
Algorithm Design and Analysis
Approximation Algorithms

Yun-Nung (Vivian) Chen

http://ada.miulab.tw



Outline

• Approximation Algorithms

• Examples
• Vertex Cover

• Traveling Salesman Problem

• Set Cover

• 3-CNF-SAT

2



Approximation

• “A value or quantity that is nearly but not exactly correct”

• Approximation algorithms for optimization problems: the approximate 
solution is guaranteed to be close to the exact solution (i.e., the optimal 
value)

• Cf. heuristics search: no guarantee

• Note: we cannot approximate decision problems

3

The exact answer

An approximate answer

error bound



Why Approximation?

• Most practical optimization problems are NP-hard
• It is widely believed that P ≠ NP

• Thus, polynomial-time algorithms are unlikely, and we must sacrifice either optimality, 
efficiency, or generality

• Approximation algorithms sacrifice optimality, return near-optimal answers
• How “near” is near-optimal?

4



Approximation Algorithms

• -approximation algorithm

• Approximation ratio
• n: input size

• C*: cost of an optimal solution

• C: cost of the solution produced by the approximation algorithm

5

Maximization problem: 

Maximization problem: 



Approximation Ratio

•

• Smaller is better (                   indicates an exact algorithm)

• Challenge: prove that C is close to C* without knowing C*

6

n: input size

C*: cost of an optimal solution

C: cost of an approximate solution



Vertex Cover

7

Textbook 35.1 – The vertex-cover problem



Vertex Cover Problem

• A vertex cover of G = (V, E) is a subset V’ ⊆ V s.t. if (w, v) ∈ E, then 
w ∈ V’ or v ∈ V’

• A vertex cover “covers” every edge in G

• Optimization problem: find a minimum size vertex cover in G

• Decision problem: is there a vertex cover with size smaller than k

8

NP-complete



Greedy Heuristic Algorithm

• Idea: cover as many edges as possible (vertex with the maximum degree) at 
each stage and then delete the covered edges

9

cb d

a e f g

cb d

a e f g

cb d

a e f g

cb d

a e f g

{b, d, e} is the optimal solution!



Greedy Heuristic Algorithm

• Idea: cover as many edges as possible (vertex with the maximum degree) at 
each stage and then delete the covered edges

• The greedy heuristic cannot always find optimal solution (otherwise P=NP is 
proven)

• There is no guarantee that C is always close to C* either

10



Approximate Algorithm

• APPROX-VERTEX-COVER
• Randomly select one edge at a time

• Remove all incident edges

• Running time = 

11

APPROX-VERTEX-COVER(G)

C = Ø

E’ = G.E

while E’ ≠ Ø

let (u, v) be an arbitrary edge of E’

C = C ∪ {u, v}

remove from E’ every edge incident on either u or v

return C



Approximate Algorithm

• APPROX-VERTEX-COVER
• Randomly select one edge at a time

• Remove all incident edges

12

cb d

a e f g

cb d

a e f g

cb

cb d

a e f g

d

f
{b, c, d, f} is a vertex cover of size 4 found by the 

approximation algorithm (not optimal!)



Theorem. APPROX-VERTEX-COVER is a 2-approx. for the vertex cover problem.

Approximate Algorithm

• 3 things to check

• Q1: Does it give a feasible solution?
• A feasible solution for vertex cover is a node set that covers all the edges

• Finding an optimal solution is hard, but finding a feasible one could be easy

• Q2: Does it run in polynomial time?
• An exponential-time algorithm is not qualified to be an approximation algorithm

• Q3: Does it give an approximate solution with approximation ratio ≤ 2?
• Other names: 2-approximate solution, factor-2 approximation

13



2-Approximation Solution

• Suppose that the algorithm runs for k iterations. Let C be the output of 
APPROX-VERTEX-COVER. Let OPT be any optimal vertex cover of G.

• If k = 0, then 

• If k > 0, then                 . It suffices to ensure that
• Observe that all those k edges (u, v) chosen by APPROX-VERTEX-COVER in those k

iterations form a matching of G. Just for OPT (or any feasible solution) to cover this 
matching requires at least k nodes.

14

Prove that                 . That is                 .  

The proof doesn’t require knowing the actual value of C*!



Approximation Analysis

• Tight analysis: check whether we underestimate the quality of the 
approximate solution obtained by APPROX-VERTEX-COVER

• This factor-2 approximation is still the best known approximation algorithm
• Reducing to 1.99 is a significant result

15

Yes, it is tight!



Vertex Cover v.s. Independent Set

• C is a vertex cover of graph G=(V, E) iff V – C is an independent set of G

• Q: Does a 2-approximation algorithm for vertex cover imply a 2-
approximation for maximum independent set?

16

Optimal independent 

Set: 51 nodes

Optimal vertex 

cover: 49 nodes

A 2-approximate 

vertex cover: 98 nodes

2 

nodes



Traveling Salesman Problem

17

Textbook 35.2 – The traveling-salesman problem



Traveling Salesman Problem (TSP)

• Optimization problem: Given a set of cities and their pairwise distances, find 
a tour of lowest cost that visits each city exactly once.

• Inter-city distances satisfy triangle inequality if for all vertices

18

u v

y x

3

4 5 5 1

3

u v

y x

3

1 1 1 1

1

w/ triangle inequality w/o triangle inequality



Approximate Algorithm

• APPROX-TSP-TOUR
• Grow an MST from a random root

• MST-PRIM

• For (n - 1) iterations, add the least-weighted edge incident to the current subtree that does not incur a cycle

• Running time = 

19

APPROX-TSP-TOUR(G)

select a vertex r from G.V as a “root” vertex

grow a minimum spanning tree T for G from root r using

MST-PRIM(G, d, r)

H = the list of vertices visited in a preorder tree walk of T

return C



Approximate Algorithm

20

H = a, b, c, h, d, e, f, g, a

H* = a, b, c, h, f, g, e, d, a



Theorem. APPROX-TSP-TOUR is a 2-approximation for the TSP problem.

Approximate Algorithm

• 3 things to check

• Q1: Does it give a feasible solution?
• A feasible solution is a path of G visiting each cities exactly once

• The property of a complete graph is needed

• Q2: Does it run in polynomial time?

• Q3: Does it give an approximate solution with approximation ratio ≤ 2?

21



2-Approximation Solution

• With triangle inequality:

• Let H* denote an optimal tour formed by some tree plus an edge:

• Hence,

22

Prove that              . That is .  



Theorem 35.3. If P ≠ NP, there is no polynomial-time approximation algorithm with a 

constant ratio bound ρ for the general TSP

General TSP

• Proof by contradiction
• Suppose there is such an algorithm A with a constant ratio ρ. We will use A to 

solve HAM-CYCLE in polynomial time.
• Algorithm for HAM-CYCLE

• Convert G = (V, E) into an instance I of TSP with cities V (resulting in a complete graph 
G' = (V, E’)):

• Run A on I
• If the reported cost ≤ ρ|V|, then return “Yes” (i.e., G contains a tour that is an HC), 

else return “No.”

23



General TSP

• Analysis
• If G has an HC: G’ contains a tour of cost |V| by picking edges in E, each has 1 cost

• If G does not have an HC: any tour of G’ must use some edge not in E, which has a 
total cost

• Algorithm A guarantees to return a tour of cost 

• HAM-CYCLE can be solved in polynomial time, contradiction
• A returns a cost               if G contains an HC; A returns a cost              , otherwise

24

v y

w x

u

v y

w x

u
1

≤p

u, y, v, w, x, u is a 

Hamiltonian Cycle

u, y, v, w, x, u is a traveling-

salesman tour with cost |V|

Theorem 35.3. If P ≠ NP, there is no polynomial-time approximation algorithm with a 

constant ratio bound ρ for the general TSP



Exercise 35.2-2

25

Show how in polynomial time we can transform one instance of the traveling-salesman problem into 

another instance whose cost function satisfies the triangle inequality. The two instances must have 

the same set of optimal tours. Explain why such a polynomial-time transformation does not contradict 

Theorem 35.3, assuming that P ≠ NP.

u v

y x

5

1 1 1 1

5

TSP w/o triangle inequality

u v

y x

?

? ? ? ?

?

TSP w/ triangle inequality

≤p



Exercise 35.2-2

• For example, we can add dmax (the largest cost) to each edge

• G contains a tour of minimum cost k
G’ contains a tour of minimum cost

• G’s satisfies triangle inequality because for all vertices

26

u v

y x

5

1 1 1 1

5

TSP w/o triangle inequality

u v

y x

5 + dmax

TSP w/ triangle inequality

≤p

1 + dmax

5 + dmax

1 + dmax

1 + dmax

1 + dmax

dmax = 5



Exercise 35.2-2

27

u v

y x

5

1 1 1 1

5

TSP w/o triangle inequality

u v

y x

5 + dmax

TSP w/ triangle inequality

≤p

1 + dmax

5 + dmax

1 + dmax

1 + dmax

1 + dmax

dmax = 5

u v

y x

10

6 6 6 6

10

approximate



Set Cover

28

Textbook 35.3 – The set-covering problem



Set Cover

• Optimization problem: Given k subsets {S1, S2, …, Sk} of 1, 2, …, n, find an 
index subset C of {1, 2, …, k} with minimum |C| s.t.

29

Set cover is NP-complete.

1) It is in NP

2) It is NP-hard



Approximate Algorithm

• GREEDY-SET-COVER
• At each stage, picking the set S that covers the greatest number of remaining elements 

that are uncovered

• Running time = ?

30

GREEDY-SET-COVER(S)

I = Ø

C = Ø

while C ≠ {1, 2, …, n}

select i be an index maximizing |Si - C|

I = I ∪ {i}

C = C ∪ Si
return I



Algorithm Illustration

31



Theorem. GREEDY-SET-COVER is a             -approx. for the set cover problem.

Approximate Algorithm

• 3 things to check

• Q1: Does it give a feasible solution?
• A feasible solution output is a collection of subsets whose union is the ground set {1, 

2, …, n}. 

• Q2: Does it run in polynomial time?

• Q3: Does it give an approximate solution with                             ?

32



-Approximation Solution

• Let I* denote an optimal set cover. We plan to prove that

33

Prove that                          . That is,                           .  



Total Price

• For brevity, we re-index those subsets s.t. for each i, Si is the i-th set selected 
by GREEDY-SET-COVER

• Let Ci be the C right before the elements of Si is inserted into C

• If an element j is inserted into C in the i-th iteration, the price of j is

• The sum of price of all n integers is exactly 

34



Algorithm Illustration

35

1/3

1/8

1/1

1/1



Bound

• For brevity, we re-index the integers s.t. they are inserted into C according to 
the increasing order of these integers

• When j is about to be put into C, there are at least n-j+1 uncovered numbers. 
I* is a collection of sets that can cover these n-j+1 numbers. There is an index 
t ϵ I* s.t. St can cover at least             uncovered numbers

• We have                          , where j is inserted into C in the i-th iteration.

• The price of j is 

36



-Approximation Solution

• The sum of price of all n integers is exactly 

• The price of j is at most

• Therefore, we can prove that

37



3-CNF-SAT

38

Textbook 35.4 – Randomization and linear programming



Randomized Approximate Algo

• Randomized algorithm’s behavior is determined not only by its input but 
also by values produced by a random-number generator

39

Exact Approximate

Deterministic MST APPROX-TSP-TOUR

Randomized Quick Sort MAX-3-CNF-SAT



3-CNF-SAT Problem

• Decision problem: Satisfiability of Boolean formulas in 3-conjunctive normal 
form (3-CNF)

• 3-CNF = AND of clauses, each of which is the OR of exactly 3 distinct literals

• A literal is an occurrence of a variable or its negation, e.g., x1 or ¬x1

40

→ satisfiable

What is the optimization version of 3-CNF-SAT?



MAX-3-CNF-SAT

• Optimization problem: find an assignment of the variables that satisfies as 
many clauses as possible

• Closeness to optimum is measured by the fraction of satisfied clauses

41

satisfies 3 clauses

satisfies 2 clauses

This clause is always satisfied. 

For simplicity, we assume no clause containing both literal and its negation.



Randomized Approximation Algo

• Randomly set each literal to be 0 or 1 (丟硬幣)

• Then…

• End

42

Theorem 35.6. Given an instance of MAX-3-CNF-SAT with n variables x1, x2, …, xn

and m clauses, the randomized algorithm that independently sets each variable to 1 

with probability 1/2 and to 0 with probability 1/2 is a randomized 8/7-approximation 

algorithm



Theorem 35.6. Given an instance of MAX-3-CNF-SAT with n variables x1, x2, …, xn and m

clauses, the randomized algorithm that independently sets each variable to 1 with probability 1/2 and 

to 0 with probability 1/2 is a randomized 8/7-approximation algorithm

Randomized Approximation Algo

• Proof
• Each clause is the OR of exactly 3 distinct literals

43

(satisfying 8/7 of clauses in expectation)



Concluding Remarks

• Most practical optimization problems are NP-hard
• It is widely believed that P ≠ NP

• Thus, polynomial-time algorithms are unlikely, and we must sacrifice either optimality, 
efficiency, or generality

• Approximation algorithms sacrifice optimality, return near-optimal answers

44

Maximization problem: 

Maximization problem: 



Question?
Important announcement will be sent to 
@ntu.edu.tw mailbox & post to the course website

Course Website: http://ada.miulab.tw

Email: ada-ta@csie.ntu.edu.tw


