
Algorithm Design and Analysis
Greedy Algorithms (1)

Yun-Nung (Vivian) Chen

http://ada.miulab.tw slido: #ADA2020

slido event code: #ADA2020

Outline

• Greedy Algorithms

• Greedy #1: Activity-Selection / Interval Scheduling

• Greedy #2: Coin Changing

• Greedy #3: Fractional Knapsack Problem

• Greedy #4: Breakpoint Selection

• Greedy #5: Huffman Codes

• Greedy #6: Task-Scheduling

• Greedy #7: Scheduling to Minimize Lateness

2

slido event code: #ADA2020

Algorithm Design Strategy

• Do not focus on “specific algorithms”

• But “some strategies” to “design” algorithms

• First Skill: Divide-and-Conquer (各個擊破/分治)

• Second Skill: Dynamic Programming (動態規劃)

• Third Skill: Greedy (貪婪法則)

3

slido event code: #ADA2020

Greedy Algorithms

4

Textbook Chapter 16 – Greedy Algorithms

Textbook Chapter 16.2 – Elements of the greedy strategy

slido event code: #ADA2020

What is Greedy Algorithms?

• always makes the choice that looks best at the moment

• makes a locally optimal choice in the hope that this choice will lead to a
globally optimal solution

• not always yield optimal solution; may end up at local optimal

5

Greedy: move towards max gradient and hope it is global maximum

local maximal

global maximal

local maximal

slido event code: #ADA2020

Algorithm Design Paradigms

• Dynamic Programming
• has optimal substructure

• make an informed choice after getting
optimal solutions to subproblems

• dependent or overlapping
subproblems

6

• Greedy Algorithms
• has optimal substructure

• make a greedy choice before solving
the subproblem

• no overlapping subproblems
✓Each round selects only one subproblem

✓The subproblem size decreases

Optimal

Solution

Possible

Case 1

Possible

Case 2

Possible

Case k

max

/min

Subproblem

Solution

Subproblem

Solution

Subproblem

Solution

+

+

+

= Optimal

Solution

Greedy

Choice

Subproblem

Solution
+=

slido event code: #ADA2020

Greedy Procedure

1. Cast the optimization problem as one in which we make a choice and
remain one subproblem to solve

2. Demonstrate the optimal substructure
✓ Combining an optimal solution to the subproblem via greedy can arrive an optimal

solution to the original problem

3. Prove that there is always an optimal solution to the original problem that
makes the greedy choice

7

slido event code: #ADA2020

Greedy Algorithms

To yield an optimal solution, the problem should exhibit

1. Optimal Substructure : an optimal solution to the problem contains within
its optimal solutions to subproblems

2. Greedy-Choice Property : making locally optimal (greedy) choices leads to
a globally optimal solution

8

slido event code: #ADA2020

Proof of Correctness Skills

• Optimal Substructure : an optimal solution to the problem contains within
its optimal solutions to subproblems

• Greedy-Choice Property : making locally optimal (greedy) choices leads to a
globally optimal solution
• Show that it exists an optimal solution that “contains” the greedy choice using

exchange argument

• For any optimal solution OPT, the greedy choice 𝑔 has two cases
• 𝑔 is in OPT: done

• 𝑔 not in OPT: modify OPT into OPT’ s.t. OPT’ contains 𝑔 and is at least as good as OPT

9

OPT OPT’

𝑔

✓ If OPT’ is better than OPT, the property is proved by contradiction

✓ If OPT’ is as good as OPT, then we showed that there exists an

optimal solution containing 𝑔 by construction

slido event code: #ADA2020

Greedy #1: Activity-Selection

/ Interval Scheduling

10

Textbook Chapter 16.1 – An activity-selection problem

slido event code: #ADA2020

Activity-Selection/ Interval Scheduling

• Input: 𝑛 activities with start times 𝑠𝑖 and finish times 𝑓𝑖 (the activities are
sorted in monotonically increasing order of finish time 𝑓1 ≤ 𝑓2 ≤ ⋯ ≤ 𝑓𝑛)

• Output: the maximum number of compatible activities

• Without loss of generality: 𝑠1 < 𝑠2 < ⋯ < 𝑠𝑛 and 𝑓1 < 𝑓2 < ⋯ < 𝑓𝑛
• 大的包小的則不考慮大的→用小的取代大的一定不會變差

11

time

1

2

3

4

5

6

activity index

21 3 4 5 6 7 8 9

slido event code: #ADA2020

Weighted Interval Scheduling

• Subproblems
• WIS(i): weighted interval scheduling for the first 𝑖 jobs

• Goal: WIS(n)

• Dynamic programming algorithm

12

i 0 1 2 3 4 5 … n

M[i]

Set 𝑣𝑖 = 1 for all 𝑖 to formulate it into the activity-selection problem

Weighted Interval Scheduling Problem

Input: 𝑛 jobs with 𝑠𝑖 , 𝑓𝑖 , 𝑣𝑖 , 𝑝(𝑗) = largest index 𝑖 < 𝑗 s.t. jobs 𝑖 and 𝑗 are compatible

Output: the maximum total value obtainable from compatible

slido event code: #ADA2020

Activity-Selection Problem

• Dynamic programming

• Optimal substructure is already proved

• Greedy algorithm

13

select the 𝑖-th activity

Why does the 𝑖-th
activity must appear

in an OPT?

Activity-Selection Problem

Input: 𝑛 activities with 𝑠𝑖 , 𝑓𝑖 , 𝑝(𝑗) = largest index 𝑖 < 𝑗 s.t. 𝑖 and 𝑗 are compatible

Output: the maximum number of activities

slido event code: #ADA2020

Greedy-Choice Property

• Goal:

• Proof
• Assume there is an OPT solution for the first 𝑖 − 1 activities (𝑀𝑖−1)

• 𝐴𝑗 is the last activity in the OPT solution→

• Replacing 𝐴𝑗 with 𝐴𝑖 does not make the OPT worse

14

time

1

2

:

i

i - 1

:

activity index

21 3 4 5 6 7 8 9

slido event code: #ADA2020

Pseudo Code

15

Act-Select(n, s, f, v, p)

M[0] = 0

for i = 1 to n

M[i] = 1 + M[p[i]]

return M[n]

Find-Solution(M, n)

if n = 0

return {}

return {n} ∪ Find-Solution(p[n])

Select the last compatible one (←) = Select the first compatible one (→)

Activity-Selection Problem

Input: 𝑛 activities with 𝑠𝑖 , 𝑓𝑖 , 𝑝(𝑗) = largest index 𝑖 < 𝑗 s.t. 𝑖 and 𝑗 are compatible

Output: the maximum number of activities

slido event code: #ADA2020

Greedy #2: Coin Changing

16

Textbook Exercise 16.1

slido event code: #ADA2020

Coin Changing Problem

• Input: 𝑛 dollars and unlimited coins with values 𝑣𝑖 (1, 5, 10, 50)

• Output: the minimum number of coins with the total value 𝑛

• Cashier’s algorithm: at each iteration, add the coin with the largest value no
more than the current total

17

Does this algorithm return the OPT?

slido event code: #ADA2020

Step 1: Cast Optimization Problem

• Subproblems
• C(i): minimal number of coins for the total value 𝑖

• Goal: C(n)

18

Coin Changing Problem

Input: 𝑛 dollars and unlimited coins with values 𝑣𝑖 (1, 5, 10, 50)

Output: the minimum number of coins with the total value 𝑛

slido event code: #ADA2020

Step 2: Prove Optimal Substructure

• Suppose OPT is an optimal solution to C(i), there are 4 cases:
• Case 1: coin 1 in OPT

• OPT\coin1 is an optimal solution of C(i – v1)

• Case 2: coin 2 in OPT
• OPT\coin2 is an optimal solution of C(i – v2)

• Case 3: coin 3 in OPT
• OPT\coin3 is an optimal solution of C(i – v3)

• Case 4: coin 4 in OPT
• OPT\coin4 is an optimal solution of C(i – v4)

19

Coin Changing Problem

Input: 𝑛 dollars and unlimited coins with values 𝑣𝑖 (1, 5, 10, 50)

Output: the minimum number of coins with the total value 𝑛

slido event code: #ADA2020

Step 3: Prove Greedy-Choice Property

• Greedy choice: select the coin with the largest value no more than the
current total

• Proof via contradiction (use the case 10 ≤ 𝑖 < 50 for demo)
• Assume that there is no OPT including this greedy choice (choose 10)

→ all OPT use 1, 5, 50 to pay 𝑖
• 50 cannot be used

• #coins with value 5 < 2 → otherwise we can use a 10 to have a better output

• #coins with value 1 < 5 → otherwise we can use a 5 to have a better output

• We cannot pay 𝑖 with the constraints (at most 5 + 4 = 9)

20

Coin Changing Problem

Input: 𝑛 dollars and unlimited coins with values 𝑣𝑖 (1, 5, 10, 50)

Output: the minimum number of coins with the total value 𝑛

slido event code: #ADA2020

Greedy #3:

Fractional Knapsack Problem

21

Textbook Exercise 16.2-2

slido event code: #ADA2020

Knapsack Problem

• Input: 𝑛 items where 𝑖-th item has value 𝑣𝑖 and weighs 𝑤𝑖 (𝑣𝑖 and 𝑤𝑖 are
positive integers)

• Output: the maximum value for the knapsack with capacity of 𝑊

• Variants of knapsack problem
• 0-1 Knapsack Problem: 每項物品只能拿一個

• Unbounded Knapsack Problem: 每項物品可以拿多個

• Multidimensional Knapsack Problem: 背包空間有限

• Multiple-Choice Knapsack Problem: 每一類物品最多拿一個

• Fractional Knapsack Problem: 物品可以只拿部分

22

slido event code: #ADA2020

Knapsack Problem

• Input: 𝑛 items where 𝑖-th item has value 𝑣𝑖 and weighs 𝑤𝑖 (𝑣𝑖 and 𝑤𝑖 are
positive integers)

• Output: the maximum value for the knapsack with capacity of 𝑊

• Variants of knapsack problem
• 0-1 Knapsack Problem: 每項物品只能拿一個

• Unbounded Knapsack Problem: 每項物品可以拿多個

• Multidimensional Knapsack Problem: 背包空間有限

• Multiple-Choice Knapsack Problem: 每一類物品最多拿一個

• Fractional Knapsack Problem: 物品可以只拿部分

23

slido event code: #ADA2020

Fractional Knapsack Problem

• Input: 𝑛 items where 𝑖-th item has value 𝑣𝑖 and weighs 𝑤𝑖 (𝑣𝑖 and 𝑤𝑖 are
positive integers)

• Output: the maximum value for the knapsack with capacity of 𝑊, where we
can take any fraction of items

• Greedy algorithm: at each iteration, choose the item with the highest
𝑣𝑖

𝑤𝑖
and

continue when 𝑊−𝑤𝑖 > 0

24

slido event code: #ADA2020

Step 1: Cast Optimization Problem

• Subproblems
• F-KP(i, w): fractional knapsack problem within 𝑤 capacity for the first 𝑖 items

• Goal: F-KP(n, W)

25

Fractional Knapsack Problem

Input: 𝑛 items where 𝑖-th item has value 𝑣𝑖 and weighs 𝑤𝑖

Output: the max value within 𝑊 capacity, where we can take any fraction of items

slido event code: #ADA2020

Step 2: Prove Optimal Substructure

• Suppose OPT is an optimal solution to F-KP(i, w), there are 2 cases:
• Case 1: full/partial item 𝑖 in OPT

• Remove 𝑤′ of item 𝑖 from OPT is an optimal solution of F-KP(i - 1, w – w’)

• Case 2: item 𝑖 not in OPT
• OPT is an optimal solution of F-KP(i - 1, w)

26

Fractional Knapsack Problem

Input: 𝑛 items where 𝑖-th item has value 𝑣𝑖 and weighs 𝑤𝑖

Output: the max value within 𝑊 capacity, where we can take any fraction of items

slido event code: #ADA2020

Step 3: Prove Greedy-Choice Property

• Greedy choice: select the item with the highest
𝑣𝑖

𝑤𝑖

• Proof via contradiction (𝑗 = argmax
𝑖

𝑣𝑖

𝑤𝑖
)

• Assume that there is no OPT including this greedy choice
• If 𝑊 ≤ 𝑤𝑗 , we can replace all items in OPT with item 𝑗

• If 𝑊 > 𝑤𝑗 , we can replace any item weighting 𝑤𝑗 in OPT with item 𝑗

• The total value must be equal or higher, because item 𝑗 has the highest
𝑣𝑖

𝑤𝑖

27

Do other knapsack problems have this property?

Fractional Knapsack Problem

Input: 𝑛 items where 𝑖-th item has value 𝑣𝑖 and weighs 𝑤𝑖

Output: the max value within 𝑊 capacity, where we can take any fraction of items

slido event code: #ADA2020

Greedy #4: Breakpoint Selection

28

slido event code: #ADA2020

Breakpoint Selection Problem

• Input: a planned route with 𝑛 + 1 gas stations 𝑏0, … , 𝑏𝑛; the car can go at
most 𝐶 after refueling at a breakpoint

• Output: a refueling schedule (𝑏0→𝑏𝑛) that minimizes the number of stops

• Greedy algorithm: go as far as you can before refueling

29

1 2 3 4 5

Ideally: stop when out of gas

Actually: may not be able to find the gas station when out of gas

1 2 3 4 5 6

slido event code: #ADA2020

Step 1: Cast Optimization Problem

• Subproblems
• B(i): breakpoint selection problem from 𝑏𝑖 to 𝑏𝑛
• Goal: B(0)

30

Breakpoint Selection Problem

Input: 𝑛 + 1 breakpoints 𝑏0, … , 𝑏𝑛; gas storage is 𝐶
Output: a refueling schedule (𝑏0→𝑏𝑛) that minimizes the number of stops

slido event code: #ADA2020

Step 2: Prove Optimal Substructure

• Suppose OPT is an optimal solution to B(i) where 𝑗 is the largest index
satisfying 𝑏𝑗 − 𝑏𝑖 ≤ 𝐶, there are 𝑗 − 𝑖 cases

• Case 1: stop at 𝑏𝑖+1
• OPT+{bi+1} is an optimal solution of B(i + 1)

• Case 2: stop at 𝑏𝑖+2
• OPT+{bi+2} is an optimal solution of B(i + 2)

:

• Case 𝑗 − 𝑖: stop at 𝑏𝑗
• OPT+{bj} is an optimal solution of B(j)

31

Breakpoint Selection Problem

Input: 𝑛 + 1 breakpoints 𝑏0, … , 𝑏𝑛; gas storage is 𝐶
Output: a refueling schedule (𝑏0→𝑏𝑛) that minimizes the number of stops

slido event code: #ADA2020

Step 3: Prove Greedy-Choice Property

• Greedy choice: go as far as you can before refueling (select 𝑏𝑗)

• Proof via contradiction
• Assume that there is no OPT including this greedy choice (after 𝑏𝑖 then stop at 𝑏𝑘 , 𝑘 ≠ 𝑗)

• If 𝑘 > 𝑗, we cannot stop at 𝑏𝑘 due to out of gas

• If 𝑘 < 𝑗, we can replace the stop at 𝑏𝑘 with the stop at 𝑏𝑗

• The total value must be equal or higher, because we refuel later (𝑏𝑗 > 𝑏𝑘)

32

Breakpoint Selection Problem

Input: 𝑛 + 1 breakpoints 𝑏0, … , 𝑏𝑛; gas storage is 𝐶
Output: a refueling schedule (𝑏0→𝑏𝑛) that minimizes the number of stops

slido event code: #ADA2020

Pseudo Code

33

BP-Select(C, b)

Sort(b) s.t. b[0] < b[1] < … < b[n]

p = 0

S = {0}

for i = 1 to n - 1

if b[i + 1] – b[p] > C

if i == p

return “no solution”

A = A ∪ {i}

p = i

return A

Breakpoint Selection Problem

Input: 𝑛 + 1 breakpoints 𝑏0, … , 𝑏𝑛; gas storage is 𝐶
Output: a refueling schedule (𝑏0→𝑏𝑛) that minimizes the number of stops

slido event code: #ADA2020

Greedy #5: Huffman Codes

34

Textbook Chapter 16.3 – Huffman codes

slido event code: #ADA2020

Encoding & Decoding

• Code (編碼) is a system of rules to convert information—such as a letter,
word, sound, image, or gesture—into another, sometimes shortened or
secret, form or representation for communication through a channel or
storage in a medium.

35

input

message

decoded

message
Encoder Decoder

encoded

message

slido event code: #ADA2020

Encoding & Decoding

• Goal
• Enable communication and storage

• Detect or correct errors introduced during transmission

• Compress data: lossy or lossless

36

Snoopy SnoopyEncoder Decoder
536E6F6F7079

Encoder Decoder

slido event code: #ADA2020

Lossy Data Compression:
Autoencoder

37

slido event code: #ADA2020

Lossless Data Compression

• Goal: encode each symbol using a unique binary code (w/o ambiguity)
• How to represent symbols?

• How to ensure decode(encode(x))=x?

• How to minimize the number of bits?

38

slido event code: #ADA2020

Lossless Data Compression

• Goal: encode each symbol using a unique binary code (w/o ambiguity)
• How to represent symbols?

• How to ensure decode(encode(x))=x?

• How to minimize the number of bits?

39

A G T C

0 1

0 1 0 1

10101101011010100101010010

T T C G G T T T G G G A T

find a binary tree

slido event code: #ADA2020

Code

• Fixed-length: use the same number
of bits for encoding every symbol

• Ex. ASCII, Big5, UTF

• The length of this sequence is

40

• Variable-length: shorter codewords
for more frequent symbols

• The length of this sequence is

Symbol A B C D E F

Frequency (K) 45 13 12 16 9 5

Fixed-length 000 001 010 011 100 101

Variable-length 0 101 100 111 1101 1100

E F

0 1

0 1

0 1

A B

0 1

C D

0 1

0

0 1

0

1

0 1

A

1
C D

1

0

E

B

F

0

slido event code: #ADA2020

Lossless Data Compression

• Goal: encode each symbol using an unique binary code (w/o ambiguity)
• How to represent symbols?

• How to ensure decode(encode(x))=x?

• How to minimize the number of bits?

41

use codes that are uniquely decodable

slido event code: #ADA2020

Prefix Code

• Definition: a variable-length code where no codeword is a prefix of some other codeword

• Ambiguity: decode(1011100) can be ‘BF’ or ‘CDAA’

42

prefix codes are uniquely decodable

Symbol A B C D E F

Frequency (K) 45 13 12 16 9 5

Variable-length
Prefix code 0 101 100 111 1101 1100

Not prefix code 0 101 10 111 1101 1100

slido event code: #ADA2020

Lossless Data Compression

• Goal: encode each symbol using an unique binary code (w/o ambiguity)
• How to represent symbols?

• How to ensure decode(encode(x))=x?

• How to minimize the number of bits?

43

more frequent symbols should use shorter codewords

slido event code: #ADA2020

Letter Frequency Distribution

44

shorter codewords longer codewords

slido event code: #ADA2020

Total Length of Codes

• The weighted depth of a leaf = weight of a leaf (freq) × depth of a leaf

• Total length of codes = Total weighted depth of leaves

• Cost of the tree 𝑇

• Average bits per character

45

0 1

0

1

0 1

A:45

1

C:12 D:16

1

0

E:9

B:13

F:5

0

100

55

25 30

14

How to find the optimal prefix

code to minimize the cost?

slido event code: #ADA2020

Prefix Code Problem

• Input: 𝑛 positive integers 𝑤1, 𝑤2, … , 𝑤𝑛 indicating word frequency

• Output: a binary tree of 𝑛 leaves, whose weights form 𝑤1, 𝑤2, … , 𝑤𝑛 s.t. the
cost of the tree is minimized

46

slido event code: #ADA2020

Step 1: Cast Optimization Problem

• Subproblem: merge two characters into a new one whose weight is their sum
• PC(i): prefix code problem for 𝑖 leaves

• Goal: PC(n)

• Issues
• It is not the subproblem of the original problem

• The cost of two merged characters should be considered

47

Prefix Code Problem

Input: 𝑛 positive integers 𝑤1, 𝑤2, … , 𝑤𝑛 indicating word frequency

Output: a binary tree of 𝑛 leaves with minimal cost

PC(n)→ PC(n - 1)

slido event code: #ADA2020

Example

48

0 1

0

1

0 1

A:45

1

C:12 D:16

1

0

E:9

B:13

F:5

0

100

55

25 30

14

0 1

1

0 1

A:45

C:12 D:16

1

0

B:13

0

100

55

25 30

EF:14

slido event code: #ADA2020

Step 2: Prove Optimal Substructure

• Suppose 𝑇’ is an optimal solution to
PC(i, {w1…i-1, z})

49

• 𝑇 is an optimal solution to PC(i+1,
{w1…i-1, x, y})

z

x y

Prefix Code Problem

Input: 𝑛 positive integers 𝑤1, 𝑤2, … , 𝑤𝑛 indicating word frequency

Output: a binary tree of 𝑛 leaves with minimal cost

slido event code: #ADA2020

Step 2: Prove Optimal Substructure

• 𝑇’

50

• 𝑇

z

x y

slido event code: #ADA2020

Step 2: Prove Optimal Substructure

• Optimal substructure: T’ is OPT if and only if T is OPT

51

TT’

The difference is

slido event code: #ADA2020

Greedy Algorithm Design

• Greedy choice: merge repeatedly until one tree left
• Select two trees 𝑥, 𝑦 with minimal frequency roots freq 𝑥 and freq 𝑦

• Merge into a single tree by adding root 𝑧 with the frequency freq 𝑥 + freq 𝑦

52

Prefix Code Problem

Input: 𝑛 positive integers 𝑤1, 𝑤2, … , 𝑤𝑛 indicating word frequency

Output: a binary tree of 𝑛 leaves with minimal cost

slido event code: #ADA2020

Example

53

4516 14

5 9

12 134516 5 9 12 13

Initial set (store in a priority queue)

slido event code: #ADA2020

Example

54

4516 14

5 9

25

12 13

4516 14

5 9

12 13

slido event code: #ADA2020

Example

55

45

16

30

14

5 9

25

12 13

4516 14

5 9

25

12 13

slido event code: #ADA2020

Example

56

55 45

16

30

14

5 9

25

12 13

45

16

30

14

5 9

25

12 13

slido event code: #ADA2020

Example

57

55 45

16

30

14

5 9

25

12 13

100

55 45

16

30

14

5 9

25

12 13

slido event code: #ADA2020

Step 3: Prove Greedy-Choice Property

• Greedy choice: merge two nodes with min weights repeatedly

• Proof via contradiction
• Assume that there is no OPT including this greedy choice

• 𝑥 and 𝑦 are two symbols with lowest frequencies

• 𝑎 and 𝑏 are siblings with largest depths

• WLOG, assume freq 𝑎 ≤ freq 𝑏 and freq 𝑥 ≤ freq 𝑦

→ freq 𝑥 ≤ freq 𝑎 and freq 𝑦 ≤ freq 𝑏

• Exchanging 𝑎 with 𝑥 and then 𝑏 with 𝑦 can make the tree equally or better

58

x

y

a b

OPT: T

Prefix Code Problem

Input: 𝑛 positive integers 𝑤1, 𝑤2, … , 𝑤𝑛 indicating word frequency

Output: a binary tree of 𝑛 leaves with minimal cost

slido event code: #ADA2020

Step 3: Prove Greedy-Choice Property

59

x

y

a b

OPT: T

a

y

x b

T’

▪ Because T is OPT, T’ must be another optimal solution.

slido event code: #ADA2020

Step 3: Prove Greedy-Choice Property

60

x

y

a b

OPT: T

a

y

x b

T’

a

b

x y

T’’

▪ Because T’ is OPT, T’’ must be another optimal solution.

Practice: prove the optimal tree must be a full tree

slido event code: #ADA2020

Correctness and Optimality

• Theorem: Huffman algorithm generates an optimal prefix code

• Proof
• Use induction to prove: Huffman codes are optimal for 𝑛 symbols

• 𝑛 = 2, trivial

• For a set 𝑆 with 𝑛 + 1 symbols,

1. Based on the greedy choice property, two symbols with minimum frequencies are
siblings in T

2. Construct T’ by replacing these two symbols 𝑥 and 𝑦 with 𝑧 s.t. 𝑆′ = (𝑆\{𝑥, 𝑦}) ∪
𝑧 and freq 𝑧 = freq 𝑥 + freq 𝑦

3. Assume T’ is the optimal tree for 𝑛 symbols by inductive hypothesis

4. Based on the optimal substructure property, we know that when T’ is optimal, T is
optimal too (case 𝑛 + 1 holds)

61

This induction proof framework can be applied to prove its optimality using

the optimal substructure and the greedy choice property.

slido event code: #ADA2020

Pseudo Code

62

Huffman(S)

n = |S|

Q = Build-Priority-Queue(S)

for i = 1 to n – 1

allocate a new node z

z.left = x = Extract-Min(Q)

z.right = y = Extract-Min(Q)

freq(z) = freq(x) + freq(y)

Insert(Q, z)

Delete(Q, x)

Delete(Q, y)

return Extract-Min(Q) // return the prefix tree

Prefix Code Problem

Input: 𝑛 positive integers 𝑤1, 𝑤2, … , 𝑤𝑛 indicating word frequency

Output: a binary tree of 𝑛 leaves with minimal cost

slido event code: #ADA2020

Drawbacks of Huffman Codes

• Huffman’s algorithm is optimal for a symbol-by-symbol coding with a known
input probability distribution

• Huffman’s algorithm is sub-optimal when
• blending among symbols is allowed

• the probability distribution is unknown

• symbols are not independent

63

slido event code: #ADA2020

To Be Continued…

64

Question?
Important announcement will be sent to
@ntu.edu.tw mailbox & post to the course website

Course Website: http://ada.miulab.tw

Email: ada-ta@csie.ntu.edu.tw

