
Algorithm Design and Analysis
Divide and Conquer (1)

Yun-Nung (Vivian) Chen

http://ada.miulab.tw slido: #ADA2020

slido event code: #ADA2020

Algorithm Design Strategy

• Do not focus on “specific algorithms”

• But “some strategies” to “design” algorithms

• First Skill: Divide-and-Conquer (各個擊破/分治法)

2

slido event code: #ADA2020

Outline
• Recurrence (遞迴)
• Divide-and-Conquer
• D&C #1: Tower of Hanoi (河內塔)
• D&C #2: Merge Sort
• D&C #3: Bitonic Champion
• D&C #4: Maximum Subarray
• Solving Recurrences

• Substitution Method
• Recursion-Tree Method
• Master Method

• D&C #5: Matrix Multiplication
• D&C #6: Selection Problem
• D&C #7: Closest Pair of Points Problem

3

Divide-and-Conquer

之神乎奇技

Divide-and-Conquer 首部曲

slido event code: #ADA2020

What is Divide-and-Conquer?

• Solve a problem recursively

• Apply three steps at each level of the recursion
1. Divide the problem into a number of subproblems that are smaller instances of the

same problem (比較小的同樣問題)

2. Conquer the subproblems by solving them recursively
If the subproblem sizes are small enough

• then solve the subproblems

• else recursively solve itself

3. Combine the solutions to the subproblems into the solution for the original problem

4

base case

recursive case

slido event code: #ADA2020

Divide-and-Conquer Benefits

• Easy to solve difficult problems
• Thinking: solve easiest case + combine smaller solutions into the original solution

• Easy to find an efficient algorithm
• Better time complexity

• Suitable for parallel computing (multi-core systems)

• More efficient memory access
• Subprograms and their data can be put in cache in stead of accessing main memory

5

slido event code: #ADA2020

Recurrence (遞迴)

6

slido event code: #ADA2020

Recurrence Relation

• Definition

A recurrence is an equation or inequality that describes a function in terms
of its value on smaller inputs.

• Example

Fibonacci sequence (費波那契數列)
• Base case: F(0) = F(1) = 1

• Recursive case: F(n) = F(n-1) + F(n-2)

7

n 0 1 2 3 4 5 6 7 8 …

F(n) 1 1 2 3 5 8 13 21 34 …

2
1 1

3

5

8

13

21

slido event code: #ADA2020

Recurrent Neural Network (RNN)

8http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/

slido event code: #ADA2020

Recurrence Benefits

• Easy & Clear
• Define base case and recursive case

• Define a long sequence

9

Base case

Recursive case

F(0), F(1), F(2)……………

unlimited sequence

a program for solving F(n)

Fibonacci(n) // recursive function:程式中會呼叫自己的函數
if n < 2 // base case: termination condition

return 1

// recursive case: call itself for solving subproblems

return Fibonacci(n-1) + Fibonacci(n-2)

important otherwise the program cannot stop

slido event code: #ADA2020

Recurrence v.s. Non-Recurrence

10

Fibonacci(n)

if n < 2

____return 1

a[0] <- 1

a[1] <- 1

for i = 2 … n

____a[i] = a[i-1] + a[i-2]

return a[n]

Fibonacci(n)

if n < 2 // base case

____return 1

// recursive case

return Fibonacci(n-1) + Fibonacci(n-2)

Recursive function
• Clear structure

• Poor efficiency

Non-recursive function
• Better efficiency

• Unclear structure

slido event code: #ADA2020

Recurrence Benefits

• Easy & Clear
• Define base case and recursive case

• Define a long sequence

11

Hanoi(n) is not easy to solve.
✓ It is easy to solve when n is small

✓ we can find the relation between Hanoi(n) & Hanoi(n-1)

a program for solving Hanoi(n)

Base case

Recursive case

If a problem can be simplified into a base case and a recursive case, then we can find an

algorithm that solves this problem.

Base case

Recursive case

F(0), F(1), F(2)……………

unlimited sequence

a program for solving F(n)

slido event code: #ADA2020

D&C #1: Tower of Hanoi

12

slido event code: #ADA2020

Tower of Hanoi (河內塔)

• Problem: move n disks from A to C

• Rules
• Move one disk at a time

• Cannot place a larger disk onto a smaller disk

13Play online: https://www.mathsisfun.com/games/towerofhanoi.html

A B C

slido event code: #ADA2020

Hanoi(1)

• Move 1 from A to C

14

Disk 1

A B C

→ 1 move in total

Base case

Disk 1

slido event code: #ADA2020

Hanoi(2)

• Move 1 from A to B

• Move 2 from A to C

• Move 1 from B to C

15

Disk 2

A B C

Disk 1

→ 3 moves in total

Disk 1 Disk 2

Disk 1

slido event code: #ADA2020

Hanoi(3)

• How to move 3 disks?

• How many moves in total?

16

Disk 3

A B C

Disk 2

Disk 1

slido event code: #ADA2020

Hanoi(n)

• How to move n disks?

• How many moves in total?

17

Disk n

A B C

Disk n-1

Disk n-2

slido event code: #ADA2020

Hanoi(n)

• To move n disks from A to C (for n > 1):
1. Move Disk 1~n-1 from A to B

18

Disk n

A B C

Disk n-1

Disk n-2

slido event code: #ADA2020

Hanoi(n)

• To move n disks from A to C (for n > 1):
1. Move Disk 1~n-1 from A to B

19

Disk n

A B C

Disk n-1

Disk n-2

slido event code: #ADA2020

Hanoi(n)

• To move n disks from A to C (for n > 1):
1. Move Disk 1~n-1 from A to B

2. Move Disk n from A to C

20

Disk n

A B C

Disk n-1

Disk n-2

slido event code: #ADA2020

Hanoi(n)

• To move n disks from A to C (for n > 1):
1. Move Disk 1~n-1 from A to B

2. Move Disk n from A to C

21

Disk n

A B C

Disk n-1

Disk n-2

slido event code: #ADA2020

Hanoi(n)

• To move n disks from A to C (for n > 1):
1. Move Disk 1~n-1 from A to B

2. Move Disk n from A to C

3. Move Disk 1~n-1 from B to C

22

A B C

Disk n-1

Disk n-2

Disk n

slido event code: #ADA2020

Hanoi(n)

• To move n disks from A to C (for n > 1):
1. Move Disk 1~n-1 from A to B

2. Move Disk n from A to C

3. Move Disk 1~n-1 from B to C

23

A B C

Disk n-1

Disk n-2

Disk n

→2Hanoi(n-1) + 1 moves in total

recursive case

slido event code: #ADA2020

Pseudocode for Hanoi

• Call tree

24

Hanoi(n, src, dest, spare)

if n==1 // base case

Move disk from src to dest

else // recursive case

Hanoi(n-1, src, spare, dest)

Move disk from src to dest

Hanoi(n-1, spare, dest, src)

No need to combine the

results in this case

Hanoi(3, A, C, B)

Hanoi(2, A, B, C) Hanoi(2, B, C, A)

Hanoi(1,A,C,B) Hanoi(1,C,B,A) Hanoi(1,B,A,C) Hanoi(1,A,C,B)

slido event code: #ADA2020

Algorithm Time Complexity

• 𝑇 𝑛 = #moves with n disks
• Base case: 𝑇 1 = 1

• Recursive case (𝑛 > 1): 𝑇 𝑛 = 2𝑇 𝑛 − 1 + 1

• We will learn how to derive 𝑇 𝑛 later

25

Hanoi(n, src, dest, spare)

if n==1 // base case

Move disk from src to dest

else // recursive case

Hanoi(n-1, src, spare, dest)

Move disk from src to dest

Hanoi(n-1, spare, dest, src)

slido event code: #ADA2020

Further Questions

• Q1: Is 𝑂 2𝑛 tight for Hanoi? Can 𝑇 𝑛 < 2𝑛 − 1?

• Q2: What about more than 3 pegs?

• Q3: Double-color Hanoi problem
• Input: 2 interleaved-color towers

• Output: 2 same-color towers

26

slido event code: #ADA2020

D&C #2: Merge Sort

27

Textbook Chapter 2.3.1 – The divide-and-conquer approach

slido event code: #ADA2020

Sorting Problem

28

6

Input: unsorted list of size n

Output: sorted list of size n

What are the base case

and recursive case?

3 5 1 8 7 2 4

1 2 3 4 5 6 7 8

slido event code: #ADA2020

Divide-and-Conquer

• Base case (n = 1)
• Directly output the list

• Recursive case (n > 1)
• Divide the list into two sub-lists

• Sort each sub-list recursively

• Merge the two sorted lists

29

1 3 65 2 4 7 8 2 sublists of size n/2

of comparisons = Θ(𝑛)

How?

slido event code: #ADA2020

Illustration for n = 10

30

6 3 5 1 8 9 7 2 10 4

6 3 5 1 8 9 7 2 10 4

6 3 5 1 8 9 7 2 10 4

6 3 5 1 8 9 7 2 10 4

6 3 9 7

slido event code: #ADA2020

Illustration for n = 10

31

6 3 5 1 8 9 7 2 10 4

6 3 5 1 8 9 7 2 10 4

6 3 5 1 8 9 7 2 10 4

6 3 5 1 8 9 7 2 10 4

6 3 9 7

63

63 5 81

63 5 81

7 9

2 7 9 4 10

109742

10987654321

slido event code: #ADA2020

Pseudocode for Merge Sort

• Divide a list of size n into 2 sublists
of size n/2

• Recursive case (𝑛 > 1)
• Sort 2 sublists recursively using

merge sort
• Base case (𝑛 = 1)

• Return itself

• Merge 2 sorted sublists into one
sorted list in linear time

32

MergeSort(A, p, r)

// base case

if p == r

___return

// recursive case

// divide

q = [(p+r-1)/2]

// conquer

MergeSort(A, p, q)

MergeSort(A, q+1, r)

// combine

Merge(A, p, q, r)

1. Divide

2. Conquer

3. Combine

slido event code: #ADA2020

Time Complexity for Merge Sort

• Divide a list of size n into 2 sublists
of size n/2

• Recursive case (𝑛 > 1)
• Sort 2 sublists recursively using

merge sort
• Base case (𝑛 = 1)

• Return itself

• Merge 2 sorted sublists into one
sorted list in linear time

33

MergeSort(A, p, r)

// base case

if p == r

___return

// recursive case

// divide

q = [(p+r-1)/2]

// conquer

MergeSort(A, p, q)

MergeSort(A, q+1, r)

// combine

Merge(A, p, q, r)

1. Divide

2. Conquer

3. Combine

▪ 𝑇 𝑛 = time for running MergeSort(A, p, r) with 𝑟– 𝑝 + 1 = 𝑛

slido event code: #ADA2020

Time Complexity for Merge Sort

• Simplify recurrences

• Ignore floors and ceilings (boundary conditions)

• Assume base cases are constant (for small n)

34

2nd expansion

1st expansion

The expansion stops when 2𝑘 = 𝑛

kth expansion

slido event code: #ADA2020

Theorem 1

• Theorem

• Proof
• There exists positive constant 𝑎, 𝑏 s.t.

• Use induction to prove
• n = 1, trivial

• n > 1,

35

Inductive

hypothesis

slido event code: #ADA2020

How to Solve Recurrence Relations?

1. Substitution Method (取代法)
• Guess a bound and then prove by induction

2. Recursion-Tree Method (遞迴樹法)
• Expand the recurrence into a tree and sum up the cost

3. Master Method (套公式大法/大師法)
• Apply Master Theorem to a specific form of recurrences

Let’s see more examples first and come back to this later

36

slido event code: #ADA2020

D&C #3: Bitonic Champion Problem

37

slido event code: #ADA2020

Bitonic Champion Problem

38

The bitonic sequence means “increasing before the champion and

decreasing after the champion” (冠軍之前遞增、冠軍之後遞減)

3 7 9 17 35 28 21 18 6 4

slido event code: #ADA2020

Bitonic Champion Problem Complexity

39

Why not Ω(n)?

Why?

slido event code: #ADA2020

Bitonic Champion Problem Complexity

• When there are n inputs, any solution has n different outputs

• Any comparison-based algorithm needs Ω(log 𝑛) time in the worst case

40

n

Ω(log 𝑛)

slido event code: #ADA2020

Bitonic Champion Problem Complexity

41

slido event code: #ADA2020

Divide-and-Conquer

• Idea: divide A into two subproblems and then find the final champion based
on the champions from two subproblems

42

Champion(i, j)

if i==j // base case

return i

else // recursive case

k = floor((i+j)/2)

l = Champion(i, k)

r = Champion(k+1, j)

if A[l] > A[r]

return l

if A[l] < A[r]

return r

Output = Champion(1, n)

slido event code: #ADA2020

Illustration for n = 10

43

3 7 9 17 35 28 21 18 6 4

3 7 9 17 35 28 21 18 6 4

3 7 9 17 35 28 21 18 6 4

3 7 9 17 35 28 21 18 6 4

3 7 28 21

slido event code: #ADA2020

Proof of Correctness

• Practice by yourself!

44

Champion(i, j)

if i==j // base case

return i

else // recursive case

k = floor((i+j)/2)

l = Champion(i, k)

r = Champion(k+1, j)

if A[l] > A[r]

return l

if A[l] < A[r]

return r

Output = Chamption(1, n)

Hint: use induction on (j – i) to prove Champion(i,

j) can return the champion from A[i … j]

slido event code: #ADA2020

Algorithm Time Complexity

• 𝑇 𝑛 = time for running Champion(i, j) with 𝑗 – 𝑖 + 1 = 𝑛

45

▪Divide a list of size n into 2
sublists of size n/2

▪Recursive case
▪ Find champions from 2 sublists

recursively

▪ Base case
▪ Return itself

▪Choose the final champion
by a single comparison

1. Divide

2. Conquer

3. Combine

Champion(i, j)

if i==j // base case

return i

else // recursive case

k = floor((i+j)/2)

l = Champion(i, k)

r = Champion(k+1, j)

if A[l] > A[r]

return l

if A[l] < A[r]

return r

Output = Chamption(1, n)

slido event code: #ADA2020

Theorem 2

• Theorem

• Proof
• There exists positive constant 𝑎, 𝑏 s.t.

• Use induction to prove
• n = 1, trivial

• n > 1,

46

Inductive

hypothesis

slido event code: #ADA2020

Bitonic Champion Problem Complexity

47

Can we have a better

algorithm by using the

bitonic sequence property?

slido event code: #ADA2020

Improved Algorithm

48

Champion-2(i, j)

if i==j // base case

return i

else // recursive case

k = floor((i+j)/2)

if A[k] > A[k+1]

return Champion(i, k)

if A[k] < A[k+1]

return Champion(k+1, j)

Champion(i, j)

if i==j // base case

return i

else // recursive case

k = floor((i+j)/2)

l = Champion(i, k)

r = Champion(k+1, j)

if A[l] > A[r]

return l

if A[l] < A[r]

return r

slido event code: #ADA2020

49

3 7 9 17 35 28 21 18 6 4

3 7 9 17 35

17 35

35

slido event code: #ADA2020

Correctness Proof

• Practice by yourself!

50

Champion-2(i, j)

if i==j // base case

return i

else // recursive case

k = floor((i+j)/2)

if A[k] > A[k+1]

return Champion(i, k)

if A[k] < A[k+1]

return Champion(k+1, j)

Output = Champion-2(1, n)

Two crucial observations:
• If 𝐴[1…𝑛] is bitonic, then so is 𝐴[𝑖, 𝑗] for any

indices 𝑖 and 𝑗 with 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛.

• For any indices 𝑖, 𝑗, and 𝑘 with 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛,

we know that 𝐴[𝑘] > 𝐴[𝑘 + 1] if and only if

the maximum of 𝐴[𝑖 … 𝑗] lies in 𝐴[𝑖 …𝑘].

slido event code: #ADA2020

Algorithm Time Complexity

• 𝑇 𝑛 = time for running Champion-2(i, j) with 𝑗 – 𝑖 + 1 = 𝑛

51

▪Divide a list of size n into 2
sublists of size n/2

▪Recursive case
▪ Find champions from 1

sublists recursively

▪ Base case
▪ Return itself

▪Return the champion

1. Divide

2. Conquer

3. Combine

Champion-2(i, j)

if i==j // base case

return i

else // recursive case

k = floor((i+j)/2)

if A[k] > A[k+1]

return Champion(i, k)

if A[k] < A[k+1]

return Champion(k+1, j)

slido event code: #ADA2020

Algorithm Time Complexity

52

The algorithm time complexity is 𝑂 log 𝑛
• each recursive call reduces the size of

(j - i) into half

• there are 𝑂 log 𝑛 levels

• each level takes 𝑂 1

Champion-2(i, j)

if i==j // base case

return i

else // recursive case

k = floor((i+j)/2)

if A[k] > A[k+1]

return Champion(i, k)

if A[k] < A[k+1]

return Champion(k+1, j)

• 𝑇 𝑛 = time for running Champion-2(i, j) with 𝑗 – 𝑖 + 1 = 𝑛

slido event code: #ADA2020

Theorem 3

• Theorem

• Proof

53

Practice to prove by induction

slido event code: #ADA2020

Bitonic Champion Problem Complexity

54

slido event code: #ADA2020

D&C #4: Maximum Subarray

55

Textbook Chapter 4.1 – The maximum-subarray problem

slido event code: #ADA2020

Coding Efficiency

• How can we find the most efficient time interval for continuous coding?

56

5pm 6pm 7pm 8pm 9pm 10p

m

11p

m

12a

m

1am 2am 3am

1

2

3

4

-4

-3

-2

-1

0

Coding power

戰鬥力 (K)

7pm-2:59am

Coding power= 8k

slido event code: #ADA2020

Maximum Subarray Problem

57

3 7 9 17 5 28 21 18 6 4

-3 7 -9 17 -5 28 -21 18 -6 4

-3 -7 -9 -17 -5 -28 -21 -18 -6 -4

slido event code: #ADA2020

O(n3) Brute Force Algorithm

58

MaxSubarray-1(i, j)

for i = 1,…,n

for j = 1,…,n

S[i][j] = - ∞

for i = 1,…,n

for j = i,i+1,…,n

S[i][j] = A[i] + A[i+1] + … + A[j]

return Champion(S)

slido event code: #ADA2020

O(n2) Brute Force Algorithm

59

MaxSubarray-2(i, j)

for i = 1,…,n

for j = 1,…,n

S[i][j] = - ∞

R[0] = 0

for i = 1,…,n

R[i] = R[i-1] + A[i]

for i = 1,…,n

for j = i+1,i+2,…,n

S[i][j] = R[j] - R[i-1]

return Champion(S)

R[n] is the sum over A[1…n]

slido event code: #ADA2020

Max Subarray Problem Complexity

60

slido event code: #ADA2020

Divide-and-Conquer

• Base case (n = 1)
• Return itself (maximum subarray)

• Recursive case (n > 1)
• Divide the array into two sub-arrays

• Find the maximum sub-array recursively

• Merge the results

61

How?

slido event code: #ADA2020

Where is the Solution?

• The maximum subarray for any input must be in one of following cases:

62

Case 1: left

Case 2: right

Case 3: cross the middle

Case 1: MaxSub(A, i, j) = MaxSub(A, i, k)

Case 2: MaxSub(A, i, j) = MaxSub(A, k+1, j)

Case 3: MaxSub(A, i, j) cannot be expressed using MaxSub!

slido event code: #ADA2020

Case 3: Cross the Middle

• Goal: find the maximum subarray that crosses the middle

• Observation
• The sum of 𝐴[𝑥 …𝑘] must be the maximum among 𝐴[𝑖 …𝑘] (left: 𝑖 ≤ 𝑘)
• The sum of 𝐴[𝑘 + 1…𝑦] must be the maximum among 𝐴[𝑘 + 1… 𝑗] (right: 𝑗 > 𝑘)
• Solvable in linear time → Θ 𝑛

63

(1) Start from the middle to find the

left maximum subarray

(2) Start from the middle to find the

right maximum subarray

The solution of Case 3 is the combination of (1) and (2)

slido event code: #ADA2020

Divide-and-Conquer Algorithm

64

MaxCrossSubarray(A, i, k, j)

left_sum = -∞
sum=0

for p = k downto i

sum = sum + A[p]

if sum > left_sum

left_sum = sum

max_left = p

right_sum = -∞
sum=0

for q = k+1 to j

sum = sum + A[q]

if sum > right_sum

right_sum = sum

max_right = q

return (max_left, max_right, left_sum + right_sum)

slido event code: #ADA2020

Combin

e

Conque

r

Divide

Divide-and-Conquer Algorithm

65

MaxSubarray(A, i, j)

if i == j // base case

return (i, j, A[i])

else // recursive case

k = floor((i + j) / 2)

(l_low, l_high, l_sum) = MaxSubarray(A, i, k)

(r_low, r_high, r_sum) = MaxSubarray(A, k+1, j)

(c_low, c_high, c_sum) = MaxCrossSubarray(A, i, k, j)

if l_sum >= r_sum and l_sum >= c_sum // case 1

return (l_low, l_high, l_sum)

else if r_sum >= l_sum and r_sum >= c_sum // case 2

return (r_low, r_high, r_sum)

else // case 3

return (c_low, c_high, c_sum)

slido event code: #ADA2020

Divide-and-Conquer Algorithm

66

MaxSubarray(A, i, j)

if i == j // base case

return (i, j, A[i])

else // recursive case

k = floor((i + j) / 2)

(l_low, l_high, l_sum) = MaxSubarray(A, i, k)

(r_low, r_high, r_sum) = MaxSubarray(A, k+1, j)

(c_low, c_high, c_sum) = MaxCrossSubarray(A, i, k, j)

if l_sum >= r_sum and l_sum >= c_sum // case 1

return (l_low, l_high, l_sum)

else if r_sum >= l_sum and r_sum >= c_sum // case 2

return (r_low, r_high, r_sum)

else // case 3

return (c_low, c_high, c_sum)

slido event code: #ADA2020

Algorithm Time Complexity

• Divide a list of size n into 2 subarrays of size n/2

• Recursive case (𝑛 > 1)
• find MaxSub for each subarrays

• Base case (𝑛 = 1)
• Return itself

• Find MaxCrossSub for the original list

• Pick the subarray with the maximum sum among 3
subarrays

67

1. Divide

2. Conquer

3. Combine

▪ 𝑇 𝑛 = time for running MaxSubarray(A, i, j) with 𝑗 – 𝑖 + 1 = 𝑛

slido event code: #ADA2020

Theorem 1

• Theorem

• Proof
• There exists positive constant 𝑎, 𝑏 s.t.

• Use induction to prove
• n = 1, trivial

• n > 1,

68

Inductive hypothesis

slido event code: #ADA2020

Theorem 1 (Simplified)

• Theorem

• Proof
• There exists positive constant 𝑎, 𝑏 s.t.

• Use induction to prove
• n = 1, trivial

• n > 1,

69

Inductive hypothesis

slido event code: #ADA2020

Max Subarray Problem Complexity

70

slido event code: #ADA2020

Max Subarray Problem Complexity

71

Exercise 4.1-5

page 75 of textbook

Next topic!

slido event code: #ADA2020

To Be Continue…

72

Question?
Important announcement will be sent to
@ntu.edu.tw mailbox & post to the course website

Course Website: http://ada.miulab.tw

Email: ada-ta@csie.ntu.edu.tw

