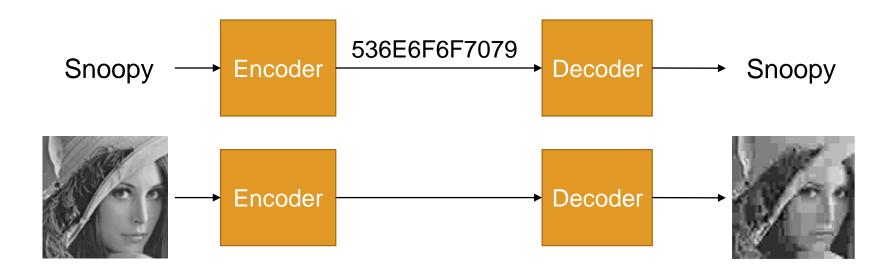
• Code (編碼) is a system of rules to convert information—such as a letter, word, sound, image, or gesture—into another, sometimes shortened or secret, form or representation for communication through a channel or storage in a medium.



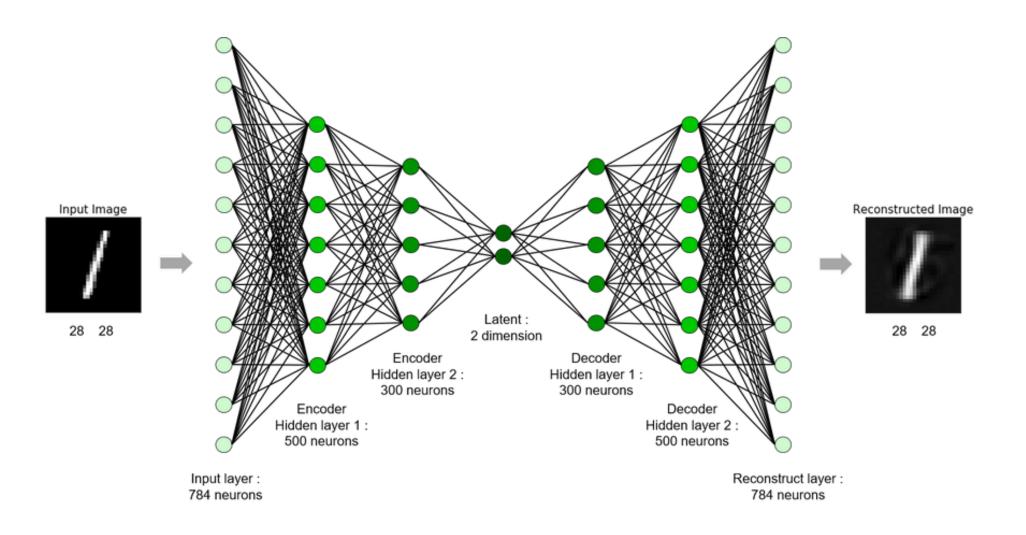
Encoding & Decoding

Goal

- Enable communication and storage
- Detect or correct errors introduced during transmission
- Compress data: lossy or lossless



Lossy Data Compression: **ADA2020 Autoencoder**



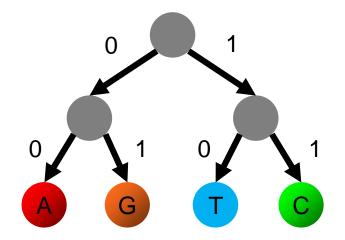
Lossless Data Compression

- Goal: encode each symbol using a unique binary code (w/o ambiguity)
 - How to represent symbols?
 - How to ensure decode(encode(x))=x?
 - How to minimize the number of bits?

Lossless Data Compression

- Goal: encode each symbol using a unique binary code (w/o ambiguity)
 - How to represent symbols?
 - How to ensure decode(encode(x))=x?
 - How to minimize the number of bits?

find a binary tree

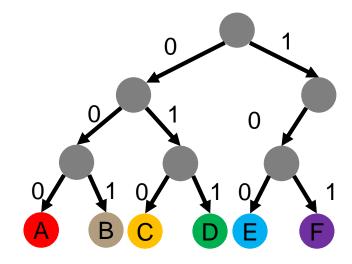


10101101011010100101010010 T T C G G T T T G G G A T

Code

		alida ayant aada: #ADA2020								
Symbol	Α	В	C	D	Ε	F				
Frequency (K)	45	13	12	16	9	5				
Fixed-length	000	001	010	011	100	101				
Variable-length	0	101	100	111	1101	1100				

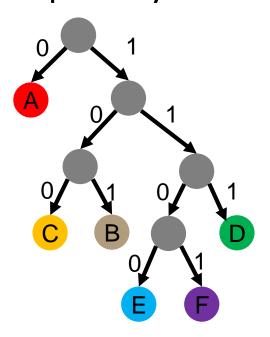
- **Fixed-length**: use the same number of bits for encoding every symbol
 - Ex. ASCII, Big5, UTF



The length of this sequence is

$$(45+13+12+16+9+5) \cdot 3 = 300$$

• Variable-length: shorter codewords for more frequent symbols



The length of this sequence is

$$45 \cdot 1 + (13 + 12 + 16) \cdot 3 + (9 + 5) \cdot 4 = 224$$

Lossless Data Compression

- Goal: encode each symbol using an unique binary code (w/o ambiguity)
 - How to represent symbols?
 - How to ensure decode(encode(x))=x?
 - How to minimize the number of bits?

use codes that are uniquely decodable

Prefix Code

• Definition: a variable-length code where no codeword is a prefix of some other codeword

Symbol		Α	В	C	D	Ε	F
Frequency (K)		45	13	12	16	9	5
Variable-length	Prefix code	0	101	100	111	1101	1100
	Not prefix code	0	101	10	111	1101	1100

• Ambiguity: decode(1011100) can be 'BF' or 'CDAA'

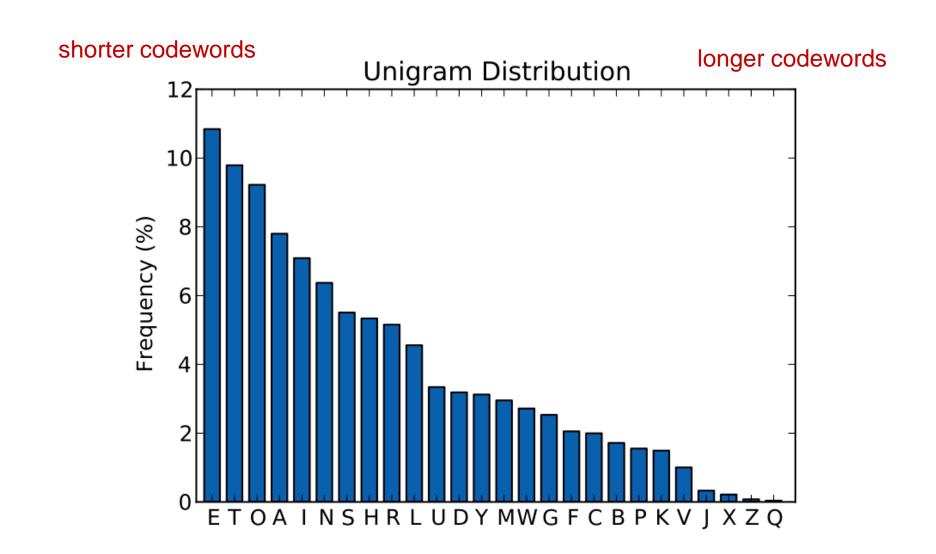
prefix codes are uniquely decodable

Lossless Data Compression

- Goal: encode each symbol using an unique binary code (w/o ambiguity)
 - How to represent symbols?
 - How to ensure decode(encode(x))=x?
 - How to minimize the number of bits?

more frequent symbols should use shorter codewords

Letter Frequency Distribution



Total Length of Codes

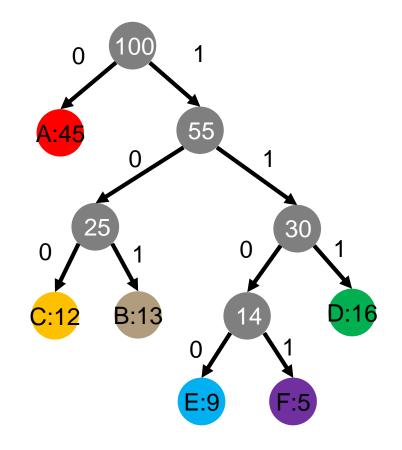
- The weighted depth of a leaf = weight of a leaf (freq) × depth of a leaf
- Total length of codes = Total weighted depth of leaves
- Cost of the tree *T*

$$B(T) = \sum_{c \in C} \operatorname{freq}(c) \cdot d_T(c)$$

Average bits per character

$$\frac{B(T)}{100} = \sum_{c \in C} \text{relative-freq}(c) \cdot d_T(c)$$

How to find the optimal prefix code to minimize the cost?



Prefix Code Problem

- Input: n positive integers $w_1, w_2, ..., w_n$ indicating word frequency
- Output: a binary tree of n leaves, whose weights form w_1, w_2, \ldots, w_n s.t. the cost of the tree is minimized

$$T^* = \arg\min_{T} B(T) = \arg\min_{T} \sum_{c \in C} \operatorname{freq}(c) \cdot d_T(c)$$

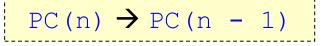
Step 1: Cast Optimization Problem

Prefix Code Problem

Input: n positive integers $w_1, w_2, ..., w_n$ indicating word frequency

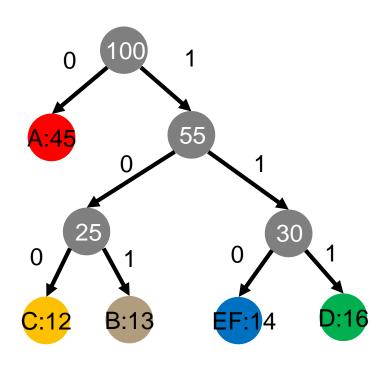
Output: a binary tree of n leaves with minimal cost

- Subproblem: merge two characters into a new one whose weight is their sum
 - PC (\dot{i}): prefix code problem for i leaves
 - Goal: PC (n)



- Issues
 - It is not the subproblem of the original problem
 - The cost of two merged characters should be considered





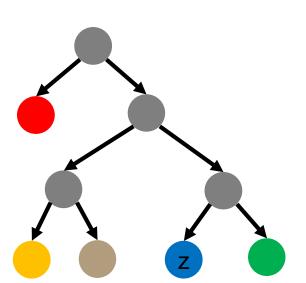
Step 2: Prove Optimal Substructure

Prefix Code Problem

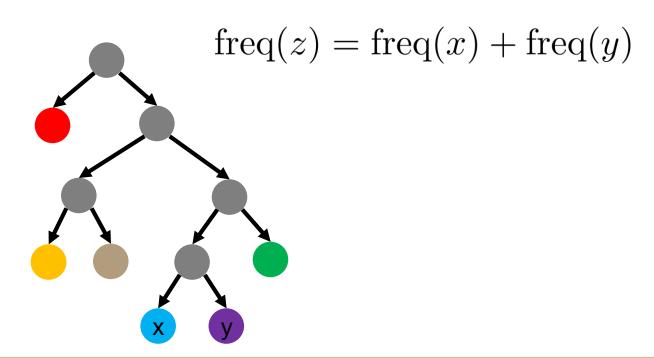
Input: n positive integers $w_1, w_2, ..., w_n$ indicating word frequency

Output: a binary tree of n leaves with minimal cost

• Suppose T' is an optimal solution to $PC(i, \{w_1, i-1, z\})$

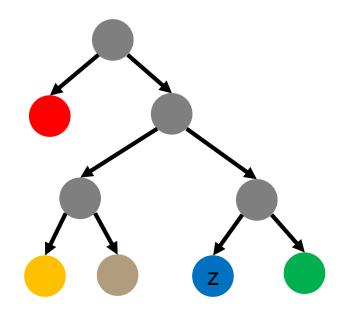


• T is an optimal solution to PC (i+1, $\{w_{1\dots i-1}, x, y\}$)

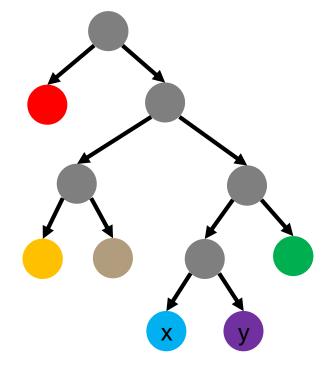


Step 2: Prove Optimal Substructure

• T'



• T



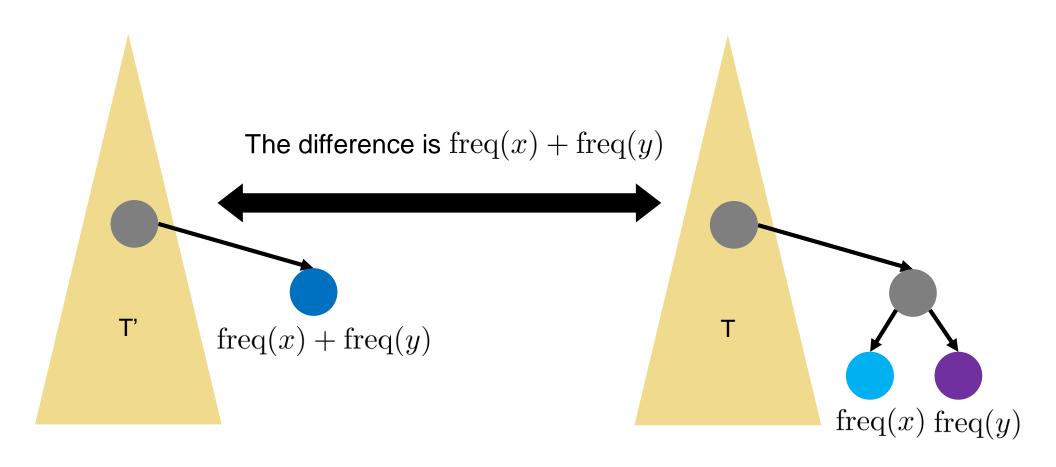
$$B(T) = B(T') - \text{freq}(z)d_{T'}(z) + \text{freq}(x)d_{T}(x) + \text{freq}(y)d_{T}(y)$$

$$= B(T') - (\text{freq}(x) + \text{freq}(y))d_{T'}(z) + \text{freq}(x)(1 + d_{T'}(z)) + \text{freq}(y)(1 + d_{T'}(z))$$

$$= B(T') + \text{freq}(x) + \text{freq}(y)$$

Step 2: Prove Optimal Substructure

• Optimal substructure: T' is OPT if and only if T is OPT



Greedy Algorithm Design

Prefix Code Problem

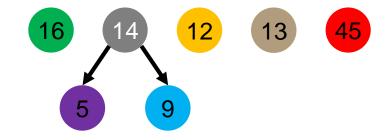
Input: n positive integers $w_1, w_2, ..., w_n$ indicating word frequency

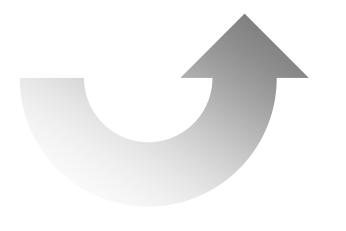
Output: a binary tree of n leaves with minimal cost

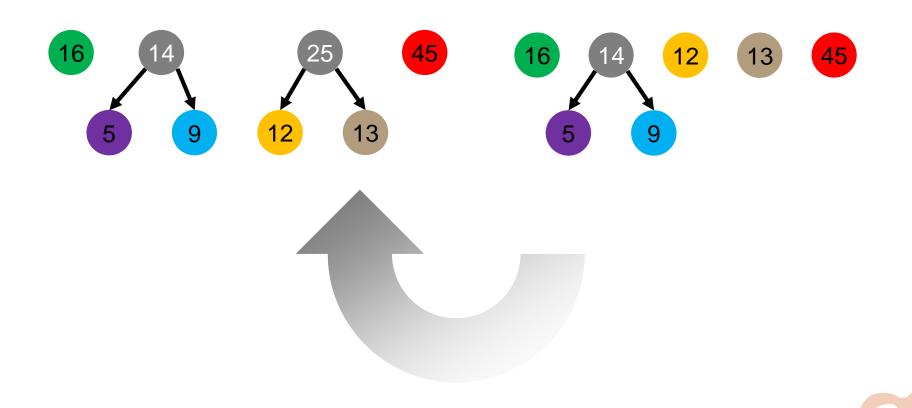
- Greedy choice: merge repeatedly until one tree left
 - Select two trees x, y with minimal frequency roots freq(x) and freq(y)
 - Merge into a single tree by adding root z with the frequency freq(x) + freq(y)

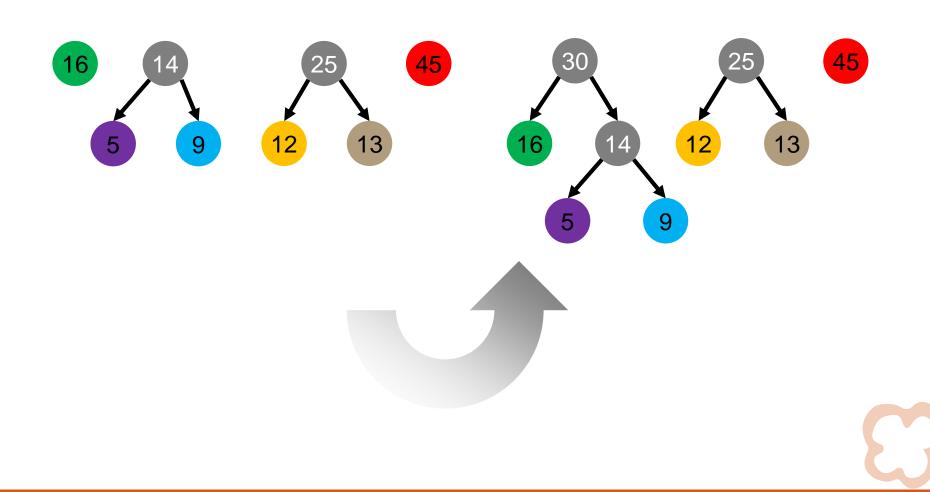
Example

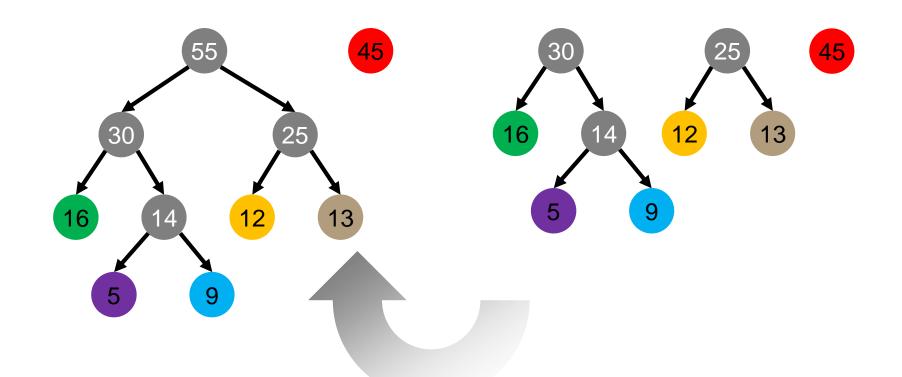
Initial set (store in a priority queue)

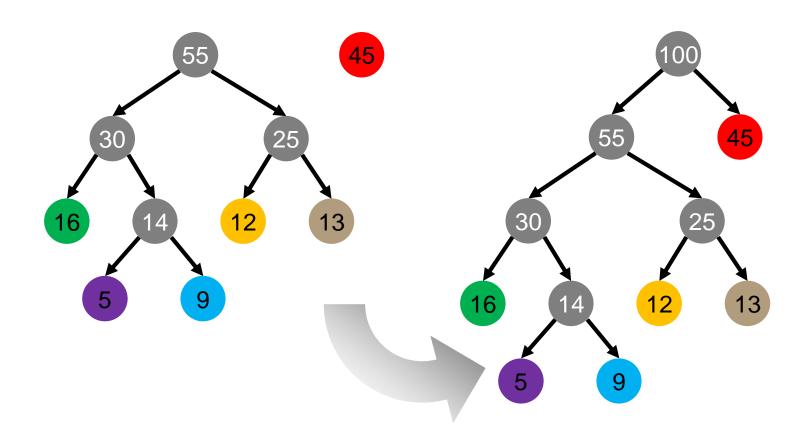












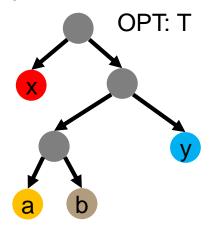
Step 3: Prove Greedy-Choice Property

Prefix Code Problem

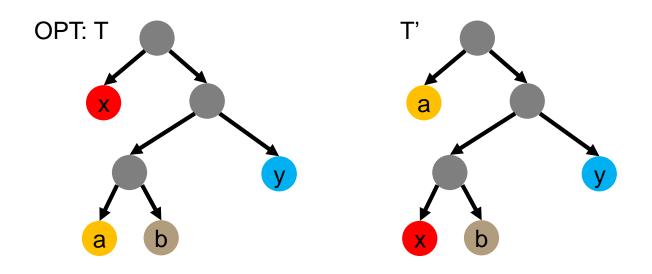
Input: n positive integers $w_1, w_2, ..., w_n$ indicating word frequency

Output: a binary tree of n leaves with minimal cost

- Greedy choice: merge two nodes with min weights repeatedly
- Proof via contradiction
 - Assume that there is no OPT including this greedy choice
 - x and y are two symbols with lowest frequencies
 - a and b are siblings with largest depths
 - WLOG, assume $freq(a) \le freq(b)$ and $freq(x) \le freq(y)$
 - \rightarrow freq(x) \leq freq(a) and freq(y) \leq freq(b)
 - Exchanging a with x and then b with y can make the tree equally or better



Step 3: Prove Greedy-Choice Property



$$B(T) - B(T') = \sum_{s \in S} \operatorname{freq}(s) d_T(s) - \sum_{s \in S} \operatorname{freq}(s) d_{T'}(s)$$

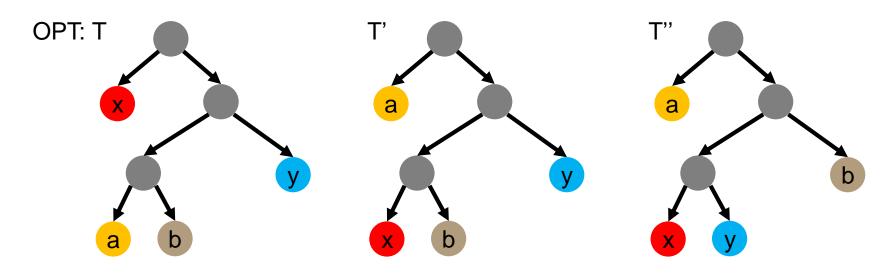
$$= \operatorname{freq}(x) d_T(x) + \operatorname{freq}(a) d_T(a) - \operatorname{freq}(x) d_{T'}(x) - \operatorname{freq}(a) d_{T'}(a)$$

$$= \operatorname{freq}(x) d_T(x) + \operatorname{freq}(a) d_T(a) - \operatorname{freq}(x) d_T(a) - \operatorname{freq}(a) d_T(x)$$

$$= (\operatorname{freq}(a) - \operatorname{freq}(x)) (d_T(a) - d_T(x)) \ge 0 \quad \because \operatorname{freq}(x) \le \operatorname{freq}(a)$$

Because T is OPT, T' must be another optimal solution.

Step 3: Prove Greedy-Choice Property



$$\begin{split} B(T') - B(T'') &= \sum_{s \in S} \operatorname{freq}(s) d_{T'}(s) - \sum_{s \in S} \operatorname{freq}(s) d_{T''}(s) \\ &= \operatorname{freq}(y) d_{T'}(y) + \operatorname{freq}(b) d_{T'}(b) - \operatorname{freq}(y) d_{T''}(y) - \operatorname{freq}(b) d_{T''}(b) \\ &= \operatorname{freq}(y) d_{T'}(y) + \operatorname{freq}(b) d_{T'}(b) - \operatorname{freq}(y) d_{T'}(b) - \operatorname{freq}(b) d_{T'}(y) \\ &= (\operatorname{freq}(b) - \operatorname{freq}(y)) (d_{T'}(b) - d_{T'}(y)) \geq 0 \quad \because \operatorname{freq}(y) \leq \operatorname{freq}(b) \end{split}$$

Because T' is OPT, T" must be another optimal solution.

Practice: prove the optimal tree must be a full tree

Correctness and Optimality

- Theorem: Huffman algorithm generates an optimal prefix code
- Proof
 - Use induction to prove: Huffman codes are optimal for n symbols
 - n=2, trivial
 - For a set S with n+1 symbols,
 - 1. Based on the greedy choice property, two symbols with minimum frequencies are siblings in T
 - 2. Construct T' by replacing these two symbols x and y with z s.t. $S' = (S \setminus \{x, y\}) \cup \{z\}$ and freq(z) = freq(x) + freq(y)
 - 3. Assume T' is the optimal tree for n symbols by inductive hypothesis
 - 4. Based on the optimal substructure property, we know that when T' is optimal, T is optimal too (case n+1 holds)

This induction proof framework can be applied to prove its <u>optimality</u> using the **optimal substructure** and the **greedy choice property**.

Pseudo Code

Prefix Code Problem

Input: n positive integers $w_1, w_2, ..., w_n$ indicating word frequency

Output: a binary tree of *n* leaves with minimal cost

```
Huffman(S)
 n = |S|
  Q = Build-Priority-Queue(S)
  for i = 1 to n - 1
    allocate a new node z
    z.left = x = Extract-Min(0)
    z.right = y = Extract-Min(Q)
    freq(z) = freq(x) + freq(y)
    Insert(O, z)
    Delete (Q, x)
    Delete(Q, y)
  return Extract-Min(Q) // return the prefix tree
```

$$T(n) = \Theta(n \log n)$$

Drawbacks of Huffman Codes

- Huffman's algorithm is optimal for a symbol-by-symbol coding with a known input probability distribution
- Huffman's algorithm is sub-optimal when
 - blending among symbols is allowed
 - the probability distribution is unknown
 - symbols are not independent

To Be Continued...

Question?

Important announcement will be sent to @ntu.edu.tw mailbox & post to the course website

Course Website: http://ada.miulab.tw

Email: ada-ta@csie.ntu.edu.tw