Algorithm Design and Analysis
NP Completeness (2)

http://ada.miulab.tw
Yun-Nung (Vivian) Chen

Outline

Polynomial-Time Reduction
Polynomial-Time Verification

Proving NP-Completeness
e 3-CNF-SAT

* Clique

* Vertex Cover

* Independent Set

* Traveling Salesman Problem

P, NP, NP-Complete, NP-Hard

*P #NP

Complexity

N
&

Non-Deterministic Problem Solving
< @
C .

initial
configuration

correct answer

Non-Deterministic Polynomial

~<3

) polynomial

<
@

v

“solved” in non-deterministic polynomial time -
= “verified” in polynomial time ’

Polynomial-Time Reduction

Textbook Chapter 34.3 — NP-completeness and reducibility

First NP-Complete Problem —
SAT (Satisfiability)

* Input: a Boolean formula with variables

* Qutput: whether there is a truth assignment for the variables that satisfies
the input Boolean formula

(xVyVz)A(xVyVZzZ)AZTVy)

 Stephan A. Cook [FOCS 1971] proved that
= SAT can be solved in non-deterministic polynomial time = SAT € NP

= |f SAT can be solved in deterministic polynomial time, then so can any
NP problems = SAT € NP-hard

Reduction

* Problem A can be reduced (in polynomial time) to Problem B
= Problem B can be reduced (in polynomial time) from Problem A

* We can find an algorithm that solves Problem B to help solve Problem A

Instance a of A Instance S of B NGl Answer for S Answer for a
> — > ? >
n

* |f problem B has a polynomial-time algorithm, then so does problem A

 Practice: design a MULTIPLY() function by ADD(), DIVIDE(), and SQUARE()

Reduction

* A reduction is an algorithm for transforming a problem instance into another

Instance a of A I =E[ie o)y Instance B of B IR G Yes
Algorithm § to decide B ¥
0

* Definition
e Reduction from A to B implies A is not harder than B

* A< Bif Acan be reduced to B in polynomial time
* Applications
* Designing algorithms: given algorithm for B, we can also solve A

 Classifying problems: establish relative difficulty between A and B
* Proving Iimlts if Ais hard, thensoisB e

__

Questions

* If Ais an NP-hard problem and B can be reduced from A, then B is an NP-
hard problem?

* If Ais an NP-complete problem and B can be reduced from A, then B is an
NP-complete problem?

* If Ais an NP-complete problem and B can be reduced from A, then B is an
NP-hard problem?

Problem Difficulty
* Q: Which one is harder? /\Polynomial—time reducible?

KNAPSACK: Given a set PARTITION: Given a set of n

{aq, ..., a,} of non-negative // non-negative integers

integers, and an integer K, {aq, ...,a,}, decide if there is a
decide if there is a subset P S subset P € [1,n] such that

[1,n] such that };cpa; = K. Qiep Ai = Qigp 4.

U Polynomial-time reducible?

* A: They have equal difficulty.

* Proof:
 PARTITION Sp KNAPSACK
* KNAPSACK Sp PARTITION

Polynomial Time Reduction

/\Polynomial—time reducible?

KNAPSACK: Given a set PARTITION: Given a set of n

{aq, ..., a,} of non-negative // non-negative integers

integers, and an integer K, {aq, ...,a,}, decide if there is a
decide if there is a subset P S subset P € [1,n] such that

[1,n] such that };cpa; = K. Qiep Ai = Qigp 4.

U Polynomial-time reducible?
* PARTITION < KNAPSACK

* |If we can solve KNAPSACK, how can we use that to solve PARTITION?

* KNAPSACK <, PARTITION
* |f we can solve PARTITION, how can we use that to solve KNAPSACK?

PARTITION =) KNAPSACK

£)

suchthat };cpa; = K.

KNAPSACK: Given a set {ay, ..., a,,} of 4
non-negative integers, and an integer
K, decide if there is a subset P € [1,n]

PARTITION: Given a set of n non-negative

integers {a4, ..., a,, }, decide if there is a
subset P € [1,n] such that };cp a; = Yiep a;.

* |f we can solve KNAPSACK, how can we use that to solve PARTITION?
* Polynomial-time reduction

* Set K = %Z?:l a;
S

6

v

p-time reduction

8

PARTITION instance

» |5 |6 | 7|8

KNAPSACK instance with
K =3 x26=13

PARTITION =) KNAPSACK

uSlCE O Petimes S WS ECYHUR Algorithm to decide ves
PARTITION E=EC[TE 6 KNAPSACK KNAPSACK
No

* |f we can solve KNAPSACK, how can we use that to solve PARTITION?

* Polynomial-time reduction

*Set K =23" a p-time reduction
5 6 7 8 > I5) 6N N7 |8

PARTITION instance KNAPSACK instance with
K =3 x26=13

e Correctness proof: KNAPSACK returns yes if and only if an equal-size partition
exists

KNAPSACK s, PARTITION

KNAPSACK: Given a set {aq, ..., a,, } of // PARTITION: Given a set of n non-negative

non-negative integers, and an integer integers {a4, ..., a,, }, decide if there is a
K, decide if there is a subset P € [1,n] subset P € [1,n] such that };cp a; = Xiep a;.

such that };;cp a; = K.
* |f we can solve PARTITION, how can we use that to solve KNAPSACK?

* Polynomial-time reduction
1 n
e Set H = 5 Zi:l %) 8H + 2K

* Add @y 41 = 2H + 2K ,an42 =4H _ _ A
p-time reduction ‘

5| [6]|[7][8 » 5] [e] [7] [e] [48]|52)

KNAPSACK instance with K = 11 PARTITION instance

L

KNAPSACK s, PARTITION

: _ o Y
Instance o Of =R s USIERENOON Algorithm to decide =
KNAPSACK B =G PARTITION PARTITION \
0

* |f we can solve PARTITION, how can we use that to solve KNAPSACK?
* Polynomial-time reduction

_ 1y
cSet H=35) . SH + 2K

* Add ap41 = 2H + 2K ,an42 =4H _ _ A
p-time reduction

|
5| [6]|[7][8 » 5] [e] [7] [e] [48]|52)

KNAPSACK instance with K =11 PARTITION instance
* Correctness proof: PARTITION returns yes if and only if there is a subset @6

P C [1,n]suchthat };cpa; = K

L

16

KNAPSACK s, PARTITION

* Polynomial-time reduction
e Set H = %Z?:l a;
« Adday1 =2H + 2K, anyo =4H
e Correctness proof: PARTITION returns yes if and only if there is a subset P ©
|1,n] suchthat };cpa; = K

o “if” direction

K 4H + K 4H + K
A A A
| ! [! | !
a; | |a, | |as | |aq ‘ a; | |ay . a, | |as .
............ 3 4H
o _ KZH + 2K K

PARTITION returns yes!

KNAPSACK s, PARTITION

* Polynomial-time reduction
. _ 1 .
Set H = 5 2?21 a;
e Adda,,+1 = 2H 4+ 2K, any2 = 4H

e Correctness proof: PARTITION returns yes if and only if there is a subset P ©
|1,n] suchthat };cpa; = K
* “only if” direction
. BecauseZ?;LlQ a; = 8H + 2K, if PARTITION returns yes, each set has 4H + K
* {ay,...,a,} must be divided into 2H — K and K

AH + K 4H + K K
A A A
| ! | ! | !
a2 | |as . a; | |a, - ‘ a; | |ag | |ay | |as
E : 2H—|—2K PR : AH
2Hf— K K asubsetP s.t. };cpa; =K

Reduction for Proving Limits

Instance « of A F=EG[ile) | Instance 8 of B BUNRIS T Yes
Algorithm | to decide B ¥
0

e Definition
* Reduction from A to B implies A is not harder than B
* A< Bif Acan be reduced to B in polynomial time

 NP-completeness proofs
* Goal: prove that B is NP-hard
e Known: A is NP-complete/NP-hard
Approach: construct a polynomial-time reduction algorithm to convert a to
Correctness: if we can solve B, then A can be solved 2 A <, B
B is no easier than A = Ais NP-hard, so B is NP-hard MWD

__

If the reduction is not p-time, does this argument hold?

Proving NP-Completeness

Formal Language Framework

* Focus on decision problems
* Alanguage L over) is any set of strings made up of symbols from)
* Every language L over) is a subset of }.*

S ={e0;1;10;11;101; 111;--- }

The formal-language framework allows us to express concisely the relation
' between decision problems and algorithms that solve them.

* An algorithm A accepts a string € {0,1}* if A(z) = 1

* The language accepted by an algorithm A is the set of strings
L={xe{0,1}*: A(x) = 1}

* An algorithm A rejects a string x if A(x) =0

Proving NP-Completeness

* NP-Complete (NPC): class of decision problems in both NP and NP-hard
* In other words, a decision problem L is NP-complete if

1.L € NP

2.L € NP-hard (thatis, L' < L for every L" € NP)

How to prove L is NP-hard ?

held by Goal: prove polynomial-

definition time reduction
L, sp L, ~.<
L \\ known <
2 L L
L * s NPC
> L - problem

all NP problems all NP problems

Polynomial-Time Reducible

e If L1,Lo C {0,1}* are languages s.t. L1 <, L2, then L2 € P implies L1 € P.

Yes, x € Ly

X Transform
function f

No, = ¢ L

Pv.s. NP

* If one proves that SAT can be solved by a polynomial-time
algorithm, then NP = P.

* If somebody proves that SAT cannot be solved by any polynomial-
time algorithm, then NP z P.

Circuit Satisfiability Problem

* Given a Boolean combinational circuit composed of AND, OR, and NOT gates,
is it satisfiable?

 Satisfiable: there exists an assignment s.t. outputs =1

-
D

Y

s

U}?W
JY VY

oo

Satisfiable Unsatisfiable

CIRCUIT-SAT

CIRCUIT-SAT = {<C>: C is a satisfiable Boolean combinational circuit}

* CIRCUIT-SAT can be solved in non-deterministic polynomial time
- ENP

* If CIRCUIT-SAT can be solved in deterministic polynomial time, then so can
any NP problems

—> € NP-hard
* (proof in textbook 34.3)
* CIRCUIT-SAT is NP-complete

Karp’s NP-Complete Problems

1. CNF-SAT 12.CHROMATIC NUMBER Sy
2. 0-1 INTEGER PROGRAMMING 13.CLIQUE COVER

3. CLIQUE 14 .EXACT COVER

4. SET PACKING 15.3-dimensional MATCHING

5. VERTEX COVER 16.STEINER TREE

6. SET COVERING 17.HITTING SET

/. FEEDBACK ARC SET 18.KNAPSACK

8. FEEDBACK NODE SET 19.JOB SEQUENCING

9. DIRECTED HAMILTONIAN CIRCUIT 20.PARTITION

10.UNDIRECTED HAMILTONIAN CIRCUIT 21.MAX-CUT
11.3-SAT

Karp’s NP-Complete Problems

1 Clique Cowr]

Satisfiability

3-5AT -

Chromatic Number

0-1 Programming]

*] Exact Com}—
=4 Knapsack

i Steiner Tree

—#] Hitting Set]

—ﬂ 3D Matching

Clique

Feedback Node Set]

Panition}—o Max Cut]

lob Sequencing]

S
Set Packing]

-
Node Cover

>

Undirected HCP]

Formula Satisfiability Problem (SAT)

* Given a Boolean formula @ with variables, is there a variable assignment
satisfying @

¢ = ((x1 = x2) V((—x1 ¢ x3) VIy)) A 2o

A (AND), V (OR), = (NOT), = (implication), <> (if and only if)
e Satisfiable: @ is evaluated to 1

r1 =0,20 =0,23 =1, 24 =1

SAT

SAT = {® | ® is a Boolean formula with a satisfying assignment }
* Is SAT € NP-Complete?

* To prove that SAT is NP-Complete, we show that
* SAT € NP

e SAT € NP-hard (CIRCUIT-SAT Sp SAT)

1) CIRCUIT-SAT is a known NPC problem

2) Construct a reduction f transforming every CIRCUIT-SAT instance to an SAT instance
3) Prove that x € CIRCUIT-SAT iff f(x) € SAT

4) Prove that fis a polynomial time transformation

SAT € NP

* Polynomial-time verification: replaces each variable in the formula with the
corresponding value in the certificate and then evaluates the expression

¢ = ((x1 — x2) V((—x1 > 23) Vxy)) Ao

L1 :0,2132 :0,333: 1,:134: 1

initial
configuration

I* polynomial =‘

SAT € NP-Hard

1) CIRCUIT-SAT is a known NPC problem

2) Construct a reduction f transforming every CIRCUIT-SAT instance to an SAT
Instance

* Assign a variable to each wire in circuit C
* Represent the operation of each gate using a formula, e.g.
* O = AND the output variable and the operations of all gates =19 <> (27 A xs A x9)

=

X1

X2

=

o
4\’57
|

X
x3—| >SO—4

SAT € NP-Hard

45:35'10

. D X B X, T

* Prove that x € CIRCUIT-SAT <> f(x) € SAT
« x € CIRCUIT-SAT > f(x) € SAT
« f(x) € SAT = x € CIRCUIT-SAT

A

} A
x (
Do — //:

X . (x7 > (x1 A T2 A 2y))

— :Di A (
A

A

__

* fis a polynomial time transformation | CIRCUIT-SAT <, SAT > SAT € NP-hard

__

Polynomial-Time Verification

Chapter 34.1 — Polynomial-time
Chapter 34.2 — Polynomial-time verification

Abstract Problems

* Example of a decision problem, PATH

* |: a set of problem instances

* S: a set of problem solutions

* Q: abstract problem, defined as a binary relation on | and S

I <G, src, dest, k> Q: PATH

All graphs with arbitrary src, |s there a path with the length < k?
dest, and the path length k

G1,s1, 11, k1
G2, s2, 12, k2

S: {0, 1}

1 (Yes)
0 (No)

Problem Instance Encoding

e Convert an abstract problem instance into a binary string fed to a computer

program
Abstract Problem Instance
Encoder

* A concrete problem is polynomial-time solvable if there exists an algorithm
that solves any concrete instance of length n in time O(n*) for some constant k

Binary Strings
(Concrete Problem Instance)
>

» Solvable = can produce a solution

Decision Problem Representation

|: a set of problem Q: decision problem
instances s: {0, 1}
strl
str2 1 (Yes)
str3 0 (No)

some strings represent no
meaningful instances

* |: a set of problem instances > " = {¢;0;1;10;11;101;111;---}

-+ Q: a decision problem :
| = alanguage L over > ={0,1} s.t. L = {z € {0,1}* : Q(z) = 1}

K

PAZEZE B 1M instancesTE Zxdecision problem Q (L = {str1, str3} in this example)

P in Formal Language Framework

A decision problem Q can be defined as a language L over) = {0,1} s.t.

L={ze{0,1}*: Q(x) =1}

* An algorithm A accepts a stringz € {0,1}* if A(z) =1

* An algorithm A rejects a string « € {0,1}* if A(z) =0

* An algorithm A accepts a language L if A accepts every string = € L
 |f the stringis in L, A outputs yes.

* |f the string is not in L, A may output no or loop forever.

* An algorithm A decides a language L if A accepts L and A rejects every
string * ¢ L

* For every string, A can output the correct answer.

P in Formal Language Framework

* Class P: a class of decision problems solvable in polynomial time

e Given an instance x of a decision problem Q, its solution Q(x) (i.e., YES or NO)
can be found in polynomial time

 An alternative definition of P:

P ={L ={0,1}* | there exists an algorithm that decides L in polynomial time}

* Pis the class of language that can be accepted in polynomial time

P ={L | L is accepted by a polynomial algorithm}

Hamiltonian-Cycle Problem

* Problem: find a cycle that visits each vertex exactly once
* Formal language:

HAM-CYCLE = {<G> | G has a Hamiltonian cycle}

* |s this language decidable? Yes
* |s this language decidable in polynomial time? Probably not

* Given a certificate — the vertices in order that form a Hamiltonian cycle in G,
how much time does it take to verify that G indeed contains a Hamiltonian
cycle?

Verification Algorithm

* Verification algorithms verify memberships in language
HAM-CYCLE = {<G> | G has a Hamiltonian cycle}

Verification Algorithm
Is y a Hamiltonian cycle in the mm) YES

I ?
graph (encoded in x) x is in HAM-CYCLE

Verification Algorithm

* Verification algorithms verify memberships in language
HAM-CYCLE = {<G> | G has a Hamiltonian cycle}

Verification Algorithm
Is y a Hamiltonian cycle in the mp NO

’ graph (encoded in x)?

No conclusion

Non-Deterministic Polynomial

oo

N

h polynomial =‘

Polynomial-Time Reducible

e If L1,Lo C {0,1}* are languages s.t. L1 <, L2, then L2 € P implies L1 € P.

Yes, x € Ly

X Transform

function f

No, = ¢ L

f:
=
S

Proving NP-Completeness

* NP-Complete (NPC): class of decision problems in both NP and NP-hard
* In other words, a decision problem L is NP-complete if

1.L € NP

2.L € NP-hard (thatis, L' < L for every L" € NP)

How to prove L is NP-hard ?

held by Goal: prove polynomial-

definition time reduction
L, sp L, ~.<
L \\ known <
2 L L
L * s NPC
> L - problem

all NP problems all NP problems

Proving NP-Completeness

* L € NPCiff L € NP and L € NP-hard A
* Proof of L in NPC: —

* ProvelL € NP P

* Prove L € NP-hard e .

1) Select a known NPC problem C

2) Construct a reduction f transforming every instance of C to an instance of L
3) Prove that x € C' <—= f(x) € L,Vx € {0,1}*
4) Prove that fis a polynomial time transformation

More NP-Complete Problems

e “Computers and Intractability” by Garey and Johnson includes
more than 300 NP-complete problems

 All except SAT are proved by Karp’s polynomial-time reduction

COMPUTERS AND INTRACTABILITY
A Guide to the Theory of NP-Completeness

Proving NP-Completeness

Chapter 34.5 — NP-complete problems

Roadmap for NP-Completeness

CIRCUIT-SAT

3-CNF-SAT

)

3-CNF-SAT Problem

» 3-CNF-SAT: Satisfiability of Boolean formulas in 3-conjunctive normal form (3-
CNF)

(il?l V —X1 V —Iilﬁg) /\ (393 V I V 334) A\ (—I£U1 V I3 V —I.GU4)

* 3-CNF = AND of clauses, each of which is the OR of exactly 3 distinct literals
* Aliteral is an occurrence of a variable or its negation, e.g., x; or -x;

r1 =0,29 =0,23 = 1,4 = 1 > satisfiable

3-CNF-SAT

3-CNF-SAT = {® | ® is a Boolean formula in 3-conjunctive normal form (3-CNF) with
a satisfying assignment }

* Is 3-CNF-SAT € NP-Complete?

e To prove that 3-CNF-SAT is NP-Complete, we show that
* 3-CNF-SAT € NP

e 3-CNF-SAT € NP-hard (SAT <, 3-CN F-SAT)

1) SAT is a known NPC problem

2) Construct a reduction f transforming every SAT instance to an 3-CNF-SAT instance
3) Prove that x € SAT iff f(x) € 3-CNF-SAT

4) Prove that fis a polynomial time transformation

We focus on the reduction construction from now on, but remember that a
full proof requires showing that all other conditions are true as well

SAT <, 3-CNF-SAT

a) Construct a binary parser tree for an input formula @ and introduce a
variable y; for the output of each internal node

¢ = ((x1 = x2) V((—x1 <> x3) VIy)) A o

SAT <, 3-CNF-SAT

b) Rewrite @ as the AND of the root variable and clauses describing the
operation of each node

SAT <, 3-CNF-SAT

¢ =y1 N(y1 < (y2 A ~22))]
(

c) Convert each clause @, to CNF A
* Construct a truth table for each clause @/ A

* Construct the disjunctive normal form for =@/’ A

* Apply DeMorgan’s Law to get the CNF formula ®,” N

A

<
p—
<
N
<
N
©
|_\\l
d
©
H\l

=) = (Y1 Ay2 Axz2) V (y1 A —ya A x2)
V (yl A =y N _'CCQ) V (_'yl N Yo N —1.682)
¢ = (my1 V —y2 V x2) A (my1 Vo V —xs)
A(=y1 Vya Vo) A(yrV g2 V)

—u(a/\b):—-a\/ﬁb
—u(a\/b):—-a/\ﬁb

PRIk ORP[O OC|F,|O

olo|lo|lOo|R|RP|R |k
o|lo|r|kR|O|lO|R|F
O|lRr|O|lRr|O|FR | O|R
oO|lo|rRr|O|R|FR | O|R

SAT <, 3-CNF-SAT

d) Construct @’ in which each clause C, exactly 3 distinct literals
3 distinct literals: C; =1, Via Vis
e 2 distinct literals: C, =1, v 5

Cf,;:ll\/lzz(ll\/lzvp)/\(ll\/lg\/_lp)
e 1literalonly: ¢, =1

Ci=l=(0IVpVgNIVpVHANIVPV=g) AV -pV—q)

» @’ is satisfiable iff @ is satisfiable
 All transformation can be done in polynomial time
e = 3-CNF-SAT is NP-Complete

Clique Problem

* Acliquein G =(V, E) is a complete subgraph of G
* Each pair of vertices in a clique is connected by an edge in E
 Size of a clique = # of vertices it contains

e Optimization problem: find a max clique in G
* Decision problem: is there a clique with size larger than k

Does G contain a clique of size 4? Yes
Does G contain a clique of size 5?7 Yes

Does G contain a clique of size 67 No

CLIQUE € NP-Complete

CLIQUE = {<G, k>: G Is a graph containing a clique of size k}

* Is CLIQUE € NP-Complete? | cheqiz oiair = et [0]0]=

e Construct a reduction f transforming every 3-CNF-SAT instance to a CLIQUE
Instance

* a graph G s.t. ® with k clauses is satisfiable < G has a clique of size k

C1 = X1V X V 7Xj3

¢ = (.’131 V a9 V —I.’l?g)
A\ (_le V xo V 5133)
AN (331 vV o V ZL’3)

CLIQUE € NP-Complete

e Polynomial-time reduction:

elet o =C1 ACy A---NCgbe aBoolean formula in 3-CNF with k clauses, and

each C, has exactly 3 distinct literals I7, 1, 1
* Foreach C, = (If VI3 V 13), introduce a triple of vertices v{, v}, v3 inV
* Build an edge between v;, v; if both of the following hold:
* v; and v; are in different triples

* [} is not the negation of [;

3-CNF-SAT <, CLIQUE

* Correctness proof: @ is satisfiable = G has a clique of size k

* If @ is satisfiable

* = Each C, contains at least one [; = 1 and such literal corresponds to v;

* = Pick a TRUE literal from each C, forms a set of V’ of k vertices

« = For any two vertices v;,v; € V'(r + s), edge (v{,v;) € E, because] =

1Y i Vj
l]‘-g = 1 and they cannot be complements € = 1y vty i

3-CNF-SAT <, CLIQUE

 Correctness proof: G has a clique of size k 2 @ is satisfiable

* G has aclique V' of size k

* = V'’ contains exactly one vertex per triple since no edges connect vertices in
the same triple

« = Assign 1 to each [; where v] € V's.t. each C.is satisfiable, and so is ®

Vertex Cover Problem

)
* A vertex cover of G=(V, E) isasubset V' € Vs.t.if (w,v) EE, thenw €V’ orv
eV

* A vertex cover “covers” every edge in G
e Optimization problem: find a minimum size vertex cover in G
* Decision problem: is there a vertex cover with size smaller than k

Does G have a vertex cover of size 11? Yes
Does G have a vertex cover of size 7? Yes

Does G have a vertex cover of size 6? No

VERTEX-COVER € NP-Complete

VERTEX-COVER = {<G, k>: G Is a graph containing a vertex cover of size k}

* |s VERTEX-COVER € NP-Complete?

e Construct a reduction f transforming every CLIQUE instance to a VERTEX-
COVER instance (polynomial-time reduction)

* Compute the complement of G
* Given G =<V, E>, Gcis defined as <V, Ec> s.t. Ec={(u,v) | (u,v) & E}

* a graph G has a clique of size k < G_ has a vertex cover of size |V| - k

CLIQUE <, VERTEX-COVER

* Correctness proof:
a graph G has a clique of size k = G_has a vertex cover of size |V| - k
* If G hasacligue V' €V with |V'| =k
« > forall (w,v) € E,, atleastoneof worv ¢ V'
e >WEV -V orveV —V (orboth)
« 2 edge (w,v) is covered by V — V'
« >V — V' forms a vertex cover of G, and |V -V'| = |V]| - k

CLIQUE <, VERTEX-COVER

 Correctness proof:
G_ has a vertex cover of size |V| - k = a graph G has a clique of size k
* If G_ has a vertex cover V' €V with |V’| = |V]| - k
« > forallw,v eV,if (w,v) € E.,thenw € V' or v € V' or both
e >forallw,veV,ifwe&Vandv eV, (w,v) EE
« >V —V'isaclique where |V-V'| =k

Independent-Set Problem

* An independent set of G = (V, E) is a subset V' € V such that G has no edge
between any pair of vertices in V’

* A vertex cover “covers” every edge in G
e Optimization problem: find a maximum size independent set
* Decision problem: is there an independent set with size larger than k

Does G have an independent set of size 17
Does G have an independent set of size 47

Does G have an independent set of size 57?

IND-SET € NP-Complete

IND-SET = {<G, k>: G is a graph containing an independent set of size k}

* |Is IND-SET € NP-Complete?
* Practice by yourself (textbook problem 34-1)

CLIQUE, VERTEX-COVER, IND-SET

* The following are equivalent for G = (V, E) and a subset V’ of V:
1) V'is a cligue of G
2) V-V'is a vertex cover of G,
3) V'is an independent set of G_

Clique Vertex cover Independent set
V'={u,v,x,y}inG V-V={zwinG, V={uvX,y}inG,

Traveling Salesman Problem (TSP)

e Optimization problem: Given a set of cities and their pairwise distances, find
a tour of lowest cost that visits each city exactly once.

* Decision problem: is there a traveling salesman tour with cost at most k

School

Planter's Farm

TSP € NP-Complete

TSP ={<G, c, k>: G = (V,E) Is a complete graph, c is a cost function for edges, G
has a traveling-salesman tour with cost at most k}

* Is TSP € NP-Complete?

e Construct a reduction f transforming every HAM-CYCLE instance to a TSP
instance (polynomial-time reduction)

* G contains a Hamiltonian cycle h=<v,, v,, ..., v, v;> & <v,, V,, ..., V,, V,>is @
traveling-salesman tour with cost 0

HAM-CYCLE <, TSP

 Correctness proof: x € HAM-CYCLE - f(x) € TSP
* If Hamiltonian cycleis h=<v,, v,, ..., v, v,>
e 2 his also a tour in the transformed TSP instance

* = The distance of the tour h is 0 since there are n consecutive edges in E,
and so has distance 0 in f(x)

* = f(x) € TSP (f(x) has a TSP tour with cost < 0)

HAM-CYCLE <, TSP

 Correctness proof: f(x) € TSP 2 x € HAM-CYCLE

* After reduction, if a TSP tour with cost<0as <v,, v,, ..., v
e = The tour contains only edges in E
* 2 Thus, <v,, v,, ..., v, v;> is a Hamiltonian cycle

n’ V1>

TSP Challenges

* Mona Lisa TSP: $1,000 Prize for 100,000-city

.

=

S
S et
e

G
{’7 2 »%%%R}?}

Strategies for NP-Complete/NP-Hard
Problems

* NP-complete/NP-hard problems are unlikely to have polynomial-time
solutions (unless P = NP), we must sacrifice either optimality, efficiency, or
generality

e Approximation algorithms: guarantee to be a fixed percentage away from the
optimum

* Local search: simulated annealing (hill climbing), genetic algorithms, etc

* Heuristics: no formal guarantee of performance

 Randomized algorithms: use a randomizer (random number generator) for operation
* Pseudo-polynomial time algorithms: e.g., DP for 0-1 knapsack

* Exponential algorithms/Branch and Bound/Exhaustive search: feasible only when the
problem size is small

* Restriction: work on some special cases of the original problem. e.g., the maximum
independent set problem in circle graphs

74

A B C D

Ww N KB O

E| (2]

E| (<]

Backtracking depth-first search

with pruning

N queens (n = 4)

n: <= n™’ iterations

g
@ N~ 41

13 infeasible

solutions

gl (2]

N2 (17 scores)

i
pilg
N,
g
pig
fea csi

Concluding Remarks

* Proving NP-Completeness: L € NPCiff L € NP and L € NP-hard
* Polynomial-time verification

{0,1}* / 10,13*

* Step-by-step approach for proving L in NPC: P el
* Prove L € NP T
* Prove L € NP-hard |
* Select a known NPC problem C = ”

* Construct a reduction f transforming every instance of C to an

instance of L CLIQUE
SUM

* Provethat x € C <— f(z) € C,Vx € {0,1}* VERTEX
* Prove that f is a polynomial time transformation L € NP 1

* Strategies for NP-complete/NP-hard problems

Concluding Remarks

* Proving NP-Completeness: L € NPCiff L € NP and L € NP-hard
* Polynomial-time verification
* Step-by-step approach for proving L in NPC:

* Provel € NP

* Prove L € NP-hard
1) Select a known NPC problem C
2) Construct a reduction f transforming every instance of C to an instance of L
3) Prove that
4) Prove that fis a polynomial time transformation

e Strategies for NP—compIete/NP-ﬁa?d%réﬁénﬁfs(w) € L,vz € {0, 1}

Question?

Important announcement will be sent to
@ntu.edu.tw mailbox & post to the course website

Course Website: http://ada.miulab.tw
Email: ada-ta@csie.ntu.edu.tw

