
Algorithm Design and Analysis
NP Completeness (2)

Yun-Nung (Vivian) Chen

http://ada.miulab.tw

Outline

• Polynomial-Time Reduction

• Polynomial-Time Verification

• Proving NP-Completeness
• 3-CNF-SAT

• Clique

• Vertex Cover

• Independent Set

• Traveling Salesman Problem

2

P, NP, NP-Complete, NP-Hard

• P ≠ NP

3

C
o

m
p

le
x
it
y

(4)

(3)

(2)

(1)

Non-Deterministic Problem Solving

4

initial

configuration

correct answer

Non-Deterministic Polynomial

5

polynomial

“solved” in non-deterministic polynomial time

= “verified” in polynomial time

Polynomial-Time Reduction

6

Textbook Chapter 34.3 – NP-completeness and reducibility

First NP-Complete Problem –
SAT (Satisfiability)

• Input: a Boolean formula with variables

• Output: whether there is a truth assignment for the variables that satisfies
the input Boolean formula

7

• Stephan A. Cook [FOCS 1971] proved that
▪ SAT can be solved in non-deterministic polynomial time → SAT ∈ NP

▪ If SAT can be solved in deterministic polynomial time, then so can any
NP problems → SAT ∈ NP-hard

Reduction

• Problem A can be reduced (in polynomial time) to Problem B
= Problem B can be reduced (in polynomial time) from Problem A

• We can find an algorithm that solves Problem B to help solve Problem A

• If problem B has a polynomial-time algorithm, then so does problem A

• Practice: design a MULTIPLY() function by ADD(), DIVIDE(), and SQUARE()

8

What is the complexity of Algorithm for A?

Algorithm

for B
? ?

Instance 𝛽 of B Answer for 𝛽 Answer for 𝛼Instance 𝛼 of A

Algorithm for A

Reduction

• A reduction is an algorithm for transforming a problem instance into another

• Definition
• Reduction from A to B implies A is not harder than B

• A ≤p B if A can be reduced to B in polynomial time

• Applications
• Designing algorithms: given algorithm for B, we can also solve A

• Classifying problems: establish relative difficulty between A and B

• Proving limits: if A is hard, then so is B

9

Algorithm

to decide B

Reduction

Algorithm

Instance 𝛽 of B Yes
Instance 𝛼 of A

Algorithm to decide A
No

This is why we need it for proving NP-completeness!

Questions

• If A is an NP-hard problem and B can be reduced from A, then B is an NP-
hard problem?

• If A is an NP-complete problem and B can be reduced from A, then B is an
NP-complete problem?

• If A is an NP-complete problem and B can be reduced from A, then B is an
NP-hard problem?

10

Problem Difficulty

• Q: Which one is harder?

• A: They have equal difficulty.

• Proof:
• PARTITION ≤p KNAPSACK

• KNAPSACK ≤p PARTITION

11

KNAPSACK: Given a set

𝑎1, … , 𝑎𝑛 of non-negative

integers, and an integer 𝐾,

decide if there is a subset 𝑃 ⊆
1, 𝑛 such that σ𝑖∈𝑃 𝑎𝑖 = 𝐾.

PARTITION: Given a set of 𝑛
non-negative integers

𝑎1, … , 𝑎𝑛 , decide if there is a

subset 𝑃 ⊆ 1, 𝑛 such that
σ𝑖∈𝑃 𝑎𝑖 = σ𝑖∉𝑃 𝑎𝑖.

Polynomial-time reducible?

Polynomial-time reducible?

Polynomial Time Reduction

• PARTITION ≤p KNAPSACK

• If we can solve KNAPSACK, how can we use that to solve PARTITION?

• KNAPSACK ≤p PARTITION

• If we can solve PARTITION, how can we use that to solve KNAPSACK?

12

KNAPSACK: Given a set

𝑎1, … , 𝑎𝑛 of non-negative

integers, and an integer 𝐾,

decide if there is a subset 𝑃 ⊆
1, 𝑛 such that σ𝑖∈𝑃 𝑎𝑖 = 𝐾.

PARTITION: Given a set of 𝑛
non-negative integers

𝑎1, … , 𝑎𝑛 , decide if there is a

subset 𝑃 ⊆ 1, 𝑛 such that
σ𝑖∈𝑃 𝑎𝑖 = σ𝑖∉𝑃 𝑎𝑖.

Polynomial-time reducible?

Polynomial-time reducible?

PARTITION ≤p KNAPSACK

• If we can solve KNAPSACK, how can we use that to solve PARTITION?

• Polynomial-time reduction
• Set

13

KNAPSACK: Given a set 𝑎1, … , 𝑎𝑛 of

non-negative integers, and an integer

𝐾, decide if there is a subset 𝑃 ⊆ 1, 𝑛
such that σ𝑖∈𝑃 𝑎𝑖 = 𝐾.

PARTITION: Given a set of 𝑛 non-negative

integers 𝑎1, … , 𝑎𝑛 , decide if there is a

subset 𝑃 ⊆ 1, 𝑛 such that σ𝑖∈𝑃 𝑎𝑖 = σ𝑖∉𝑃 𝑎𝑖.

5 6 7 8 5 6 7 8
p-time reduction

PARTITION instance KNAPSACK instance with

PARTITION ≤p KNAPSACK

• If we can solve KNAPSACK, how can we use that to solve PARTITION?

• Polynomial-time reduction
• Set

• Correctness proof: KNAPSACK returns yes if and only if an equal-size partition
exists

14

5 6 7 8 5 6 7 8
p-time reduction

PARTITION instance KNAPSACK instance with

Algorithm to decide

KNAPSACK

P-time

Reduction

Instance 𝛽 of

KNAPSACK

Yes
Instance 𝛼 of

PARTITION

Algorithm to decide PARTITION
No

KNAPSACK ≤p PARTITION

• If we can solve PARTITION, how can we use that to solve KNAPSACK?

• Polynomial-time reduction
• Set

• Add ,

15

5 6 7 8 5 6 7 8
p-time reduction

PARTITION instance

48 52

KNAPSACK instance with

KNAPSACK: Given a set 𝑎1, … , 𝑎𝑛 of

non-negative integers, and an integer

𝐾, decide if there is a subset 𝑃 ⊆ 1, 𝑛
such that σ𝑖∈𝑃 𝑎𝑖 = 𝐾.

PARTITION: Given a set of 𝑛 non-negative

integers 𝑎1, … , 𝑎𝑛 , decide if there is a

subset 𝑃 ⊆ 1, 𝑛 such that σ𝑖∈𝑃 𝑎𝑖 = σ𝑖∉𝑃 𝑎𝑖.

KNAPSACK ≤p PARTITION

• If we can solve PARTITION, how can we use that to solve KNAPSACK?

• Polynomial-time reduction
• Set

• Add ,

• Correctness proof: PARTITION returns yes if and only if there is a subset
𝑃 ⊆ 1, 𝑛 such that σ𝑖∈𝑃 𝑎𝑖 = 𝐾

16

Algorithm to decide

PARTITION

P-time

Reduction

Instance 𝛽 of

PARTITION

Yes
Instance 𝛼 of

KNAPSACK

Algorithm to decide KNAPSACK
No

5 6 7 8 5 6 7 8
p-time reduction

PARTITION instance

48 52

KNAPSACK instance with

KNAPSACK ≤p PARTITION

• Polynomial-time reduction
• Set

• Add ,

• Correctness proof: PARTITION returns yes if and only if there is a subset 𝑃 ⊆
1, 𝑛 such that σ𝑖∈𝑃 𝑎𝑖 = 𝐾
• “if” direction

17

𝑎1 𝑎2 𝑎3 𝑎4 𝑎6𝑎1 𝑎4 𝑎3𝑎5 𝑎2

PARTITION returns yes!

KNAPSACK ≤p PARTITION

• Polynomial-time reduction
• Set

• Add ,

• Correctness proof: PARTITION returns yes if and only if there is a subset 𝑃 ⊆
1, 𝑛 such that σ𝑖∈𝑃 𝑎𝑖 = 𝐾
• “only if” direction

• Because , if PARTITION returns yes, each set has 4𝐻 + 𝐾

• 𝑎1, … , 𝑎𝑛 must be divided into 2𝐻 − 𝐾 and 𝐾

18

𝑎6𝑎2 𝑎3 𝑎4𝑎5 𝑎1 𝑎1 𝑎4 𝑎2 𝑎3

a subset 𝑃 s.t. σ𝑖∈𝑃 𝑎𝑖 = 𝐾

Reduction for Proving Limits

• Definition
• Reduction from A to B implies A is not harder than B

• A ≤p B if A can be reduced to B in polynomial time

• NP-completeness proofs
• Goal: prove that B is NP-hard

• Known: A is NP-complete/NP-hard

• Approach: construct a polynomial-time reduction algorithm to convert 𝛼 to 𝛽

• Correctness: if we can solve B, then A can be solved → A ≤p B

• B is no easier than A → A is NP-hard, so B is NP-hard

19
If the reduction is not p-time, does this argument hold?

Algorithm

to decide B

Reduction

Algorithm

Instance 𝛽 of B Yes
Instance 𝛼 of A

Algorithm to decide A
No

Proving NP-Completeness

20

Formal Language Framework

• Focus on decision problems

• A language L over σ is any set of strings made up of symbols from σ

• Every language L over σ is a subset of σ∗

• An algorithm A accepts a string if

• The language accepted by an algorithm A is the set of strings

• An algorithm A rejects a string x if

21

The formal-language framework allows us to express concisely the relation

between decision problems and algorithms that solve them.

Proving NP-Completeness

• NP-Complete (NPC): class of decision problems in both NP and NP-hard

• In other words, a decision problem L is NP-complete if

1.L ∈ NP

2.L ∈ NP-hard (that is, L’ ≤p L for every L’ ∈ NP)

22

L1

L2

L3

:

L

≤p

all NP problems

How to prove L is NP-hard ?

L1

L2

L3

:

≤p

all NP problems

L

known

NPC

problem

≤p

held by

definition
Goal: prove polynomial-

time reduction

Polynomial-Time Reducible

• If are languages s.t. , then L2 ∈ P implies L1 ∈ P.

23

A2

Transform

function f

𝑓 𝑥𝑥

A1

P v.s. NP

• If one proves that SAT can be solved by a polynomial-time
algorithm, then NP = P.

• If somebody proves that SAT cannot be solved by any polynomial-
time algorithm, then NP ≠ P.

24

Circuit Satisfiability Problem

• Given a Boolean combinational circuit composed of AND, OR, and NOT gates,
is it satisfiable?

• Satisfiable: there exists an assignment s.t. outputs = 1

25

Satisfiable Unsatisfiable

CIRCUIT-SAT

• CIRCUIT-SAT can be solved in non-deterministic polynomial time

→ ∈ NP

• If CIRCUIT-SAT can be solved in deterministic polynomial time, then so can
any NP problems

→ ∈ NP-hard

• (proof in textbook 34.3)

• CIRCUIT-SAT is NP-complete

26

CIRCUIT-SAT = {<C>: C is a satisfiable Boolean combinational circuit}

Karp’s NP-Complete Problems

1. CNF-SAT
2. 0-1 INTEGER PROGRAMMING
3. CLIQUE
4. SET PACKING
5. VERTEX COVER
6. SET COVERING
7. FEEDBACK ARC SET
8. FEEDBACK NODE SET
9. DIRECTED HAMILTONIAN CIRCUIT
10.UNDIRECTED HAMILTONIAN CIRCUIT
11.3-SAT

27

12.CHROMATIC NUMBER
13.CLIQUE COVER
14.EXACT COVER
15.3-dimensional MATCHING
16.STEINER TREE
17.HITTING SET
18.KNAPSACK
19.JOB SEQUENCING
20.PARTITION
21.MAX-CUT

Karp’s NP-Complete Problems

28

Formula Satisfiability Problem (SAT)

• Given a Boolean formula Φ with variables, is there a variable assignment
satisfying Φ

• ∧ (AND), ∨ (OR), ¬ (NOT), → (implication), ↔ (if and only if)

• Satisfiable: Φ is evaluated to 1

29

SAT

• Is SAT ∈ NP-Complete?

• To prove that SAT is NP-Complete, we show that
• SAT ∈ NP

• SAT ∈ NP-hard (CIRCUIT-SAT ≤p SAT)
1) CIRCUIT-SAT is a known NPC problem

2) Construct a reduction f transforming every CIRCUIT-SAT instance to an SAT instance

3) Prove that x ∈ CIRCUIT-SAT iff f(x) ∈ SAT

4) Prove that f is a polynomial time transformation

30

SAT = {Φ | Φ is a Boolean formula with a satisfying assignment }

SAT ∈ NP

• Polynomial-time verification: replaces each variable in the formula with the
corresponding value in the certificate and then evaluates the expression

31

initial

configuration

polynomial

SAT ∈ NP-Hard

1)CIRCUIT-SAT is a known NPC problem

2)Construct a reduction f transforming every CIRCUIT-SAT instance to an SAT
instance
• Assign a variable to each wire in circuit C

• Represent the operation of each gate using a formula, e.g.

• Φ = AND the output variable and the operations of all gates

32

SAT ∈ NP-Hard

• Prove that x ∈ CIRCUIT-SAT ↔ f(x) ∈ SAT
• x ∈ CIRCUIT-SAT → f(x) ∈ SAT

• f(x) ∈ SAT → x ∈ CIRCUIT-SAT

• f is a polynomial time transformation

33

CIRCUIT-SAT ≤p SAT → SAT ∈ NP-hard

Polynomial-Time Verification

34

Chapter 34.1 – Polynomial-time

Chapter 34.2 – Polynomial-time verification

Abstract Problems

• Example of a decision problem, PATH

• I: a set of problem instances

• S: a set of problem solutions

• Q: abstract problem, defined as a binary relation on I and S

35

G1, s1, t1, k1

G2, s2, t2, k2

…

…

…

Q: PATH

Is there a path with the length ≤ k?

I: <G, src, dest, k>

All graphs with arbitrary src,

dest, and the path length k

1 (Yes)

0 (No)

S: {0, 1}

Problem Instance Encoding

• Convert an abstract problem instance into a binary string fed to a computer
program

• A concrete problem is polynomial-time solvable if there exists an algorithm
that solves any concrete instance of length n in time for some constant k

• Solvable = can produce a solution

36

Encoder
Abstract Problem Instance

Binary Strings

(Concrete Problem Instance)

Decision Problem Representation

• I: a set of problem instances

• Q: a decision problem

= a language L over s.t.

37

str1

str2

str3

…

…

Q: decision problemI: a set of problem

instances

1 (Yes)

0 (No)

S: {0, 1}

以答案為1的instances定義decision problem Q (L = {str1, str3} in this example)

some strings represent no

meaningful instances

P in Formal Language Framework

• An algorithm A accepts a string if

• An algorithm A rejects a string if

• An algorithm A accepts a language L if A accepts every string
• If the string is in L, A outputs yes.

• If the string is not in L, A may output no or loop forever.

• An algorithm A decides a language L if A accepts L and A rejects every
string

• For every string, A can output the correct answer.

38

A decision problem Q can be defined as a language L over s.t.

P in Formal Language Framework

• Class P: a class of decision problems solvable in polynomial time

• Given an instance x of a decision problem Q, its solution Q(x) (i.e., YES or NO)
can be found in polynomial time

• An alternative definition of P:

• P is the class of language that can be accepted in polynomial time

39

P = {L ⊆ {0,1}* | there exists an algorithm that decides L in polynomial time}

P = {L | L is accepted by a polynomial algorithm}

Hamiltonian-Cycle Problem

• Problem: find a cycle that visits each vertex exactly once

• Formal language:

• Is this language decidable?

• Is this language decidable in polynomial time?

• Given a certificate – the vertices in order that form a Hamiltonian cycle in G,
how much time does it take to verify that G indeed contains a Hamiltonian
cycle?

40

HAM-CYCLE = {<G> | G has a Hamiltonian cycle}

Yes

Probably not

Verification Algorithm

• Verification algorithms verify memberships in language

41

HAM-CYCLE = {<G> | G has a Hamiltonian cycle}

Verification Algorithm

Is y a Hamiltonian cycle in the

graph (encoded in x)?
Certificate y

YES

x is in HAM-CYCLE

Input x

There exists a certificate for each YES instance

Verification Algorithm

• Verification algorithms verify memberships in language

42

Certificate y

There exists no certificate for NO instance

NO

No conclusion

Input x

??

HAM-CYCLE = {<G> | G has a Hamiltonian cycle}

Verification Algorithm

Is y a Hamiltonian cycle in the

graph (encoded in x)?

Non-Deterministic Polynomial

43

polynomial

“solved” in non-deterministic polynomial time

= “verified” in polynomial time

Polynomial-Time Reducible

• If are languages s.t. , then L2 ∈ P implies L1 ∈ P.

44

A2

Transform

function f

𝑓 𝑥𝑥

A1

Proving NP-Completeness

• NP-Complete (NPC): class of decision problems in both NP and NP-hard

• In other words, a decision problem L is NP-complete if

1.L ∈ NP

2.L ∈ NP-hard (that is, L’ ≤p L for every L’ ∈ NP)

45

L1

L2

L3

:

L

≤p

all NP problems

How to prove L is NP-hard ?

L1

L2

L3

:

≤p

all NP problems

L

known

NPC

problem

≤p

held by

definition
Goal: prove polynomial-

time reduction

Proving NP-Completeness

• L ∈ NPC iff L ∈ NP and L ∈ NP-hard

• Proof of L in NPC:

• Prove L ∈ NP

• Prove L ∈ NP-hard
1) Select a known NPC problem C

2) Construct a reduction f transforming every instance of C to an instance of L

3) Prove that

4) Prove that f is a polynomial time transformation

46

More NP-Complete Problems

• “Computers and Intractability” by Garey and Johnson includes
more than 300 NP-complete problems

• All except SAT are proved by Karp’s polynomial-time reduction

47

Proving NP-Completeness

48

Chapter 34.5 – NP-complete problems

Roadmap for NP-Completeness

• A → B: A ≤p B

49

CIRCUIT-SAT

SAT

3-CNF-SAT

CLIQUE SUBSET-SUM

VERTEX-COVER

HAM-CYCLE

TSP

3-CNF-SAT Problem

• 3-CNF-SAT: Satisfiability of Boolean formulas in 3-conjunctive normal form (3-
CNF)

• 3-CNF = AND of clauses, each of which is the OR of exactly 3 distinct literals

• A literal is an occurrence of a variable or its negation, e.g., x1 or ¬x1

50

→ satisfiable

3-CNF-SAT

• Is 3-CNF-SAT ∈ NP-Complete?

• To prove that 3-CNF-SAT is NP-Complete, we show that
• 3-CNF-SAT ∈ NP

• 3-CNF-SAT ∈ NP-hard (SAT ≤p 3-CNF-SAT)
1) SAT is a known NPC problem

2) Construct a reduction f transforming every SAT instance to an 3-CNF-SAT instance

3) Prove that x ∈ SAT iff f(x) ∈ 3-CNF-SAT

4) Prove that f is a polynomial time transformation

51

3-CNF-SAT = {Φ | Φ is a Boolean formula in 3-conjunctive normal form (3-CNF) with

a satisfying assignment }

We focus on the reduction construction from now on, but remember that a

full proof requires showing that all other conditions are true as well

SAT ≤p 3-CNF-SAT

a) Construct a binary parser tree for an input formula Φ and introduce a
variable yi for the output of each internal node

52

SAT ≤p 3-CNF-SAT

b) Rewrite Φ as the AND of the root variable and clauses describing the
operation of each node

53

SAT ≤p 3-CNF-SAT

c) Convert each clause Φi’ to CNF
• Construct a truth table for each clause Φi’

• Construct the disjunctive normal form for ¬Φi’

• Apply DeMorgan’s Law to get the CNF formula Φi’’

54

𝒚𝟏 𝒚𝟐 𝒚𝟐 Φ1’ ¬Φ1’

1 1 1 0 1

1 1 0 1 0

1 0 1 0 1

1 0 0 0 1

0 1 1 1 0

0 1 0 0 1

0 0 1 1 0

0 0 0 1 0

𝒚𝟏 𝒚𝟐 𝒚𝟐 Φ1’

1 1 1 0

1 1 0 1

1 0 1 0

1 0 0 0

0 1 1 1

0 1 0 0

0 0 1 1

0 0 0 1

SAT ≤p 3-CNF-SAT

d) Construct Φ’’’ in which each clause Ci exactly 3 distinct literals
• 3 distinct literals:

• 2 distinct literals:

• 1 literal only:

• Φ’’’ is satisfiable iff Φ is satisfiable

• All transformation can be done in polynomial time

• → 3-CNF-SAT is NP-Complete

55

Clique Problem

• A clique in G = (V, E) is a complete subgraph of G
• Each pair of vertices in a clique is connected by an edge in E

• Size of a clique = # of vertices it contains

• Optimization problem: find a max clique in G

• Decision problem: is there a clique with size larger than k

56

Does G contain a clique of size 4?

Does G contain a clique of size 5?

Does G contain a clique of size 6?

Yes

Yes

No

CLIQUE ∈ NP-Complete

• Is CLIQUE ∈ NP-Complete?

• Construct a reduction f transforming every 3-CNF-SAT instance to a CLIQUE
instance

• a graph G s.t. Φ with k clauses is satisfiable  G has a clique of size k

57

CLIQUE = {<G, k>: G is a graph containing a clique of size k}

3-CNF-SAT ≤p CLIQUE

≤p

CLIQUE ∈ NP-Complete

• Polynomial-time reduction:

• Let be a Boolean formula in 3-CNF with k clauses, and
each 𝐶𝑟 has exactly 3 distinct literals 𝑙1

𝑟, 𝑙2
𝑟, 𝑙3

𝑟

• For each , introduce a triple of vertices 𝑣1
𝑟, 𝑣2

𝑟, 𝑣3
𝑟 in V

• Build an edge between 𝑣𝑖
𝑟, 𝑣𝑗

𝑠 if both of the following hold:

• 𝑣𝑖
𝑟 and 𝑣𝑗

𝑠 are in different triples

• 𝑙𝑖
𝑟 is not the negation of 𝑙𝑗

𝑠

58

3-CNF-SAT ≤p CLIQUE

• Correctness proof: Φ is satisfiable → G has a clique of size k

• If Φ is satisfiable

• → Each Cr contains at least one 𝑙𝑖
𝑟 = 1 and such literal corresponds to 𝑣𝑖

𝑟

• → Pick a TRUE literal from each Cr forms a set of V’ of k vertices

• → For any two vertices 𝑣𝑖
𝑟 , 𝑣𝑗

𝑠 ∈ 𝑉′(𝑟 ≠ 𝑠), edge (𝑣𝑖
𝑟 , 𝑣𝑗

𝑠) ∈ 𝐸, because 𝑙𝑖
𝑟 =

𝑙𝑗
𝑠 = 1 and they cannot be complements

59

3-CNF-SAT ≤p CLIQUE

• Correctness proof: G has a clique of size k →Φ is satisfiable

• G has a clique V’ of size k

• → V’ contains exactly one vertex per triple since no edges connect vertices in
the same triple

• → Assign 1 to each 𝑙𝑖
𝑟 where 𝑣𝑖

𝑟 ∈ 𝑉′ s.t. each Cr is satisfiable, and so is Φ

60

Vertex Cover Problem

• A vertex cover of G = (V, E) is a subset V’ ⊆ V s.t. if (w, v) ∈ E, then w ∈ V’ or v
∈ V’

• A vertex cover “covers” every edge in G

• Optimization problem: find a minimum size vertex cover in G

• Decision problem: is there a vertex cover with size smaller than k

61

Does G have a vertex cover of size 11?

Does G have a vertex cover of size 7?

Does G have a vertex cover of size 6?

Yes

Yes

No

VERTEX-COVER ∈ NP-Complete

• Is VERTEX-COVER ∈ NP-Complete?

• Construct a reduction f transforming every CLIQUE instance to a VERTEX-
COVER instance (polynomial-time reduction)

• Compute the complement of G

• Given G = <V, E>, Gc is defined as <V, Ec> s.t. Ec = {(u,v) | (u,v) ∉ E}

• a graph G has a clique of size k Gc has a vertex cover of size |V| - k

62

VERTEX-COVER = {<G, k>: G is a graph containing a vertex cover of size k}

CLIQUE ≤p VERTEX-COVER

≤p

CLIQUE ≤p VERTEX-COVER

• Correctness proof:

a graph G has a clique of size k→ Gc has a vertex cover of size |V| - k

• If G has a clique V’ ⊆ V with |V’| = k

• → for all 𝑤, 𝑣 ∈ 𝐸𝑐, at least one of 𝑤 or 𝑣 ∉ 𝑉′

• → 𝑤 ∈ 𝑉 − 𝑉′ or 𝑣 ∈ 𝑉 − 𝑉′ (or both)

• → edge 𝑤, 𝑣 is covered by 𝑉 − 𝑉′

• → 𝑉 − 𝑉′ forms a vertex cover of Gc, and |V - V'| = |V| - k

63

CLIQUE ≤p VERTEX-COVER

• Correctness proof:

Gc has a vertex cover of size |V| - k → a graph G has a clique of size k

• If Gc has a vertex cover V’ ⊆ V with |V’| = |V| - k

• → for all 𝑤, 𝑣 ∈ 𝑉, if 𝑤, 𝑣 ∈ 𝐸𝑐, then 𝑤 ∈ 𝑉′ or 𝑣 ∈ 𝑉′ or both

• → for all 𝑤, 𝑣 ∈ 𝑉, if 𝑤 ∉ 𝑉′ and 𝑣 ∉ 𝑉′, 𝑤, 𝑣 ∈ 𝐸

• → 𝑉 − 𝑉′ is a clique where |V - V'| = k

64

Independent-Set Problem

• An independent set of G = (V, E) is a subset V’ ⊆ V such that G has no edge
between any pair of vertices in V’

• A vertex cover “covers” every edge in G

• Optimization problem: find a maximum size independent set

• Decision problem: is there an independent set with size larger than k

65

Does G have an independent set of size 1?

Does G have an independent set of size 4?

Does G have an independent set of size 5?

IND-SET ∈ NP-Complete

• Is IND-SET ∈ NP-Complete?

• Practice by yourself (textbook problem 34-1)

66

IND-SET = {<G, k>: G is a graph containing an independent set of size k}

CLIQUE, VERTEX-COVER, IND-SET

• The following are equivalent for G = (V, E) and a subset V’ of V:
1) V' is a clique of G

2) V-V' is a vertex cover of Gc

3) V' is an independent set of Gc

67

Traveling Salesman Problem (TSP)

• Optimization problem: Given a set of cities and their pairwise distances, find
a tour of lowest cost that visits each city exactly once.

• Decision problem: is there a traveling salesman tour with cost at most k

68

TSP ∈ NP-Complete

• Is TSP ∈ NP-Complete?

• Construct a reduction f transforming every HAM-CYCLE instance to a TSP
instance (polynomial-time reduction)

• G contains a Hamiltonian cycle h = <v1, v2, …, vn, v1>  <v1, v2, …, vn, v1> is a
traveling-salesman tour with cost 0

69

TSP = {<G, c, k>: G = (V,E) is a complete graph, c is a cost function for edges, G

has a traveling-salesman tour with cost at most k}

HAM-CYCLE ≤p TSP

u

v y

w z

u

v y

w z

≤p

0

1

HAM-CYCLE ≤p TSP

• Correctness proof: x ∈ HAM-CYCLE→ f(x) ∈ TSP

• If Hamiltonian cycle is h = <v1, v2, …, vn, v1>

• → h is also a tour in the transformed TSP instance

• → The distance of the tour h is 0 since there are n consecutive edges in E,
and so has distance 0 in f(x)

• → f(x) ∈ TSP (f(x) has a TSP tour with cost ≤ 0)

70

u

v y

w z

u

v y

w z

≤p

0

1

HAM-CYCLE ≤p TSP

• Correctness proof: f(x) ∈ TSP → x ∈ HAM-CYCLE

• After reduction, if a TSP tour with cost ≤ 0 as <v1, v2, …, vn, v1>

• → The tour contains only edges in E

• → Thus, <v1, v2, …, vn, v1> is a Hamiltonian cycle

71

u

v y

w z

u

v y

w z

≤p

0

1

TSP Challenges

• Mona Lisa TSP: $1,000 Prize for 100,000-city

72

Strategies for NP-Complete/NP-Hard
Problems

• NP-complete/NP-hard problems are unlikely to have polynomial-time
solutions (unless P = NP), we must sacrifice either optimality, efficiency, or
generality

• Approximation algorithms: guarantee to be a fixed percentage away from the
optimum

• Local search: simulated annealing (hill climbing), genetic algorithms, etc

• Heuristics: no formal guarantee of performance

• Randomized algorithms: use a randomizer (random number generator) for operation

• Pseudo-polynomial time algorithms: e.g., DP for 0-1 knapsack

• Exponential algorithms/Branch and Bound/Exhaustive search: feasible only when the
problem size is small

• Restriction: work on some special cases of the original problem. e.g., the maximum
independent set problem in circle graphs

73

74

Concluding Remarks

• Proving NP-Completeness: L ∈ NPC iff L ∈ NP and L ∈ NP-hard

• Polynomial-time verification

• Step-by-step approach for proving L in NPC:
• Prove L ∈ NP

• Prove L ∈ NP-hard

• Select a known NPC problem C

• Construct a reduction f transforming every instance of C to an
instance of L

• Prove that

• Prove that f is a polynomial time transformation L ∈ NP

• Strategies for NP-complete/NP-hard problems

75

P ≠ NP

P = NP

CIRCUIT

-SAT

SAT

3-CNF-

SAT

CLIQUE
SUBSET-

SUM

VERTEX

-COVER

HAM-

CYCLE

TSP

Concluding Remarks

• Proving NP-Completeness: L ∈ NPC iff L ∈ NP and L ∈ NP-hard

• Polynomial-time verification

• Step-by-step approach for proving L in NPC:
• Prove L ∈ NP

• Prove L ∈ NP-hard

1) Select a known NPC problem C

2) Construct a reduction f transforming every instance of C to an instance of L

3) Prove that

4) Prove that f is a polynomial time transformation

• Strategies for NP-complete/NP-hard problems

76

CIRCUIT-SAT

SAT

3-CNF-SAT

CLIQUE
SUBSET-

SUM

VERTEX-

COVER

HAM-CYCLE

TSP

Question?
Important announcement will be sent to
@ntu.edu.tw mailbox & post to the course website

Course Website: http://ada.miulab.tw

Email: ada-ta@csie.ntu.edu.tw

