Algorithm Design and Analysis S E
Approximation Algorithms R

) BLES i;;
!;\]

L

http://ada.miulab.tw /,
Yun-Nung (Vivian) Chen

Outline @w&m

* Approximation Algorithms

* Examples
* Vertex Cover
* Traveling Salesman Problem

* Set Cover
e 3-CNF-SAT

Approximation

* “A value or quantity that is nearly but not exactly correct”

* Approximation algorithms for optimization problems: the approximate
solution is guaranteed to be close to the exact solution (i.e., the optimal
value)

» Cf. heuristics search: no guarantee
* Note: we cannot approximate decision problems

The exact answer

Why Approximation? —"0

* Most practical optimization problems are NP-hard
* |tis widely believed that P # NP

* Thus, polynomial-time algorithms are unlikely, and we must sacrifice either optimality,
efficiency, or generality

* Approximation algorithms sacrifice optimality, return near-optimal answers
* How “near” is near-optimal?

Approximation Algorithms

* p(n)-approximation algorithm
* Approximation ratio p(n)
* n:input size
* C": cost of an optimal solution
* C: cost of the solution produced by the approximation algorithm

max (o,) < p(n)
4

Maximization problem: C* /C < p(n)
Maximization problem: C'/C* < p(n)

©

¢ C*

max(

cx’ C
- p(n) =1

) < p(n)

Approximation Ratio p(n)

n: input size
C": cost of an optimal solution
C: cost of an approximate solution

« Smaller is better (p(n) = 1 indicates an exact algorithm)
 Challenge: prove that Cis close to C” without knowing C”

Vertex Cover

Textbook 35.1 — The vertex-cover problem

Vertex Cover Problem

* A vertex cover of G =(V, E) is a subset V' € V s.t. if (w, v) € E, then
weVorveV

* A vertex cover “covers” every edge in G
* Optimization problem: find a minimum size vertex cover in G & Np_complete
* Decision problem: is there a vertex cover with size smaller than k

Greedy Heuristic Algorithm

* |[dea: cover as many edges as possible (vertex with the maximum degree) at
each stage and then delete the covered edges

(b)—(c—{d, b)—(c)—d
96"0@
S
@& &0 © 6 @ O© O

{b, d, e} is the optimal solution!

Greedy Heuristic Algorithm

* |[dea: cover as many edges as possible (vertex with the maximum degree) at
each stage and then delete the covered edges

* The greedy heuristic cannot always find optimal solution (otherwise P=NP is

NG fg
Lo 8dd &d

* There is no guarantee that Cis always close to C” either

Approximate Algorithm

APPROX-VERTEX-COVER (G)
C =g
E’ = G.E
while B/ # @
let (u, v) be an arbitrary edge of E’
cC=¢Cc U {u, v}
remove from E’ every edge incident on either u or v
return C

* APPROX-VERTEX-COVER

 Randomly select one edge at a time
 Remove all incident edges

* Running time = O(|V| + |E|)

Approximate Algorithm

* APPROX-VERTEX-COVER

 Randomly select one edge at a time
* Remove all incident edges

b —(¢ —(d -) G'Q
!

a *

® .61 vers oo f e 4 ey

Approximate Algorithm

Theorem. APPROX-VERTEX-COVER is a 2-approx. for the vertex cover problem.

* 3 things to check

* Q1: Does it give a feasible solution?

» A feasible solution for vertex cover is a node set that covers all the edges
* Finding an optimal solution is hard, but finding a feasible one could be easy

* Q2: Does it run in polynomial time?
* An exponential-time algorithm is not qualified to be an approximation algorithm

* Q3: Does it give an approximate solution with approximation ratio < 2?
* Other names: 2-approximate solution, factor-2 approximation

2-Approximation Solution

Prove that p(n) = 2. Thatis |C| < 2|C*|.

* Suppose that the algorithm runs for k iterations. Let C be the output of
APPROX-VERTEX-COVER. Let OPT be any optimal vertex cover of G.

Ifk=0,then |C|=|C| =0

* If k>0, then |C| = 2k. It suffices to ensure that |C*| > k

* Observe that all those k edges (u, v) chosen by APPROX-VERTEX-COVER in those k
iterations form a matching of G. Just for OPT (or any feasible solution) to cover this
matching requires at least k nodes.

Approximation Analysis

* Tight analysis: check whether we underestimate the quality of the
approximate solution obtained by APPROX-VERTEX-COVER

* This factor-2 approximation is still the best known approximation algorithm
* Reducing to 1.99 is a significant result

Yes, it is tight!

Vertex Cover v.s. Independent Set

e Cis a vertex cover of graph G=(V, E) iff V- Cis an independent set of G

e Q: Does a 2-approximation algorithm for vertex cover imply a 2-
approximation for maximum independent set?

a

Optimal vertex Optimal independent
cover: 49 nodes Set: 51 nodes

.
p

A 2-approximate
vertex cover: 98 nodes

Traveling Salesman Problem

Textbook 35.2 — The traveling-salesman problem

Traveling Salesman Problem (TSP)

e Optimization problem: Given a set of cities and their pairwise distances, find
a tour of lowest cost that visits each city exactly once.

* Inter-city distances satisfy triangle inequality if for all vertices

d(u,w) < d(u,v) + d(v,w),Vu,v,w € V

w/ triangle inequality w/o triangle inequality

Approximate Algorithm

APPROX-TSP-TOUR (G)
select a vertex r from G.V as a “root” vertex
grow a minimum spanning tree T for G from root r using
MST-PRIM (G, d, r)
H = the list of vertices visited in a preorder tree walk of T
return C

* APPROX-TSP-TOUR

* Grow an MST from a random root
e MST-PRIM

* For (n - 1) iterations, add the least-weighted edge incident to the current subtree that does not incur a cycle

* Running time = O(|E| + |[V|log|V|) = O(|]V|?)

Approximate Algorithm

; AN @O —@—
: N i)\\ a i "r‘e -
b (1 g b g b A g
3}-_@ {\ & \‘é \\ /)._(C ﬁ J -
P 2 B

H=a,b,c,h,d, e f,g,a

e
A} H*:a,b1C1h1f1g7e’d’a

Approximate Algorithm

Theorem. APPROX-TSP-TOUR is a 2-approximation for the TSP problem.
* 3 things to check

* Q1: Does it give a feasible solution?

* A feasible solution is a path of G visiting each cities exactly once
* The property of a complete graph is needed

* Q2: Does it run in polynomial time?
* Q3: Does it give an approximate solution with approximation ratio < 2?

2-Approximation Solution

Prove that p(n) = 2. That is cost(H) < 2 x cost(H™).
« With triangle inequality: cost(H) < 2 x cost(MST) o==0

\%)

WA

*

A
\&

S

\ 0D

\(/

* Let H* denote an optimal tour formed by some tree plus an edge:
cost(MST) < cost(H™)

* Hence, cost(H) < 2 x cost(MST) < 2 x cost(H™*)

General TSP

Theorem 35.3. If P # NP, there is no polynomial-time approximation algorithm with a
constant ratio bound p for the general TSP

* Proof by contradiction

e Suppose there is such an algorithm A with a constant ratio p. We will use A to
solve HAM-CYCLE in polynomial time.

e Algorithm for HAM-CYCLE

e Convert G = (V, E) into an instance / of TSP with cities V (resulting in a complete graph
G'=(V, £)): ,
{1 if (u,v) € B

c(u,v) = _
(.) p|lV]+ 1 otherwise.

* RunAon/

* If the reported cost < p| V|, then return “Yes” (i.e., G contains a tour that is an HC),
else return “No.”

General TSP

Theorem 35.3. If P # NP, there is no polynomial-time approximation algorithm with a
constant ratio bound p for the general TSP

* Analysis
 If G has an HC: G’ contains a tour of cost | V| by picking edges in E, each has 1 cost

* |f G does not have an HC: any tour of G' must use some edge not in E, which has a
total cost > (p|V|+1)+ (|V|—1) > p|V|

 Algorithm A guarantees to return a tour of cost < p x cost(H™)
* HAM-CYCLE can be solved in polynomial time, contradiction
* A returns a cost < p|V|if G contains an HC; A returns a cost > p|V|, otherwise

| ()
U, y,V, W, X, Uis a ‘\
Hamiltonian Cycle (v) (y)

o

u,y, v, w, X, Uuis atraveling-
salesman tour with cost |V|

Exercise 35.2-2

Show how in polynomial time we can transform one instance of the traveling-salesman problem into
another instance whose cost function satisfies the triangle inequality. The two instances must have
the same set of optimal tours. Explain why such a polynomial-time transformation does not contradict

Theorem 35.3, assuming that P # NP.

TSP wi/o triangle inequality TSP w/ triangle inequality

Exercise 35.2-2

* For example, we can add d__, (the largest cost) to each edge

* G contains a tour of minimum cost k <
G’ contains a tour of minimum cost £ + d,,., x |V|

* G’s satisfies triangle inequality because for all vertices u,v,w € V
d'(u,w) = d(u,w) + dpax < 2 X dpax < d'(u,v) +d' (v, w)

TSP wi/o triangle inequality TSP w/ triangle inequality

Exercise 35.2-2

TSP w/o triangle inequality TSP w/ triangle inequality

cost(H) = 12 @ approximate
cost(H*) =4

cost(H) = 32
Costt((;[{)) <9 cost(H*) =24
COS *

cost(H) <9

cost(H*)

Set Cover

Textbook 35.3 — The set-covering problem

Set Cover

* Optimization problem: Given k subsets {S,, S,, ..., S,}of 1, 2, ..., n, find an
index subset C of {1, 2, ..., k} with minimum |C| s.t. U;c;S; = {1,2,--- ,n}

Set cover is NP-complete.
1) Itisin NP
2) It is NP-hard

Approximate Algorithm

GREEDY-SET-COVER (S)

I =0

C =4

while C # {1, 2, .., n}
select 1 be an index maximizing [|S; - C|
I =1 U {i}
C=C U s,

return I

* GREEDY-SET-COVER

* At each stage, picking the set S that covers the greatest number of remaining elements
that are uncovered

* Running time =7?

‘

‘

5%

o o

2

Algorithm Illustration

).

</

)

\/

\

(%

Approximate Algorithm

Theorem. GREEDY-SET-COVER is a O(logn) -approx. for the set cover problem.

* 3 things to check

* Q1: Does it give a feasible solution?

» A feasible solution output is a collection of subsets whose union is the ground set {1,
2, ..., h}.

* Q2: Does it run in polynomial time?
* Q3: Does it give an approximate solution with p(n) = O(logn)?

O(logn) -Approximation Solution

Prove that p(n) = O(logn). That is, |I| < O(logn) x |I*].
* Let /* denote an optimal set cover. We plan to prove that

1 1 1
|I\§|I*y(—+ + +---+1)

n n—1 n-—2

Total Price

* For brevity, we re-index those subsets s.t. for each i, §; is the i-th set selected
by GREEDY-SET-COVER

* Let C; be the Cright before the elements of §; is inserted into C
1

* If an elementj is inserted into Cin the i-th iteration, the price of j is S,—C;
* The sum of price of all n integers is exactly |I|

Algorithm Illustration

=<
LRy

O,

Bound

* For brevity, we re-index the integers s.t. they are inserted into C according to
the increasing order of these integers

* When j is about to be put into C, there are at least n-j+1 uncovered numbers.
I* is a collection of sets that can cover these n-j+1 numbers. There is an index
t e /*s.t. S, can cover at least 2= uncovered numbers

. I
* We have |S; — Cj| > ”TﬂTl, where j is inserted into C in the i-th iteration.
* The price of jis —t— <

I

|SZ—C@| — n—J+1

O(logn)-Approximation Solution

* The sum of price of all n integers is exactly ||

° . o e II*|
The price of jis at most . ——5

* Therefore, we can prove that

- 1 * % *
1< o I = Hy o1 = Otogm) - |
j=1

3-CNF-SAT

Textbook 35.4 — Randomization and linear programming

Randomized Approximate Algo

 Randomized algorithm’s behavior is determined not only by its input but
also by values produced by a random-number generator

_______ |Fxact _________|Approximate

Deterministic MST APPROX-TSP-TOUR
Randomized Quick Sort MAX-3-CNF-SAT

3-CNF-SAT Problem

* Decision problem: Satisfiability of Boolean formulas in 3-conjunctive normal
form (3-CNF)

(331 V —xq V _|332) A (333 V xo V 334) N\ (_Iilﬁl V —x3 V _1334)

* 3-CNF = AND of clauses, each of which is the OR of exactly 3 distinct literals
* Aliteral is an occurrence of a variable or its negation, e.g., x; or -x;

r1 = 0,29 = 0,23 = 1,24 = 1 > satisfiable

MAX-3-CNF-SAT

e Optimization problem: find an assignment of the variables that satisfies as
many clauses as possible

* Closeness to optimum is measured by the fraction of satisfied clauses

— (1 Vx1 Vo) A (23 Vo Vag) A(—xy V oz V —xy)

r1 =0,20 =0,z3 =1,24 =1 satisfies 3 clauses
x1=1,29 =0,23 =1,24 =1 satisfies 2 clauses

This clause is always satisfied.
For simplicity, we assume no clause containing both literal and its negation.

Randomized Approximation Algo

 Randomly set each literal to be 0 or 1 (=1)
* Then...
* End

Theorem 35.6. Given an instance of MAX-3-CNF-SAT with n variables x4, X,, ..., X,
and m clauses, the randomized algorithm that independently sets each variable to 1
with probability 1/2 and to O with probability 1/2 is a randomized 8/7-approximation
algorithm

Randomized Approximation Algo

Theorem 35.6. Given an instance of MAX-3-CNF-SAT with n variables x,, X,, ..., X, and m

clauses, the randomized algorithm that independently sets each variable to 1 with probability 1/2 and
to O with probability 1/2 is a randomized 8/7-approximation algorithm

e Proof (satisfying 8/7 of clauses in expectation)

* Each clause is the OR of exactly 3 distinct literals

Prlz; =0 = Prjz; =1]=1/2
— Va1 # 29 # 23, Pr{(x1 Voo Vr3) =0/ =1/8
— E[# of satisfied clauses| = m x E|clause j is satisfied]
>m x (1 —1/8) = Tm/8
max # of satisfied clauses
E[# of satisfied clauses]

— p(n) = = 8/7

Concluding Remarks

* Most practical optimization problems are NP-hard
* |tis widely believed that P # NP

* Thus, polynomial-time algorithms are unlikely, and we must sacrifice either optimality,
efficiency, or generality

* Approximation algorithms sacrifice optimality, return near-optimal answers

max (.) < p(n)
&

Maximization problem: C* /C' < p(n)
Maximization problem: C'/C™* < p(n)

Question?

Important announcement will be sent to
@ntu.edu.tw mailbox & post to the course website

Course Website: http://ada.miulab.tw
Email: ada-ta@csie.ntu.edu.tw

AN
000“%

