
Algorithm Design and Analysis (NTU CSIE, Fall 2019) Homework #4

Homework #4

Due Time: 2020/01/02 (Thur.) 14:20

Contact TAs: ada-ta@csie.ntu.edu.tw

Instructions and Announcements

• There are four programming problems and two hand-written problems.

• Programming. The judge system is located at https://ada-judge.csie.ntu.edu.tw. Please
login and submit your code for the programming problems (i.e., those containing “Programming”
in the problem title) by the deadline. NO LATE SUBMISSION IS ALLOWED.

• Hand-written. For other problems (also known as the “hand-written problems”), you MUST
turn in a printed/written version of your answers to the submission box at your class-
room. You can also upload your homework to the NTU COOL system as a backup; however, it
will be marked only when you have turned in the printed/written answer but it is lost during
the grading process.
NO LATE SUBMISSION IS ALLOWED.

• Collaboration policy. Discussions with others are strongly encouraged. However, you should
write down your solutions in your own words. In addition, for each and every problem
you have to specify the references (e.g., the Internet URL you consulted with or the people you
discussed with) on the first page or comment in code of your solution to that problem. You may
get zero point due to the lack of references.

1

Algorithm Design and Analysis (NTU CSIE, Fall 2019) Homework #4

Problem A - Loopy Tippy (Programming) (15 points)

Problem Description

Background As you may have learned in class, there is no known algorithm that is able to solve
NP-complete problems in polynomial time (yet). However, these problems still happen a lot in real
life1. One method of solving these problems is to encode them into SAT, i.e., boolean satisfiability
problems, and apply existing solvers2. There are several benefits to this approach, such as being able to
take advantage of existing, highly optimized solvers, and having more flexibility than domain-specific
solvers.

Story

I have coined a truly remarkable story about WillyPillow and Chino which this margin is
too small to contain.

Problem Formulation

You are given a Slitherlink3 puzzle and Cryptominisat5, a CNF-SAT solver (for which the details are
given below). Please solve the puzzle by translating it to CNF-SAT and applying the solver.

In essence, the rules of the puzzle are as follows: you are given a rectangular grid, with each square
possibly containing a number. The objective is to color a subset of the edges so that the following
conditions are satisfied:

1. If a square contains a number, the number of colored edges around it needs to be equal to the
given number.

2. The set of colored edges forms exactly one simple loop.

You can try the puzzle out here4 or (a harder version) here5.

Input Format

The first line contains two integers r and c, denoting the numbers of rows and columns of the board,
respectively. r lines follow, where each line contains c characters representing the board. A character,
“.”, corresponds to a square without a number. Note that the given puzzle is guaranteed to have a
unique solution.

In addition, since it may be hard to predict the needed time for solving your SAT encoding, it is
guaranteed that the puzzles in the subtasks 1 through 5 are sampled from this archive6. However,
due to a large number of the released test cases, the upload quota is limited to 5 times a day
to ease the burden on the judge server.

EDIT: It is guaranteed that there is at least one non-zero number on the board.

1E.g., lock-chart solving and dependency management.
2Usually based on conflict-driven clause learning (https://en.wikipedia.org/wiki/Conflict-driven clause learning), a

fascinating algorithm worth reading about.
3https://en.wikipedia.org/wiki/Slitherlink
4https://www.chiark.greenend.org.uk/~sgtatham/puzzles/js/loopy.html
5https://kwontomloop.com/
6https://www.csie.ntu.edu.tw/~b07902134/ada-19hw4p1-public.zip

2

Algorithm Design and Analysis (NTU CSIE, Fall 2019) Homework #4

Subtask 1, 6 (10% each)

• (r, c) = (3, 3)

Subtask 2, 7 (10% each)

• (r, c) = (7, 7)

Subtask 3, 8 (10% each)

• (r, c) = (10, 10)

Subtask 4, 9 (10% each)

• (r, c) = (15, 15)

Subtask 5, 10 (10% each)

• (r, c) = (20, 20)

Bonus (0%)

• r, c ≤ 128

Output Format

Please print a binary string with (2rc + r + c) characters, denoting the answer to the puzzle. The
following order shows an example of r = 1, c = 5. The i-th character in your output indicates whether
the edge at location i is filled. Specifically, a character “1” denotes that the edge is filled and 0

otherwise.

Sample Input

7 7

.....3.

22.3..2

32....2

.3..2.3

3.....2

.3132.2

3.....3

Sample Output

1111101100001111111010000010

0111110111000010011010110011

1001110010110010110110100000

1011101101001100101011110011

(Line breaks added only for clarity; please out-
put the string in one single line.)

The human-readable solution to this board is
as follows:

+-+-+-+-+-+ +-+

|.|3|.|

+-+-+-+-+ +-+ +

2 2 . 3|. . 2|

+-+-+-+-+ +-+-+

|3 2 . . .|. 2

+-+-+ +-+ +-+-+

. 3|.|.|2 . 3|

+-+-+ + +-+ +-+

|3 . .|. .|.|2

+-+-+ +-+ + + +

. 3|1 3|2|.|2

+-+-+ +-+ + +-+

|3 . .|. .|. 3|

+-+-+-+ + +-+-+

3

Algorithm Design and Analysis (NTU CSIE, Fall 2019) Homework #4

Environment

Cryptominisat57 is installed on the judge server. Instructions about how to use it can be found on its
website. It is recommended that you install the library locally for testing.

On the CSIE workstations, the library (and the cryptominisat5 binary) should be already in-
stalled. Note that you need to compile your program with the flag -lcryptominisat5.

On systems with the proper dependencies (most notably, make and cmake) installed, you can build
Cryptominisat5 and compile your program with it by following this screencast8.

However, if you have difficulty installing the library, we also provide the following alternative:

Please paste the provided header9 at the beginning of your source file. The following functions are
then provided:

• void sat::Init(int n): Initialize the solver with n variables.
• void sat::AddClause(std::vector<int> v): Add a CNF clause that consists of the vari-

ables in v. Note that negative numbers denote the negation of a variable (e.g., {1, -2}
⇐⇒ (x1 ∨ ¬x2)), and thus the variable numbering has to start from 1.
• bool sat::Solve(): Solve the given clauses. Returns true if a solution is found and false

otherwise.
• int sat::GetResult(int id): Get the result of the variable id after calling Solve(). Returns

1 if the variable is true, −1 if it is false, and 0 if it is indeterminate.

If the macro DIMACS is not defined, the library merely redirects your calls to Cryptominisat.
However, if it is defined, then Solve() writes your clauses to out.dimacs in DIMACS format10 and
terminates the program. You can then feed the file to other solvers with standalone binaries, such
as Cryptominisat5 11, Microsat12, Minisat13, Glucose14, Lingeling15, or even browser-based solvers like
Minisat.js16.17

Hints

• Tseytin transformation18

• Truth table ⇐⇒ CNF
• Incremental SAT19

• Flood fill
• https://codingnest.com/modern-sat-solvers-fast-neat-underused-part-1-of-n/

• It is possible to solve this without using the solver, but I doubt that it is easier :)

7https://www.msoos.org/cryptominisat5/
8https://asciinema.org/a/oRbZ9UjnWL36RfEZocJYmCyVZ
9https://gist.github.com/WillyPillow/a5b4f12faefd66c7ce42690668c002b5

10https://en.wikipedia.org/wiki/Boolean satisfiability problem#SAT problem format
11Binaries for Windows and Linux can be found at https://github.com/msoos/cryptominisat/releases.
12https://github.com/marijnheule/microsat
13http://minisat.se/
14https://www.labri.fr/perso/lsimon/glucose/
15http://fmv.jku.at/lingeling/
16http://jgalenson.github.io/research.js/demos/minisat.html
17Other solvers can be found at https://en.wikipedia.org/wiki/Boolean satisfiability problem#External

links.
18https://en.wikipedia.org/wiki/Tseytin transformation
19https://baldur.iti.kit.edu/sat-competition-2016/index.php?cat=incremental

4

Algorithm Design and Analysis (NTU CSIE, Fall 2019) Homework #4

Problem B - Reachability Coefficient (Programming) (15 points)

Problem Description

For two sets X and Y , we define:

f(X,Y) =
|X ∩ Y |
|X ∪ Y |

You are given a directed acyclic graph G, and for each vertex v, let S(v) be the set of vertices that
are reachable from v (vertex u is reachable from vertex v if there exists a simple path from v to u).
Q queries in the form of ui, vi are specified, where ui and vi are vertices in G. You need to answer
f(S(ui), S(vi)), for all given queries.

You are not asked to find the exact ratio. Instead, your answer is considered correct if the
absolute error does not exceed 0.1.

Input

The first line of the input contains three integers N,M,Q, representing the number of vertices, the
number of edges, and the number of queries, respectively. M lines follow, the i-th of which contains
two integers ui, vi, representing a directed edge from the vertex ui to the vertex vi. Q lines follow, the
i-th of which contains two integers ui, vi, representing a query on the vertex ui and the vertex vi.

• 1 ≤ N ≤ 2× 105

• 0 ≤M ≤ 3× 105

• 1 ≤ Q ≤ 2× 105

Output

Print the answer to each query. Your answer can be considered correct if the absolute error of it to
the actual answer does not exceed 0.1.

Test Group 0 (20 %)

• 1 ≤ N,Q ≤ 1000
• 0 ≤M ≤ 5000

Test Group 1 (80 %)

• No other constraints

5

Algorithm Design and Analysis (NTU CSIE, Fall 2019) Homework #4

Sample Input 1

6 7 5

1 2

1 3

2 3

3 4

4 5

3 5

5 6

1 3

2 4

1 6

5 5

2 5

Sample Output 1

0.666666666667

0.600000000000

0.166666666667

1.000000000000

0.400000000000

Hints

• Read the problem statement carefully.

• Read the output section carefully.

6

Algorithm Design and Analysis (NTU CSIE, Fall 2019) Homework #4

Problem C - Yet Another Permutation Problem (Programming) (15
points)

Problem Description

Let SN be the set of all permutations of length N . Let MN be the set of all 0-1 matrices of size N×N .
We define

f : SN ×MN →MN

with f(p,A)i,j = Api,pj . That is, the function f interchanges the rows (as well as the columns) of
matrix A according to the permutation p.

Let g(A) be the maximum size of the submatrix B of A ∈ MN containing only 1’s such that the
diagonal of B lies on the diagonal of A. Formally speaking, g(A) is the maximum r (0 ≤ r ≤ N) such
that there exists 1 ≤ i ≤ N − r + 1 with the following property:

Axy = 1, for all i ≤ x, y ≤ i+ r − 1

Given a N ×N 0-1 matrix A, please find a permutation p ∈ SN such that g(f(p,A)) is maximized.

Input

The first line of the input contains an integer N , indicating the size of the matrix A. N lines follow,
the i-th of which contains a string of length N , denoting the i-th row of the matrix A.

• 1 ≤ N ≤ 120

• Aij ∈ {0, 1}

Test Group 0 (10 %)

• 1 ≤ N ≤ 8

Test Group 1 (10 %)

• 1 ≤ N ≤ 20

Test Group 2 (50 %)

• 1 ≤ N ≤ 80

Test Group 3 (30 %)

• No other constraints.

Output

Print the optimal permutation p. If there are more than one solutions, any of which will be accepted.

Sample Input 1

3

101

000

101

Sample Output 1

1 3 2

7

Algorithm Design and Analysis (NTU CSIE, Fall 2019) Homework #4

Problem D - Hex (Programming) (10 points)

Problem Description

In this problem, you need to play the game, hex, with the computer. Please read Wikipedia for the
rules20. In this problem, the pie rule (or swap rule) is not used.

To try the game online, you can use this site21. (Make sure to uncheck swap rule first.)

a 11x11 Hex Board that blue wins

To solve this problem, you need to write a program to play with ours. Your program will be
accepted if you win Y rounds out of a total of X rounds. You are always the first player.

In your program, you only need to implement two functions:

• void init(int n): Start a new game with a nxn board

• std::pair<int, int> decide(std::pair<int, int> p): Decide your move. p is the last
move by the opponent. If it is the first move, p would be {-1, -1}. The function should return
the position you plan to put you color.

The position on the board is represented by a pair(std::pair<int, int> p), where p.first is
the index (starting from 0) of the row and p.second is the index (starting from 0) of the column.

Example Files

You can download a random sample solution and hex.h at: https://cool.ntu.edu.tw/courses/

368/files/folder/Homework/Homework4\%20Hex

The hex.h file would connect to our server, which is the same AI as the judge. So please send your
solution to the judge only if the program already runs correctly at local. You have a very limited
quota per day!

To compile sample files on Windows, you need to add -lws2_32 in the compiler options.

20https://en.wikipedia.org/wiki/Hex (board game)#Game play
21http://www.lutanho.net/play/hex.html

8

Algorithm Design and Analysis (NTU CSIE, Fall 2019) Homework #4

the index of grids on a board

Input Limits

• 1 ≤ X ≤ 20

• 1 ≤ Y ≤ X

• 3 ≤ n ≤ 11

• 0 ≤ q.first, q.second < n

Test Group 0 (0 %)

• X = 1
• Y

X ≤ 0.0
• n = 3

Test Group 1 (20 %)

• Y
X ≤ 0.9

• n = 3

Test Group 2 (20 %)

• Y
X ≤ 0.8

• n = 4

Test Group 3 (30 %)

• Y
X ≤ 0.4

• n = 8

Test Group 4 (15 %)

• Y
X ≤ 0.7

• n = 5

9

Algorithm Design and Analysis (NTU CSIE, Fall 2019) Homework #4

Test Group 5 (15 %)

• Y
X ≤ 0.8

• n = 8

10

Algorithm Design and Analysis (NTU CSIE, Fall 2019) Homework #4

Problem E - Magic Wands Linking (Hand-Written) (25 points)

Have you seen Harry Potter? It is a fantasy story about wizards and magic. Every wizard has a magic
wand, and there is a fitness value (which is always non-negative) between every pair of wands.

In the fantasy world, there are many phenomenal professors who teach at Hogwarts. Recently,
one of the professors invented a new technology called Magic Wands Linking, which can greatly
enhance the power of wizards. By linking two wands through the technology, both owners can increase
their power by the fitness value between the two wands. For example, if a wand w1 is linked to another
wand w2, and the fitness between w1 and w2 is 10, then both the power of w1 and w2 is enhanced by
10; the power of the Wizarding World is enhanced by 20 in total. Note that two wands can be linked
even if their fitness is 0, but such a linking has no effect on their power. Also, a wand can be linked
to more than one wand, and the power enhanced can be accumulated.

However, the technology is not yet mature. The links between the wands should follow the rules
below:

1. RULE1 There are three attributes of magic wands, none, light, and dark. Initially, all wands
are unlinked and have the attribute none. If a wand w1 is linked to another wand w2, then
the two wands must be assigned two opposite attributes, light and dark. (A wand can only be
assigned an attribute once.)

2. RULE2 To maintain the balance of the Wizarding World, the number of light wands and the
number of dark wands should be the same.

Given N magic wands ({w1, w2, ..., wN}) and M fitness values, can you help the wizards to find
the maximum power they can enhance in total? For all of the following questions, you can assume
that N is even, M =

(
N
2

)
, and the fitness values are always non-negative.

(1) (4pts) Please solve two problems below.

(1-1) (2pts) Assume that:

N = 4 ({w1, w2, w3, w4}),
M = 6 ({(w1, w2, 5), (w1, w3, 1), (w1, w4, 8), (w2, w3, 1), (w2, w4, 7), (w3, w4, 4)}).
(w1, w2, 5) means that the fitness between w1 and w2 is 5.

Under RULE1 and RULE2, what is the maximum power they can enhance in total?

Please provide the linking method as well.

(1-2) (2pts) Following the question (1-1), now assume that we can temporarily ignore RULE2.
That is, N is still an even number, but the numbers of light wands and dark wands can
be different. What is the maximum power they can enhance in total? Please provide the
linking method as well.

(2) (9pts) Please solve two problems below.

(2-1) (4pts) Maximum Cut Problem:
For a graph, a maximum cut is a cut whose size is at least the size of any other cut. The
problem of finding a maximum cut in a graph is known as the Maximum Cut Problem.
Assuming that Maximum Cut Problem is NP-hard, prove the following problem is NP-
hard:
Ignore RULE2, given N magic wands and M fitness values, find a linking method to
enhance the maximum power in total.

11

Algorithm Design and Analysis (NTU CSIE, Fall 2019) Homework #4

(2-2) (5pts) Ignore RULE2, given N magic wands and M fitness values, now consider an
approximation algorithm below:
Define Mi = {fitness of (wk, wi) | k < i}, W1 and W2 as two sets of wands. Initially, set
W1 = {w1},W2 = φ. Then for each i from 2 to N , add wi to either W1 or W2, and link wi

to all wands in the other set, such that the power enhanced in Mi is maximized.

Prove that the above algorithm is a 2-approximation.

(3) (5pts) Now, under both RULE1 and RULE2 above, assuming that Maximum Cut Problem
and the question (2-1) are NP-hard, prove that the following problem is NP-hard:

Given N magic wands and M fitness values, find a linking method to enhance the maximum
power in total.

(4) (4pts) The professor who invented Magic Wands Linking realizes that the total power enhanced
by linking wands can not be too large, or the Wizarding World will crash due to the power
storm! Thus, now he wants to know the minimum power that can be enhanced in total when
every wand has at least one linking, so that he can evaluate the feasibility of Magic Wands
Linking. However, the problem is harder than he thought.
Formally speaking, assuming that Maximum Cut Problem, the question (2-1), and the question
(3) are NP-hard, please help him prove that the problem below is NP-hard:
Under both RULE1 and RULE2 above, given N magic wands and M fitness values, find a
linking method such that for each wand w, there exists at least one link to w, but the
total enhanced power is minimized.

(5) (3pts) One week after all magic wands are linked, the Dementors attack Hogwarts suddenly!

In order to send wizards to the battlefield, they use two teleportation spells. However,
teleportation takes time, so it is better to distribute the wizards evenly to the two spells.
Thus, the problem is:
Assuming that there are N wizards, given N non-negative integers (t1, t2, ..., tN) indicating the
time each wizard takes to teleport, please determine whether there is a subset whose sum equals

to
N∑
i=1

ti/2.

Please reduce the Subset Sum Problem22 to the problem above in polynomial time.

22Given n non-negative integers (a1, a2, ...an) and a positive integer W , the Subset Sum Problem seeks whether there
is a subset whose sum equals to W . The Subset Sum Problem is known to be NP-hard.

12

Algorithm Design and Analysis (NTU CSIE, Fall 2019) Homework #4

Problem F - Band Dream (Hand-Written) (20 points)

Kasumi is the leader of the band Poppin’ Party. Because it is the fifth year since Poppin’ Party was
created, she wants to create a new song containing continuous melodies of the songs that Poppin’
Party has released before.

For example, if there are two melodies Do, Re, Mi and Mi, Re, Do. Then Do, Re, Mi, Re,
Do contains two sub-melodies above but Do, Re, Do, Mi, Re, Do does not contain the sub-melody
Do, Re, Mi.

Because she does not know how to minimize the length of the new song, she wants us to find a
song that is short enough in polynomial time.

(1) To solve this problem, we introduce another problem called Set Cover Problem and one of
its approximate algorithms.

Given a universe of n elements X and a collection of m subsets F = {S1, S2, . . . , Sn}, where
Si ⊂ X for each Si ∈ F . Each Si has a positive cost, denoted as cost(i). The goal is to find a
sub-collection C ⊂ F of the minimum total cost that covers X, assuming one exists.

Algorithm 1: GreedySetCover(X, F)

1 C ←− ∅
2 U ←− X
3 while u 6= ∅ do

4 Find a set S ∈ F \ C that minimizes α = cost(S)
|S∩U |

5 for x ∈ S ∩ U do
6 price(x)←− α
7 C ←− C ∪ {S}
8 U ←− U \ S
9 return C

(1-1) Order X as {x1, x2, . . . , xn} by the order in which they were covered by the algorithm.
If there is more than one element covered in the same iteration, order them arbitrarily.
Please show that for each k ∈ {1, 2, . . . , n} , price(xk) ≤ OPT

n−k+1 , where OPT is the cost of
the optimal cover. (4 points)

(1-2) Please show that the above algorithm is in polynomial time, and it will obtain a (ln n +
O(1))-approximate solution. You can use the result of (1-1) even if you are not able to
prove it. (3 points)

(2) The problem that Kasumi wants to solve can be modelled as below: Given a finite set of alphabet
Σ, and a set of n strings M = {M1,M2, . . . ,Mn}, where each Mi ∈ Σ∗. WLOG, assume there
is no Mi is sub-string of Mj , for i 6= j. Find the shortest string C that contains all sub-strings
Mi ∈M . To make things easier, if a string s is a prefix of the string y, and a string t is a suffix
of the string y, and len(s) + len(t) > len(y), we can call y a possible merge of s and t. For
example, “abbbc” and “abbbbc” are possible merge of “abbb” and “bbc”, while “abbbbbc”,
“abbbbbbc” are all not possible merges.

(2-1) Please show that we can reduce Kasumi’s problem to Set Cover Problem mentioned at the
problem (1) in polynomial time, by picking all strings and all possible merges of each
pair of strings in M as the collection F of subsets. Notice that some merges may contain
more than two sub-strings. (6 points)

13

Algorithm Design and Analysis (NTU CSIE, Fall 2019) Homework #4

(2-2) Please show that the solution in (2-1) will obtain a (2 ln n + O(1))-approximate solution.
You can use the result of (1-2) even if you are not able to prove it. (7 points)

14

