def countdown(x):

Algorithm Design and Analysis
Introduction

http://ada.miulab.tw slido: #ADA2020
Yun-Nung (Vivian) Chen

slido event code: #ADA2020

Outline

* Terminology
* Problem ([E1E8)
* Problem instance ({&l)
« Computation model (5T E1E 1)
e Algorithm ((EE%)
e The hardness of a problem (£ E)
* Algorithm Design & Analysis Process

* Review: Asymptotic Analysis

e Algorithm Complexity
* Problem Complexity n n
@) —\/n\.,-&nzl

slido event code: #ADA2020

Efficlency Measurement = Speed

* Why we care?
 Computers may be fast, but they are not infinitely fast
* Memory may be inexpensive, but it is not free

slido event code: #ADA2020

Terminology

Textbook Ch. 1 — The Role of Algorithms in Computing

slido event code: #ADA2020

Problem ([E1%8)

The champion problem
e Input: n distinct integers A[1], A[2],..., A[n].

e Output: the index ¢ with 1 <17 < n such that

Ali] = max Alj].

slido event code: #ADA2020

Problem Instance (&)

* An instance of the champion problem

5 distinct integers 7,4, 2,9, 8.

7 4.2 9 | 8

A1l Al2] A[3] A[4] Al

1)

slido event code: #ADA2020

Computation Model (Gt E1EE)
* Each problem must have its rule (225573 8ll)

« Computation model (5T E1228Y) = rule (22E4 73 Hl)
* The problems with different rules have different hardness levels

o

slido event code: #ADA2020

Hardness (B Z1Z2[E)

« How difficult to solve a problem
« Example: how hard is the champion problem?
 Following the comparison-based rule

slido event code: #ADA2020

Problem Solving (f#%8)

* Definition of “solving” a problem

* Giving an algorithm (J&E%,%) that produces a correct output for any instance of the
problem.

slido event code: #ADA2020

Algorithm GEEZ)

* Algorithm: a detailed step-by-step instruction
* Must follow the game rules
* Like a step-by-step recipe
* Programming language doesn’t matter
- problem-solving recipe (technology)

* If an algorithm produces a correct output for any instance of the problem
-2 this algorithm “solves” the problem

slido event code: #ADA2020

Hardness (2 &)

« Hardness of the problem
 How much effort the best algorithm needs to solve any problem instance

« (7]
« BEEEBENETAZTCZ VD NE N TR R =

LA

FH5#2 7 100000

slido event code: #ADA2020

Algorithm Design &
Analysis Process

slido event code: #ADA2020

Algorithm Design & Analysis Process

Formulate a problem Desig n
Develop an algorithm Step
Prove the correctness Analysis
Analyze running time/space requirement Step

slido event code: #ADA2020

1. Problem Formulation

.||‘
i

The champion problem
e Input: n distinct integers A[1], A[2],..., A[n].

e Output: the index ¢ with 1 <17 < n such that

Ali] = max Alj].

slido event code: #ADA2020

2. Algorithm Design

L

* Create a detailed recipe for solving the problem

 Follow the comparison-based rule
- NEBBEBHNAS
« BAIAEI TEEXR/N

« Algorithm: 1&&)
1. Intl,J; Q1: Is this a comparison-based algorithm?

or _
for (i=2; i<=n; i++) Q2: Does it solve the champion

2
3.
4. If (A[|] > Afj])
5
6

J =1
return j,

slido event code: #ADA2020

3. Correctness of the Algorithm

* Prove by contradiction (8 /%)

The algorithm solves the champion problem.

Proof Let 7* be the correct answer. That is, 1. inti, j;
A7 = max{A(l],..., Aln|}. _
] = max{A[L] .., Aln]} . -1
e If y* =1, then Step 5 is never reached. There- : . :
: 3. for(i=2; i<=n; i++)
fore, 1 is correctly returned.
: TS Al
e If 7* > 1, then in the iteration of the for-loop 4 ALl > ALD
with ¢ = j*, j becomes j*. By definition of j*, 5. =1
A[j*] > Ali] holds for each i = j* + 1,...,n. .
Therefore, in the remaining iterations of the 6. returnj;

for-loop, the value of 7 does not change. Hence,
at the end of the algorithm, j* is correctly re-
turned.

slido event code: #ADA2020

Hardness of The Champion Problem

* How much effort the best algorithm needs to solve any problem instance

 Follow the comparison-based rule
- NERBBINAS
« FBAIAEI "EER/N

« Effort: we first use the times of comparison for measurement

inti, j; =
J=1,
for(1=2; i<=n;
I++) _ :
£ (ATl > Al (n - 1) comparisons
=5
6. return B

slido event code: #ADA2020

Hardness of The Champion Problem

* The hardness of the champion problem is (n - 1) comparisons
a) There is an algorithm that can solve the problem using at most (n — 1) comparisons
e This can be proved by & =’%, which uses (n — 1) comparisons for any problem instance

b) For any algorithm, there exists a problem instance that requires (n - 1) comparisons
e Why?

slido event code: #ADA2020

Hardness of The Champion Problem

* Q: Is there an algorithm that only needs n — 2 comparisons?
* A: Impossible!
* Reason
« A single comparison only decides a loser
* If there are only n — 2 comparisons, the most number of losers is n — 2

* There exists a least 2 integers that did not lose
-> any algorithm cannot tell who the champion is

slido event code: #ADA2020

Finding Hardness

e Use the upper bound and the lower bound
 When they meet each other, we know the hardness of the problem

slido event code: #ADA2020

Hardness of The Champion Problem

 Lower bound

* how many comparisons in the worst
case are necessary to solve the
champion problem

, , , * Some arguments provide different
* The smarter algorithm provides tighter, lower bounds

lower, and better upper bound

Ih—EBIEES :
Cinti - (2n - 2) comparisons

%
1
2. =1 comparison once
3
4
5
6

* Upper bound

* how many comparisons are sufficient to
solve the champion problem

* Each algorithm provides an upper bound

* Higher lower bound is better

Every integer needs to be in the

for (i=2; i<=n; i++4) .
f (AT > AT]) && (AT] < ATI) = () ConmgEligons

J=0 L

return éWhen upper bound = lower bound, the problem is solved.
> We figure out the hardness of the problem

slido event code: #ADA2020

4. Algorithm Analysis

* The majority of researchers in algorithms studies the time and space
required for solving problems in two directions

* Upper bounds: designing and analyzing algorithms
* Lower bounds: providing arguments

* When the upper and lower bounds match, we have an optimal algorithm and
the problem is completely resolved

7
-9

22

slido event code: #ADA2020

CLE

%E‘# ig

O Q 6 o w

Asymptotic Analysis

Edmund Landau Donald E. Knuth
(1877-1938) (1938-)

Motivation

slido event code: #ADA2020

* The hardness of the champion problem is exactly n — 1 comparisons
* Different problems may have different " £,
e cannot be interchangeable

* Focus on the standard growth of the function to ignore the unit and
coefficient effects

e =

g =)

< .

slido event code: #ADA2020

Goal: Finding Hardness

* For a problem P, we want to figure out
* The hardness (complexity) of this problem P is @(f(n))

* nis the instance size of this problem P
* f(n)is afunction

. @(f(n)) means that “it exactly equals to the growth of the function”

* Then we can argue that under the comparison-based computation model
* The hardness of the champion problem is ©(n)
* The hardness of the sorting problem is @(nlogn)

slido event code: #ADA2020

Goal: Finding Hardness

e Use the upper bound and the lower bound
* When they match, we know the hardness of the problem

use 0(f(n)) and o(f(n))

upper bound is 0(h(n)) & lower bound is Q(h(n))
> the problem complexity is exactly ©(h(n))

use Q(g(n)) and a)(g(n))

slido event code: #ADA2020

Goal: Finding Hardness

* First learn how to analyze / measure the effort an algorithm needs
* Time complexity
* Space complexity

* Focus on worst-case complexity

» “average-case” analysis requires the assumption about the probability distribution of
problem instances

Worst Case Maximum running time for any instance of size n
Average Case Expected running time for a random instance of size n
Amortized Worse-case running time for a series of operations

slido event code: #ADA2020

Review of Asymptotic Notation
(Textbook Ch. 3.1)

* f(n) =time or space of an algorithm for an input of size n
* Asymptotic analysis: focus on the growth of f(n) asn —

slido event code: #ADA2020

Review of Asymptotic Notation
(Textbook Ch. 3.1)

 f(n) =time or space of an algorithm for an input of size n

* Asymptotic analysis: focus on the growth of f(n) asn —
* O, or Big-Oh: upper bounding function

* (), or Big-Omega: lower bounding function

* O, or Big-Theta: tightly bounding function

cg(n) c28(n)
fn)

£(n)
cglm) crg(n)

1
n : n ' n

no No no
f(n) = 0(g(n)) fn) = Q(gn)) f(n) = 0(gn)

Formal DefInItIOn Of Big_éﬁdﬁventcode:#ADAzozo
(Textbook Ch. 3.1)

* For any two functions f(n) and g(n),

f(n)=0(g(n))

if there exist positive constants ny and c s.t.

0< f(n) <c-g(n)

foralln = n,.

f(n) = 0(g(n)) '

* |Intuitive interpretation
* f(n) does not grow faster than g(n)
* Comments
1) f(n) = 0(g(n)) roughly means f(n) < g(n) in terms of rate of growth
2) “="is not “equality”, it is like “e (belong to)”
The equalityis {f(n)} S O(g(n))
3) We do not write 0(g(n)) = f(n)

* Note

* f(n) and g(n) can be negative for some integers n

* In order to compare using asymptotic notation O, both have to be non-negative for
sufficiently large n

* This requirement holds for other notations, i.e. 0,0, 0, w

slido event code: #ADA2020

Review of Asymptotic Notation
(Textbook Ch. 3.1)

* Benefit

* |gnore the low-order terms, units, and coefficients

* Simplify the analysis
e Example: f(n) = 5n3 + 7n% — 8

* Upper bound: f(n) = O(n3), f(n) = O(n%), f(n) = O(n*log,n)

* Lower bound: f(n) = Q(n3), f(n) = Q(n?), f(n) = Q(nlog,n)

* Tight bound: f(n) = ©(n3) “="” doesn’t mean “equal to”
* Q: f(n) =0(n3)and f(n) = 0(n*), so 0(n3) = 0(n*)?

. 0(n3) represents a set of functions that are upper bounded by cn3 for some constant

¢ when n is large enough

“u_n

* In asymptotic analysis, “=” means “e (belong to)”

Exercise: 100n* = 0(n3 — n?)?
* Draft.
100n* < 100(n* — n?)
—200n° < 100n°
+2<n

*Lletnyg =2andc =100
100n? < 100(n?® — n?)

holds forn = 2 5 3 5
100n* = O(n° — n”)

Exercise: n* = 0(n)?

* Disproof.
* Assume for a contradiction that there exist positive constants ¢ and n; s.t.

n? < cn

holds for any integer n with n = n,.
* Assume n = 14 [max(ng,c)]

and because 1 > ng,n > ¢ , it follows that
n* > cn

* Due to contradiction, we know that
n? # O(n)

slido event code: #ADA2020

Rules
(Textbook Ch. 3.1)

The following statements hold for any real-valued functions f(n)
and ¢g(n), where there is a constant ng such that f(n) and g(n)
are nonnegative for any integer n > ny.

e Rule 1: f(n) =0(f(n)).
e Rule 2: If cis a positive constant, then c-:O(f(n)) = O(f(n)).
e Rule 3: If f(n) =0O(g(n)), then O(f(n)) = O(g(n)).

e Rule 4: O(f(n))- O(g(n)) = O(f(n) - g(n))
e Rule 5: O(f(n) - g(n)) = f(n) - O(g(n))

#ADA2020

nt code:

slido eve

Other Notations

(Textbook Ch. 3.1)

n rate of growth
n rate of growth
n rate of growth
n rate of growth
n rate of growth

o p=—i o p—i o p—{ o p—{ o p—{

AN TN TN N N

S S S N N

N SN TN N N

e N e e N

AN TN TN TN N
N TN TN N N

N S S N N

N e e S N

slido event code: #ADA2020

Goal: Finding Hardness

* First learn how to analyze / measure the effort an algorithm needs
* Time complexity
* Space complexity

* Focus on worst-case complexity

e “average-case” analysis requires the assumption about the probability distribution of
problem instances

__

Algorithm Analysis

« The worst-case time complexity is

1. Intl,|; 0(1) time
o j=1 0(1) time O(1)+0(1)+0(n)-(0O(1)4+0(1)) +0(1)
3. for(i=2; i<=n; i++) 0(n) iterations
4. if (Al > Afi) 0(1) time 3-0(1) 4+ O(n) - (20(1))
5 =i 0(1) time =0(1) + O(n) - O(1)
6. return j; 0(1) time =0(1) + O(n)
=0(n) + O(n)

Addi ything togeth .

> ;r:lgu?o\};eerr boIE?\doognethgr =2 O(n)

worst-case time complexity :O(n)

slido event code: #ADA2020
I

Sorting Problem = —

N
B
* Input: B I

An array A of n distinct integers.

e Output:

Reorder A such that A[1]<A[2]<--- <A[n].

slido event code: #ADA2020

Algorithm Analysis

* Bubble-Sort Algorithm

X

v 4
1. inti, done; 0(1) time ~
2. do{ f(n) iterations N\
3 done = 1; 0(1) time
4 for(i=1;i<n;i++){ O(n) iterations
5. if (Al > Ali + 1]) { 0(1) time O(1) + f(n) - (O(1) + O(n) - O(1))
6 exchange A[i] and Afi + 1]; 0(1) time =0(1) + f(n) - O(n)
7 done = 0; 0(1) time —f(n) - O(n)
8 } _
9. } - O(TLQ) 5(()‘\1/1(9) by ingj(cggn
10. } while (done == 0)

slido event - #ADA2020

Example lllustration

0000000 %5
0000000
0000000
0000000
0000000

slido event code: #ADA2020

Goal: Finding Hardness

* First learn how to analyze / measure the effort an algorithm needs
* Time complexity
* Space complexity

* Focus on worst-case complexity

e “average-case” analysis requires the assumption about the probability distribution of
problem instances

Algorithm Analysis

S P A NN
By
1. inti; Q(1) time
2. intm = A[1]; Q(1) time 3-Q(1) +Q(n) - (2-Q(1))
3. for(i=2;i<=n;i++){ Q(n) iterations =Q(1) + Q(n) - (1)
4. if (A[i] > m) Q(1) time _
5 m = A[i]; Q(1) time Q(l) + Q(n)
6. } =Q(n)
7. return m; Q(1) time

Adding everything together

—> a lower bound on the worst-case time complexity?

Algorithm Analysis

° E R/mﬂgﬂ EEII:I/

1. Inti; Q(1) time

2. intm = A[l]; Q(1) time 3-Q(1) +Q(n) - (3-Q(1) +Q(n))
3. for(i=2;i<=n;i++){ Q(n) iterations =Q(1) + Q(n) - Q(n)

4. if (A[i] > m) Q(1) time B 5

5. m = A[i] (1) time =0(1) + Q(n”)

6. if(i==n) Q(1) time =Q(n?)

7. do i++ n times Q(n) time

8. }

9. returnm; Q(1) time

Adding together may result in errors.
The safe way is to analyze using problem instances.

e.g. try A[i] =i or A[i]=2(n — i) to check the time complexity = Q(l)

slido event code: #ADA2020

Algorithm Analysis

* Bubble-Sort Algorithm

X

Int i, done;
do { f(n) iterations
done = 1,
for(i=1;i<n;i++){ Q(n) time
if (All>A+1D{ :

exchange A[i] and A[i + 1]; When Ais decreasing, f(n) = Q(n). |
done = 0: Therefore, the worst-case time complexity
] | - of Bubble-Sort is |

) f(n) - Q(n) = Q(n?)

10. }while (done == 0)

© © N o O b~ WD

slido event - #ADA2020

Example lllustration

eoeoeea-é&
0000000
00000080
0000000

= 1 iterations

slido event code: #ADA2020

Algorithm Complexity

In the worst case, what is the growth of function an
algorithm takes

slido event code: #ADA2020

Time Complexity of an Algorithm

* We say that the (worst-case) time complexity of Algorithm A is @(f(n)) if

1. Algorithm A runs in time O(f(n)) &

2. Algorithm A runs in time Q(f(n)) (in the worst case)
o An input instance I(n) s.t. Algorithm A runs in Q(f(n)) for each n

slido event code: #ADA2020

Tightness of the Complexity

* |f we say that the time complexity analysis about O(f(n)) is tight
* = the algorithm runs in time Q(f(n)) in the worst case

» = (worst-case) time complexity of the algorithm is @(f(n))
* Not over-estimate the worst-case time complexity of the algorithm

* If we say that the time complexity analysis of Bubble-Sort algorithm about
0(n?) is tight

- = Time complexity of Bubble-Sort algorithm is Q(n?)

* = Time complexity of Bubble-Sort algorithm is @(nz)

slido event code: #ADA2020

Algorithm Analysis
- EREINIESS

non-tight analysis

L nth O(1) time 3-0(1) + O(n) - (3- O(1) + O(n))

omemEAL o othme ~0(1) +0(n) - O(n)

3 for_ (i= 2 i<=n;i++){ 0(n) |Ferat|ons _0(1) + O(n?)

4 if (A[i] > m) 0(1) time —0(n?)

5. m = A[i]; 0(1) time

6 if (i == n) 0(1) time tight analysis

7 do i++ n times 0(n) time Step 3 takes 0(n) iterations for the for-loop,

8.) where only last iteration takes 0(n) time and the
¢ _ 01 1 rest take 0(1) time.

9 return m, (1) time The steps 3-8 take time

O(n)-0O(1)+1-0(n) =0(n)

The worst-case time complexity of
TERBIIEE% . is o(n).

The same analysis holds for Q(n)

slido event code: #ADA2020

Algorithm Comparison

* Q: can we say that Algorithm 1 is a better algorithm than Algorithm 2 if
* Algorithm 1 runsin O(n) time
» Algorithm 2 runs in 0(n?) time

* A: No! The algorithm with a lower upper bound on its worst-case time does

not necessarily have a lower time complexity. o

.;,o.D

Q ?

slido event code: #ADA2020

Comparing A and B

* Algorithm A is no worse than Algorithm B in terms of worst-case time
complexity if there exists a positive function f(n) s.t.

* Algorithm A runs in time O(f(n)) &
 Algorithm B runs in time Q(f(n)) in the worst case

* Algorithm A is (strictly) better than Algorithm B in terms of worst-case time
complexity if there exists a positive function f(n) s.t.

* Algorithm A runs in time O(f(n)) &

 Algorithm B runs in time a)(f(n)) in the worst case
or

* Algorithm A runs in time o(f(n)) &
 Algorithm B runs in time Q(f(n)) in the worst case

slido event code: #ADA2020

Problem Complexity

In the worst case, what is the growth of the function the
optimal algorithm of the problem takes

slido event code: #ADA2020

Time Complexity of a Problem

* We say that the (worst-case) time complexity of Problem P is @(f(n)) if

1. The time complexity of Problem P is O(f(n)) &
o There exists an O(f(n))-time algorithm that solves Problem P

2. The time complexity of Problem P is Q(f(n))
o Any algorithm that solves Problem P requires Q(f(n)) time
* The time complexity of the champion problem is ®(n) because
1. The time complexity of the champion problem is O(n) &
o "H#EE)A 1 is the O(n)-time algorithm
2. The time complexity of the champion problem is Q(n)

o Any algorithm requires Q(n) time to make each integer in comparison at least
once

slido event code: #ADA2020

Optimal Algorithm

* If Algorithm A is an optimal algorithm for Problem P in terms of worst-case
time complexity
* Algorithm A runs in time O(f(n)) &
* The time complexity of Problem P is Q(f(n)) in the worst case
* Examples (the champion problem)
« EEJA > optimal algorithm
* It runsin O(n) time &
* Any algorithm solving the problem requires time Q(n) in the worst case

- AREIIES)E > optimal algorithm
* [trunsin O(n) time &
 Any algorithm solving the problem requires time Q(n) in the worst case

slido event code: #ADA2020

Comparing P and Q

* Problem P is no harder than Problem Q in terms of (worst-case) time
complexity if there exists a function f(n) s.t.

* The (worst-case) time complexity of Problem P is O(f(n)) &
* The (worst-case) time complexity of Problem Q is Q(f(n))

* Problem P is (strictly) easier than Problem Q in terms of (worst-case) time
complexity if there exists a function f(n) s.t.

e The (worst-case) time complexity of Problem P is O(f(n)) &

* The (worst-case) time complexity of Problem Q is a)(f(n))
or

* The (worst-case) time complexity of Problem P is o(f(n)) &

* The (worst-case) time complexity of Problem Q is Q(f(n))

slido event code: #ADA2020

Concluding Remarks

Algorithm Design and Analysis Process

1) Formulate a problem Design Step

2) Develop an algorithm

3) Prove the correctness [Analysis Step |
4) Analyze running time/space requirement - g

Usually brute force (8] 71)%) is not very efficient

Analysis Skills
* Prove by contradiction
* Induction
* Asymptotic analysis
* Problem instance
Algorithm Complexity
* In the worst case, what is the growth of function an algorithm takes

Problem Complexity
* In the worst case, what is the growth of the function the optimal algorithm of the problem takes

slido event code: #ADA2020

Reading Assignment

e Textbook Ch. 3 — Growth of Function

Question?

Important announcement will be sent to
@ntu.edu.tw mailbox & post to the course website

Course Website: http://ada.miulab.tw
Emall: ada-ta@csie.ntu.edu.tw

