
Algorithm Design and Analysis
Dynamic Programming (1)

Yun-Nung (Vivian) Chen

http://ada.miulab.tw slido: #ADA2020

slido event code: #ADA2020

Outline
• Dynamic Programming
• DP #1: Rod Cutting
• DP #2: Stamp Problem
• DP #3: Sequence Alignment Problem

• Longest Common Subsequence (LCS) / Edit Distance
• Viterbi Algorithm
• Space Efficient Algorithm

• DP #4: Matrix-Chain Multiplication
• DP #5: Weighted Interval Scheduling
• DP #6: Knapsack Problem

• 0/1 Knapsack
• Unbounded Knapsack
• Multidimensional Knapsack
• Fractional Knapsack

2

slido event code: #ADA2020

動腦一下 – 囚犯問題
• 有100個死囚，隔天執行死刑，典獄長開恩給他們一個存活的機會。

• 當隔天執行死刑時，每人頭上戴一頂帽子(黑或白)排成一隊伍，在死刑執行前，由隊
伍中最後的囚犯開始，每個人可以猜測自己頭上的帽子顏色(只允許說黑或白)，猜對
則免除死刑，猜錯則執行死刑。

• 若這些囚犯可以前一天晚上先聚集討論方案，是否有好的方法可以使總共存活的囚
犯數量期望值最高？

3

slido event code: #ADA2020

猜測規則
• 囚犯排成一排，每個人可以看到前面所有人的帽子，但看不到自己及後面囚犯的。

• 由最後一個囚犯開始猜測，依序往前。

• 每個囚犯皆可聽到之前所有囚犯的猜測內容。

4

……

Example: 奇數者猜測內容為前面一位的帽子顏色→存活期望值為75人

有沒有更多人可以存活的好策略?

slido event code: #ADA2020

Algorithm Design Strategy

• Do not focus on “specific algorithms”

• But “some strategies” to “design” algorithms

• First Skill: Divide-and-Conquer (各個擊破/分治法)

• Second Skill: Dynamic Programming (動態規劃)

5

slido event code: #ADA2020

Dynamic Programming

6

Textbook Chapter 15 – Dynamic Programming

Textbook Chapter 15.3 – Elements of dynamic programming

slido event code: #ADA2020

What is Dynamic Programming?

• Dynamic programming, like the divide-and-conquer method, solves problems
by combining the solutions to subproblems

• 用空間換取時間

• 讓走過的留下痕跡

• “Dynamic”: time-varying

• “Programming”: a tabular method

7

Dynamic Programming: planning over time

slido event code: #ADA2020

Algorithm Design Paradigms

8

• Divide-and-Conquer
• partition the problem into

independent or disjoint subproblems

• repeatedly solving the common
subsubproblems

→more work than necessary

• Dynamic Programming
• partition the problem into dependent

or overlapping subproblems

• avoid recomputation
✓Top-down with memoization

✓Bottom-up method

slido event code: #ADA2020

Dynamic Programming Procedure

• Apply four steps
1. Characterize the structure of an optimal solution

2. Recursively define the value of an optimal solution

3. Compute the value of an optimal solution, typically in a bottom-up fashion

4. Construct an optimal solution from computed information

9

slido event code: #ADA2020

Rethink Fibonacci Sequence

• Fibonacci sequence (費波那契數列)
• Base case: F(0) = F(1) = 1

• Recursive case: F(n) = F(n-1) + F(n-2)

10

Fibonacci(n)

if n < 2 // base case

return 1

// recursive case

return Fibonacci(n-1)+Fibonacci(n-2)

F(5)

F(4) F(3)

F(3) F(2) F(2) F(1)

F(2) F(1) F(1) F(0) F(1) F(0)

F(1) F(0) Calling overlapping subproblems result in poor efficiency

✓F(3) was computed twice

✓F(2) was computed 3 times

slido event code: #ADA2020

Fibonacci Sequence
Top-Down with Memoization

• Solve the overlapping subproblems recursively with memoization
• Check the memo before making the calls

11

F(5)

F(4) F(3)

F(3) F(2)

F(2) F(1)

F(1) F(0)

備忘錄

n 0 1 2 3 4 5

F(n) 1 1 ? ? ? ?2 3 5 8

Avoid recomputation of the same subproblems using memo

slido event code: #ADA2020

Fibonacci Sequence
Top-Down with Memoization

12

Memoized-Fibonacci(n)

// initialize memo (array a[])

a[0] = 1

a[1] = 1

for i = 2 to n

a[i] = 0

return Memoized-Fibonacci-Aux(n, a)

Memoized-Fibonacci-Aux(n, a)

if a[n] > 0

return a[n]

// save the result to avoid recomputation

a[n] = Memoized-Fibonacci-Aux(n-1, a) + Memoized-Fibonacci-Aux(n-2, a)

return a[n]

slido event code: #ADA2020

Fibonacci Sequence
Bottom-Up Method

• Building up solutions to larger and larger subproblems

13

Bottom-Up-Fibonacci(n)

if n < 2

return 1

a[0] = 1

a[1] = 1

for i = 2 … n

a[i] = a[i-1] + a[i-2]

return a[n]

F(5)

F(4)

F(3)

F(2)

F(1)

F(0) Avoid recomputation of the same subproblems

slido event code: #ADA2020

Optimization Problem

• Principle of Optimality
• Any subpolicy of an optimum policy must itself be an optimum policy with regard to

the initial and terminal states of the subpolicy

• Two key properties of DP for optimization
• Overlapping subproblems

• Optimal substructure – an optimal solution can be constructed from optimal solutions
to subproblems
✓Reduce search space (ignore non-optimal solutions)

14

If the optimal substructure (principle of optimality) does not hold, then it is

incorrect to use DP

slido event code: #ADA2020

Optimal Substructure Example

• Shortest Path Problem
• Input: a graph where the edges have positive costs

• Output: a path from S to T with the smallest cost

15

Taipei (T)

Tainan (S)

M

CS→M

CM→T

C’S→M < CS→M?

The path costing CS→M+ CM→T is the shortest path from S to T

→ The path with the cost CS→M must be a shortest path from S to M

Proof by “Cut-and-Paste” argument (proof by contradiction):

Suppose that it exists a path with smaller cost C’S→M, then we can

“cut” CS→M and “paste” C’S→M to make the original cost smaller

slido event code: #ADA2020

DP#1: Rod Cutting

16

Textbook Chapter 15.1 – Rod Cutting

slido event code: #ADA2020

Rod Cutting Problem

• Input: a rod of length 𝑛 and a table of prices 𝑝𝑖 for 𝑖 = 1,… , 𝑛

• Output: the maximum revenue 𝑟𝑛 obtainable by cutting up the rod and
selling the pieces

17

length 𝑖 (m) 1 2 3 4 5

price 𝑝𝑖 1 5 8 9 10

4m

2m

2m

slido event code: #ADA2020

Brute-Force Algorithm

• A rod with the length = 4

18

4m

3m 1m

2m 2m

3m1m

2m 1m1m

1m1m 2m

2m1m1m

1m1m1m1m

→ 9

→ 8 + 1 = 9

→ 5 + 5 = 10

→ 1 + 8 = 9

→ 5 + 1 + 1 = 7

→ 1 + 5 + 1 = 7

→ 1 + 1 + 5 = 7

→ 1 + 1 + 1 + 1 = 4

length 𝑖 (m) 1 2 3 4 5

price 𝑝𝑖 1 5 8 9 10

slido event code: #ADA2020

Brute-Force Algorithm

• A rod with the length = 𝑛

• For each integer position, we can choose “cut” or “not cut”

• There are 𝑛 – 1 positions for consideration

• The total number of cutting results is 2𝑛−1 = Θ 2𝑛−1

19

n

length 𝑖 (m) 1 2 3 4 5

price 𝑝𝑖 1 5 8 9 10

slido event code: #ADA2020

Recursive Thinking

• We use a recursive function to solve the subproblems

• If we know the answer to the subproblem, can we get the answer to the
original problem?

• Optimal substructure – an optimal solution can be constructed from optimal
solutions to subproblems

20

𝑟𝑛−𝑖𝑟𝑖

no cut

cut at the i-th position (from left to right)

𝑟𝑛: the maximum

revenue obtainable for

a rod of length 𝑛

slido event code: #ADA2020

Recursive Algorithms

• Version 1

• Version 2
• try to reduce the number of subproblems→ focus on the left-most cut

21

no cut

cut at the i-th position (from left to right)

left-most value maximum value obtainable from

the remaining part

𝑟𝑛−𝑖𝑝𝑖

slido event code: #ADA2020

Recursive Procedure

• Focus on the left-most cut
• assume that we always cut from left to right → the first cut

22

optimal solution to subproblems

𝑟𝑛−𝑖𝑝𝑖

𝑟𝑛−1𝑝1

𝑟𝑛−2𝑝2
:

:

optimal solution

Rod cutting problem has optimal substructure

slido event code: #ADA2020

Naïve Recursion Algorithm

• 𝑇 𝑛 = time for running Cut-Rod(p, n)

23

Cut-Rod(p, n)

// base case

if n == 0

return 0

// recursive case

q = -∞
for i = 1 to n

q = max(q, p[i] + Cut-Rod(p, n - i))

return q

slido event code: #ADA2020

Naïve Recursion Algorithm

• Rod cutting problem

24

Cut-Rod(p, n)

// base case

if n == 0

return 0

// recursive case

q = -∞
for i = 1 to n

q = max(q, p[i] + Cut-Rod(p, n - i))

return q

CR(4)

CR(3) CR(0)

CR(2) CR(1) CR(1) CR(0)

CR(1) CR(0) CR(0)

CR(0)

CR(0)

Calling overlapping subproblems result in poor efficiency

CR(2) CR(1)

CR(0)

CR(0)

slido event code: #ADA2020

Dynamic Programming

• Idea: use space for better time efficiency

• Rod cutting problem has overlapping subproblems and optimal substructures
→ can be solved by DP

• When the number of subproblems is polynomial, the time complexity is
polynomial using DP

• DP algorithm
• Top-down: solve overlapping subproblems recursively with memoization

• Bottom-up: build up solutions to larger and larger subproblems

25

slido event code: #ADA2020

Dynamic Programming

26

• Top-Down with Memoization
• Solve recursively and memo the

subsolutions (跳著填表)

• Suitable that not all subproblems
should be solved

• Bottom-Up with Tabulation
• Fill the table from small to large

• Suitable that each small problem
should be solved

f(0) f(1) f(2) … f(n) f(0) f(1) f(2) … f(n)

slido event code: #ADA2020

Algorithm for Rod Cutting Problem
Top-Down with Memoization

• 𝑇 𝑛 = time for running Memoized-Cut-Rod(p, n)

27

Memoized-Cut-Rod(p, n)

// initialize memo (an array r[] to keep max revenue)

r[0] = 0

for i = 1 to n

r[i] = -∞ // r[i] = max revenue for rod with length = i

return Memorized-Cut-Rod-Aux(p, n, r)

Memoized-Cut-Rod-Aux(p, n, r)

if r[n] >= 0

return r[n] // return the saved solution

q = -∞

for i = 1 to n

q = max(q, p[i] + Memoized-Cut-Rod-Aux(p, n-i, r))

r[n] = q // update memo

return q

slido event code: #ADA2020

Algorithm for Rod Cutting Problem
Bottom-Up with Tabulation

• 𝑇 𝑛 = time for running Bottom-Up-Cut-Rod(p, n)

28

Bottom-Up-Cut-Rod(p, n)

r[0] = 0

for j = 1 to n // compute r[1], r[2], ... in order

q = -∞

for i = 1 to j

q = max(q, p[i] + r[j - i])

r[j] = q

return r[n]

slido event code: #ADA2020

Rod Cutting Problem

• Input: a rod of length 𝑛 and a table of prices 𝑝𝑖 for 𝑖 = 1,… , 𝑛

• Output: the maximum revenue 𝑟𝑛 obtainable and the list of cut pieces

29

4m

2m

2m

length 𝑖 (m) 1 2 3 4 5

price 𝑝𝑖 1 5 8 9 10

slido event code: #ADA2020

Algorithm for Rod Cutting Problem
Bottom-Up with Tabulation

• Add an array to keep the cutting positions cut

30

Extended-Bottom-Up-Cut-Rod(p, n)

r[0] = 0

for j = 1 to n //compute r[1], r[2], ... in order

q = -∞

for i = 1 to j

if q < p[i] + r[j - i]

q = p[i] + r[j - i]

cut[j] = i // the best first cut for len j rod

r[i] = q

return r[n], cut

Print-Cut-Rod-Solution(p, n)

(r, cut) = Extended-Bottom-up-Cut-Rod(p, n)

while n > 0

print cut[n]

n = n – cut[n] // remove the first piece

slido event code: #ADA2020

f(0) f(1) f(2) … f(n)

Dynamic Programming

• Top-Down with Memoization

• Better when some subproblems
not be solved at all

• Solve only the required parts of
subproblems

31

• Bottom-Up with Tabulation

• Better when all subproblems must be
solved at least once

• Typically outperform top-down method
by a constant factor

• No overhead for recursive calls

• Less overhead for maintaining the table

f(0) f(1) f(2) … f(n)
F(5)

F(4)

F(3)

F(2)

F(1)

F(0)

slido event code: #ADA2020

Informal Running Time Analysis

• Approach 1: approximate via (#subproblems) * (#choices for each subproblem)
• For rod cutting

• #subproblems = n

• #choices for each subproblem = O(n)

• → T(n) is about O(n2)

• Approach 2: approximate via subproblem graphs

32

slido event code: #ADA2020

Subproblem Graphs

• The size of the subproblem graph allows us to estimate the time
complexity of the DP algorithm

• A graph illustrates the set of subproblems involved and how
subproblems depend on another 𝐺 = 𝑉, 𝐸 (E: edge, V: vertex)

• 𝑉 : #subproblems
• A subproblem is run only once

• |𝐸|: sum of #subsubproblems are needed for each subproblem

• Time complexity: linear to 𝑂(𝐸 + 𝑉)

33

Bottom-up: Reverse Topological Sort

Top-down: Depth First Search
Graph Algorithm

(taught later)

F(5)

F(4)

F(3)

F(2)

F(1)

F(0)

slido event code: #ADA2020

Dynamic Programming Procedure

1. Characterize the structure of an optimal solution
✓ Overlapping subproblems: revisit same subproblems

✓ Optimal substructure: an optimal solution to the problem contains within it optimal
solutions to subproblems

2. Recursively define the value of an optimal solution
✓ Express the solution of the original problem in terms of optimal solutions for

subproblems

3. Compute the value of an optimal solution
✓ typically in a bottom-up fashion

4. Construct an optimal solution from computed information
✓ Step 3 and 4 may be combined

34

slido event code: #ADA2020

Revisit DP for Rod Cutting Problem

1. Characterize the structure of an optimal solution

2. Recursively define the value of an optimal solution

3. Compute the value of an optimal solution

4. Construct an optimal solution from computed information

35

slido event code: #ADA2020

Step 1: Characterize an OPT Solution

• Step 1-Q1: What can be the subproblems?

• Step 1-Q2: Does it exhibit optimal structure? (an optimal solution can be
represented by the optimal solutions to subproblems)

• Yes. → continue

• No. → go to Step 1-Q1 or there is no DP solution for this problem

36

Rod Cutting Problem

Input: a rod of length 𝑛 and a table of prices 𝑝𝑖 for 𝑖 = 1,… , 𝑛
Output: the maximum revenue 𝑟𝑛 obtainable

slido event code: #ADA2020

Step 1: Characterize an OPT Solution

• Step 1-Q1: What can be the subproblems?
• Subproblems: Cut-Rod(0), Cut-Rod(1), …, Cut-Rod(n-1)

• Cut-Rod(i): rod cutting problem with length-i rod

• Goal: Cut-Rod(n)

• Suppose we know the optimal solution to Cut-Rod(i), there are i cases:
• Case 1: the first segment in the solution has length 1

• Case 2: the first segment in the solution has length 2

• Case i: the first segment in the solution has length i

37

從solution中拿掉一段長度為1的鐵條, 剩下的部分是Cut-Rod(i-1)的最佳解

從solution中拿掉一段長度為2的鐵條, 剩下的部分是Cut-Rod(i-2)的最佳解

從solution中拿掉一段長度為i的鐵條, 剩下的部分是Cut-Rod(0)的最佳解

Rod Cutting Problem

Input: a rod of length 𝑛 and a table of prices 𝑝𝑖 for 𝑖 = 1,… , 𝑛
Output: the maximum revenue 𝑟𝑛 obtainable

:

slido event code: #ADA2020

Step 1: Characterize an OPT Solution

• Step 1-Q2: Does it exhibit optimal structure? (an optimal solution can be
represented by the optimal solutions to subproblems)

• Yes. Prove by contradiction.

38

Rod Cutting Problem

Input: a rod of length 𝑛 and a table of prices 𝑝𝑖 for 𝑖 = 1,… , 𝑛
Output: the maximum revenue 𝑟𝑛 obtainable

slido event code: #ADA2020

Step 2: Recursively Define the Value of an
OPT Solution

• Suppose we know the optimal solution to Cut-Rod(i), there are i cases:

• Case 1: the first segment in the solution has length 1

• Case 2: the first segment in the solution has length 2

:

• Case i: the first segment in the solution has length i

• Recursively define the value

39

從solution中拿掉一段長度為1的鐵條, 剩下的部分是Cut-Rod(i-1)的最佳解

從solution中拿掉一段長度為2的鐵條, 剩下的部分是Cut-Rod(i-2)的最佳解

從solution中拿掉一段長度為i的鐵條, 剩下的部分是Cut-Rod(0)的最佳解

Rod Cutting Problem

Input: a rod of length 𝑛 and a table of prices 𝑝𝑖 for 𝑖 = 1,… , 𝑛
Output: the maximum revenue 𝑟𝑛 obtainable

slido event code: #ADA2020

Step 3: Compute Value of an OPT Solution

• Bottom-up method: solve smaller subproblems first

40

i 0 1 2 3 4 5 … n

r[i]

Bottom-Up-Cut-Rod(p, n)

r[0] = 0

for j = 1 to n // compute r[1], r[2], ... in order

q = -∞

for i = 1 to j

q = max(q, p[i] + r[j - i])

r[j] = q

return r[n]

Rod Cutting Problem

Input: a rod of length 𝑛 and a table of prices 𝑝𝑖 for 𝑖 = 1,… , 𝑛
Output: the maximum revenue 𝑟𝑛 obtainable

slido event code: #ADA2020

Step 4: Construct an OPT Solution by
Backtracking

• Bottom-up method: solve smaller subproblems first

41

i 0 1 2 3 4 5 … n

r[i] 0

cut[i] 0 1

1

2

5

3

8

2

10

length 𝑖 1 2 3 4 5

price 𝑝𝑖 1 5 8 9 10

Rod Cutting Problem

Input: a rod of length 𝑛 and a table of prices 𝑝𝑖 for 𝑖 = 1,… , 𝑛
Output: the maximum revenue 𝑟𝑛 obtainable

slido event code: #ADA2020

Step 4: Construct an OPT Solution by
Backtracking

42

Cut-Rod(p, n)

r[0] = 0

for j = 1 to n // compute r[1], r[2], ... in order

q = -∞

for i = 1 to j

if q < p[i] + r[j - i]

q = p[i] + r[j - i]

cut[j] = i // the best first cut for len j rod

r[i] = q

return r[n], cut

Print-Cut-Rod-Solution(p, n)

(r, cut) = Cut-Rod(p, n)

while n > 0

print cut[n]

n = n – cut[n] // remove the first piece

slido event code: #ADA2020

DP#2: Stamp Problem

43

slido event code: #ADA2020

Stamp Problem

• Input: the postage 𝑛 and the stamps with values 𝑣1, 𝑣2, … , 𝑣𝑘

• Output: the minimum number of stamps to cover the postage

44

slido event code: #ADA2020

A Recursive Algorithm

• The optimal solution 𝑆𝑛 can be recursively defined as

45

Stamp(v, n)

r_min = ∞

if n == 0 // base case

return 0

for i = 1 to k // recursive case

r[i] = Stamp(v, n - v[i])

if r[i] < r_min

r_min = r[i]

return r_min + 1

slido event code: #ADA2020

Step 1: Characterize an OPT Solution

• Subproblems
• S(i): the min #stamps with postage i

• Goal: S(n)

• Optimal substructure: suppose we know the optimal solution to S(i), there are k cases:
• Case 1: there is a stamp with v1 in OPT

• Case 2: there is a stamp with v2 in OPT

:

• Case k: there is a stamp with vk in OPT

46

Stamp Problem

Input: the postage 𝑛 and the stamps with values 𝑣1, 𝑣2, … , 𝑣𝑘
Output: the minimum number of stamps to cover the postage

從solution中拿掉一張郵資為v1的郵票, 剩下的部分是S(i-v[1])的最佳解

從solution中拿掉一張郵資為v2的郵票, 剩下的部分是S(i-v[2])的最佳解

從solution中拿掉一張郵資為vk的郵票, 剩下的部分是S(i-v[k])的最佳解

slido event code: #ADA2020

Step 2: Recursively Define the Value of an
OPT Solution

• Suppose we know the optimal solution to S(i), there are k cases:

• Case 1: there is a stamp with v1 in OPT

• Case 2: there is a stamp with v2 in OPT

:

• Case k: there is a stamp with vk in OPT

• Recursively define the value

47

從solution中拿掉一張郵資為v1的郵票, 剩下的部分是S(i-v[1])的最佳解

從solution中拿掉一張郵資為v2的郵票, 剩下的部分是S(i-v[2])的最佳解

從solution中拿掉一張郵資為vk的郵票, 剩下的部分是S(i-v[k])的最佳解

Stamp Problem

Input: the postage 𝑛 and the stamps with values 𝑣1, 𝑣2, … , 𝑣𝑘
Output: the minimum number of stamps to cover the postage

slido event code: #ADA2020

Stamp Problem

Input: the postage 𝑛 and the stamps with values 𝑣1, 𝑣2, … , 𝑣𝑘
Output: the minimum number of stamps to cover the postage

Step 3: Compute Value of an OPT Solution

• Bottom-up method: solve smaller subproblems first

48

i 0 1 2 3 4 5 … n

S[i]

Stamp(v, n)

S[0] = 0

for i = 1 to n // compute r[1], r[2], ... in order

r_min = ∞

for j = 1 to k

if S[i - v[j]] < r_min

r_min = 1 + S[i – v[j]]

S[i] = r_min

return S[n]

slido event code: #ADA2020

Step 4: Construct an OPT Solution by
Backtracking

49

Stamp(v, n)

S[0] = 0

for i = 1 to n

r_min = ∞

for j = 1 to k

if S[i - v[j]] < r_min

r_min = 1 + S[i – v[j]]

B[i] = j // backtracking for stamp with v[j]

S[i] = r_min

return S[n], B

Print-Stamp-Selection(v, n)

(S, B) = Stamp(v, n)

while n > 0

print B[n]

n = n – v[B[n]]

slido event code: #ADA2020

DP#3: Sequence Alignment

50

Textbook Chapter 15.4 – Longest common subsequence

Textbook Problem 15-5 – Edit distance

slido event code: #ADA2020

Monkey Speech Recognition

• 猴子們各自講話，經過語音辨識系統後，哪一支猴子發出最接近英文
字”banana”的語音為優勝者

• How to evaluate the similarity between two sequences?

51

aeniqadikjaz

svkbrlvpnzanczyqza

banana

slido event code: #ADA2020

Longest Common Subsequence (LCS)

• Input: two sequences

• Output: longest common subsequence of two sequences
• The maximum-length sequence of characters that appear left-to-right (but not

necessarily a continuous string) in both sequences

52

X = banana

Y = svkbrlvpnzanczyqza

X → ---ba---n-an-----a

Y → svkbrlvpnzanczyqza

X = banana

Y = aeniqadikjaz

X → ba-n--an---a-

Y → -aeniqadikjaz

The infinite monkey theorem: a monkey hitting keys at random

for an infinite amount of time will almost surely type a given text

4 5

slido event code: #ADA2020

Edit Distance

• Input: two sequences

• Output: the minimum cost of transformation from X to Y
• Quantifier of the dissimilarity of two strings

53

X = banana

Y = svkbrlvpnzanczyqza

X → ---ba---n-an-----a

Y → svkbrlvpnzanczyqza

X = banana

Y = aeniqadikjaz

X → ba-n--an---a-

Y → -aeniqadikjaz

1 deletion, 7 insertions, 1 substitution 12 insertions, 1 substitution

9 13

slido event code: #ADA2020

Sequence Alignment Problem

• Input: two sequences

• Output: the minimal cost 𝑀𝑚,𝑛 for aligning two sequences
• Cost = #insertions × 𝐶INS + #deletions × 𝐶DEL + #substitutions × 𝐶𝑝,𝑞

54

slido event code: #ADA2020

Step 1: Characterize an OPT Solution

• Subproblems
• SA(i, j): sequence alignment between prefix strings 𝑥1, … , 𝑥𝑖 and 𝑦1, … , 𝑦𝑗
• Goal: SA(m, n)

• Optimal substructure: suppose OPT is an optimal solution to SA(i, j), there are
3 cases:

• Case 1: 𝑥𝑖 and 𝑦𝑗 are aligned in OPT (match or substitution)
• OPT/{𝑥𝑖, , 𝑦𝑗} is an optimal solution of SA(i-1, j-1)

• Case 2: 𝑥𝑖 is aligned with a gap in OPT (deletion)
• OPT is an optimal solution of SA(i-1, j)

• Case 3: 𝑦𝑗 is aligned with a gap in OPT (insertion)
• OPT is an optimal solution of SA(i, j-1)

55

Sequence Alignment Problem

Input: two sequences

Output: the minimal cost 𝑀𝑚,𝑛 for aligning two sequences

slido event code: #ADA2020

Step 2: Recursively Define the Value of an
OPT Solution

• Suppose OPT is an optimal solution to SA(i, j), there are 3 cases:
• Case 1: 𝑥𝑖 and 𝑦𝑗 are aligned in OPT (match or substitution)

• OPT/{𝑥𝑖, , 𝑦𝑗} is an optimal solution of SA(i-1, j-1)

• Case 2: 𝑥𝑖 is aligned with a gap in OPT (deletion)
• OPT is an optimal solution of SA(i-1, j)

• Case 3: 𝑦𝑗 is aligned with a gap in OPT (insertion)
• OPT is an optimal solution of SA(i, j-1)

• Recursively define the value

56

Sequence Alignment Problem

Input: two sequences

Output: the minimal cost 𝑀𝑚,𝑛 for aligning two sequences

slido event code: #ADA2020

Sequence Alignment Problem

Input: two sequences

Output: the minimal cost 𝑀𝑚,𝑛 for aligning two sequences

Step 3: Compute Value of an OPT Solution

• Bottom-up method: solve smaller subproblems first

57

X\Y 0 1 2 3 4 5 … n

0

1

:

m

slido event code: #ADA2020

Step 3: Compute Value of an OPT Solution

• Bottom-up method: solve smaller subproblems first

58

X\Y 0 1 2 3 4 5 6 7 8 9 10 11 12

0 0 4 8 12 16 20 24 28 32 36 40 44 48

1 4 7 11 15 19 23 27 31 35 39 43 47 51

2 8 4 8 12 16 20 23 27 31 35 39 43 47

3 12 8 12 8 12 16 20 24 28 32 36 40 44

4 16 12 15 12 15 19 16 20 24 28 32 36 40

5 20 16 19 15 19 22 20 23 27 31 35 39 43

6 24 20 23 19 22 26 22 26 30 34 38 35 39

a e n i q a d i k j a z

b

a

n

a

n

a

Sequence Alignment Problem

Input: two sequences

Output: the minimal cost 𝑀𝑚,𝑛 for aligning two sequences

slido event code: #ADA2020

Step 3: Compute Value of an OPT Solution

• Bottom-up method: solve smaller subproblems first

59

Seq-Align(X, Y, CDEL, CINS, Cp,q)

for j = 0 to n

M[0][j] = j * CINS // |X|=0, cost=|Y|*penalty

for i = 1 to m

M[i][0] = i * CDEL // |Y|=0, cost=|X|*penalty

for i = 1 to m

for j = 1 to n

M[i][j] = min(M[i-1][j-1]+Cxi,yi, M[i-1][j]+CDEL, M[i][j-1]+CINS)

return M[m][n]

Sequence Alignment Problem

Input: two sequences

Output: the minimal cost 𝑀𝑚,𝑛 for aligning two sequences

slido event code: #ADA2020

Step 4: Construct an OPT Solution by
Backtracking

• Bottom-up method: solve smaller subproblems first

60

Sequence Alignment Problem

Input: two sequences

Output: the minimal cost 𝑀𝑚,𝑛 for aligning two sequences

X\Y 0 1 2 3 4 5 6 7 8 9 10 11 12

0 0 4 8 12 16 20 24 28 32 36 40 44 48

1 4 7 11 15 19 23 27 31 35 39 43 47 51

2 8 4 8 12 16 20 23 27 31 35 39 43 47

3 12 8 12 8 12 16 20 24 28 32 36 40 44

4 16 12 15 12 15 19 16 20 24 28 32 36 40

5 20 16 19 15 19 22 20 23 27 31 35 39 43

6 24 20 23 19 22 26 22 26 30 34 38 35 39

a e n i q a d i k j a z

b

a

n

a

n

a

slido event code: #ADA2020

Sequence Alignment Problem

Input: two sequences

Output: the minimal cost 𝑀𝑚,𝑛 for aligning two sequences

Step 4: Construct an OPT Solution by
Backtracking

• Bottom-up method: solve smaller subproblems first

61

Find-Solution(M)

if m = 0 or n = 0

return {}

v = min(M[m-1][n-1] + Cxm,yn, M[m-1][n] + CDEL, M[m][n-1] + CINS)

if v = M[m-1][n] + CDEL // ↑: deletion

return Find-Solution(m-1, n)

if v = M[m][n-1] + CINS // ←: insertion
return Find-Solution(m, n-1)

return {(m, n)} ∪ Find-Solution(m-1, n-1) // ↖: match/substitution

slido event code: #ADA2020

Step 4: Construct an OPT Solution by
Backtracking

62

Seq-Align(X, Y, CDEL, CINS, Cp,q)

for j = 0 to n

M[0][j] = j * CINS // |X|=0, cost=|Y|*penalty

for i = 1 to m

M[i][0] = i * CDEL // |Y|=0, cost=|X|*penalty

for i = 1 to m

for j = 1 to n

M[i][j] = min(M[i-1][j-1]+Cxi,yi, M[i-1][j]+CDEL, M[i][j-1]+CINS)

return M[m][n]

Find-Solution(M)

if m = 0 or n = 0

return {}

v = min(M[m-1][n-1] + Cxm,yn, M[m-1][n] + CDEL, M[m][n-1] + CINS)

if v = M[m-1][n] + CDEL // ↑: deletion

return Find-Solution(m-1, n)

if v = M[m][n-1] + CINS // ←: insertion
return Find-Solution(m, n-1)

return {(m, n)} ∪ Find-Solution(m-1, n-1) // ↖: match/substitution

slido event code: #ADA2020

Space Complexity

• Space complexity

• If only keeping the most recent two rows: Space-Seq-Align(X, Y)

63

X\Y 0 1 2 3 … j … n

i - 1

i

The optimal value can be computed, but the solution cannot be reconstructed

X\Y 0 1 2 3 4 5 … n

0

1

:

m

slido event code: #ADA2020

Space-Efficient Solution

• Problem: find the min-cost alignment→ find the shortest path

64

Divide-and-Conquer

+

Dynamic

Programming

a

e

p

p

l

p ea

X\Y 0 1 2 3

0 0 4 8 12

1 4 7 11 15

2 8 4 8 12

3 12 8 12 8

4 16 12 15 12

5 20 16 19 15

a p e

p

p

l

e

a

→ distance = CINS
↓ distance = CDEL
↘ distance = Cu,v for edge (u, v)

START

END

slido event code: #ADA2020

𝐹 2,3 = distance of the

shortest path

Shortest Path in Graph

• Each edge has a length/cost

• 𝐹 𝑖, 𝑗 : length of the shortest path from 0,0 to 𝑖, 𝑗 (START → 𝑖, 𝑗)

• 𝐵 𝑖, 𝑗 : length of the shortest path from 𝑖, 𝑗 to 𝑚, 𝑛 (𝑖, 𝑗 → END)

• 𝐹 𝑚, 𝑛 = 𝐵 0,0

65

i = 0

4

1

2

3

j = 0 51 2 3 4 6 7

5

𝐵 2,3 = distance of the

shortest path

slido event code: #ADA2020

Recursive Equation

• Each edge has a length/cost

• 𝐹 𝑖, 𝑗 : length of the shortest path from 0,0 to 𝑖, 𝑗 (START → 𝑖, 𝑗)

• 𝐵 𝑖, 𝑗 : length of the shortest path from 𝑖, 𝑗 to 𝑚, 𝑛 (𝑖, 𝑗 → END)

• Forward formulation

• Backward formulation

66

i = 0

4

1

2

3

j = 0 51 2 3 4 6 7

5

slido event code: #ADA2020

Shortest Path Problem

• Observation 1: the length of the shortest path from 0,0 to 𝑚, 𝑛 that
passes through 𝑖, 𝑗 is 𝐹 𝑖, 𝑗 + 𝐵 𝑖, 𝑗

67

𝐹 𝑖, 𝑗 : length of the shortest path from 0,0 to 𝑖, 𝑗
𝐵 𝑖, 𝑗 : length of the shortest path from 𝑖, 𝑗 to 𝑚, 𝑛

i = 0

4

1

2

3

j = 0 51 2 3 4 6 7

5

𝑭 𝒊, 𝒋

𝑩 𝒊, 𝒋

→ optimal substructure

slido event code: #ADA2020

Shortest Path Problem

• Observation 2: for any 𝑣 in {0,… , 𝑛}, there exists a 𝑢 s.t. the shortest path
between (0,0) and 𝑚, 𝑛 goes through (𝑢, 𝑣)

68

→ the shortest path must go across a vertical cut

𝐹 𝑖, 𝑗 : length of the shortest path from 0,0 to 𝑖, 𝑗
𝐵 𝑖, 𝑗 : length of the shortest path from 𝑖, 𝑗 to 𝑚, 𝑛

i = 0

4

1

2

3

j = 0 51 2 3 4 6 7

5

slido event code: #ADA2020

Shortest Path Problem

• Observation 1+2:

69

i = 0

4

1

2

3

j = 0 51 2 3 4 6 7

5

i = 0

4

1

2

3

j = 0 51 2 3 4 6 7

5

𝐹 𝑖, 𝑗 : length of the shortest path from 0,0 to 𝑖, 𝑗
𝐵 𝑖, 𝑗 : length of the shortest path from 𝑖, 𝑗 to 𝑚, 𝑛

slido event code: #ADA2020

Divide-and-Conquer Algorithm

• Goal: finds optimal solution

70

How to find the value of 𝑢∗?

▪ Idea: utilize sequence alignment algo.
▪ Call Space-Seq-Align(X,Y[1:v]) to find
𝐹 0, 𝑣 , 𝐹 1, 𝑣 , … , 𝐹 𝑚, 𝑣

▪ Call Back-Space-Seq-Align(X,Y[v+1:n])
to find 𝐵 0, 𝑣 , 𝐵 1, 𝑣 , … , 𝐵 𝑚, 𝑣

▪ Let 𝑢 be the index minimizing 𝐹 𝑢, 𝑣 + 𝐵 𝑢, 𝑣

slido event code: #ADA2020

Divide-and-Conquer Algorithm

• Goal: finds optimal solution – DC-Align(X, Y)

71

1. Divide

2. Conquer

3. Combine

▪ Divide the sequence of size n into 2
subsequences

▪ Find 𝑢 to minimize 𝐹 𝑢, 𝑣 + 𝐵 𝑢, 𝑣

▪ Recursive case (𝑛 > 1)
▪ prefix

= DC-Align(X[1:u], Y[1:v])

▪ suffix

= DC-Align(X[u+1:m], Y[v+1:n])

▪ Base case (𝑛 = 1)
▪ Return Seq-Align(X, Y)

▪ Return prefix + suffix
▪ 𝑇 𝑚, 𝑛 = time for running DC-
Align(X, Y) with 𝑋 = 𝑚, 𝑌 = 𝑛

Space Complexity:

slido event code: #ADA2020

Time Complexity Analysis

• Theorem

• Proof
• There exists positive constants 𝑎, 𝑏 s.t. all

• Use induction to prove

72

Inductive

hypothesis

when

Practice to check the initial condition

slido event code: #ADA2020

Extension: 注音文 Recognition

• Given a graph 𝐺 = 𝑉, 𝐸 , each edge 𝑢, 𝑣 ∈ 𝐸 has an associated non-
negative probability 𝑝 𝑢, 𝑣 of traversing the edge 𝑢, 𝑣 and producing the
corresponding character. Find the most probable path with the label 𝑠 =
𝜎1, 𝜎2, … , 𝜎𝑛 .

73

ㄨ ㄅ ㄒ ㄎ ㄕ

START

我

烏

為

問

END

爸

不

想

續

小

考

看

卡

書

試

上

白
鄉

Find the path from START

to END with highest prob

slido event code: #ADA2020

Viterbi Algorithm

74

𝜎1 𝜎2 … … 𝜎𝑛

START END

produce 𝜎1

produce 𝜎𝑗

V: vocabulary size

Viterbi has been applied to many AI applications, e.g. speech recognition

slido event code: #ADA2020

To Be Continued…

75

Question?
Important announcement will be sent to
@ntu.edu.tw mailbox & post to the course website

Course Website: http://ada.miulab.tw

Email: ada-ta@csie.ntu.edu.tw

