¥

National Taiwan University

Outline @ﬂ ”T)

N

* Decision Problems v.s. Optimization Problems

* Complexity Classes

* Pv.s. NP

* NP, NP-Complete, NP-Hard
* Polynomial-Time Reduction

Algorithm Design & Analysis

* Design Strategy
* Divide-and-Conquer
* Dynamic Programming
* Greedy Algorithms
e Graph Algorithms
* Analysis
 Amortized Analysis
* NP-Completeness

Polynomial Time Algorithms

* For an input with size n, the worst-case running time is O(n"*) for some
constant k

* Problems that are solvable by polynomial-time algorithms as being tractable,
easy, or efficient

* Problems that require superpolynomial time as being intractable, or hard, or
inefficient

Four Color Problem

e Use total four colors s.t. the neighboring parts have different colors

Four Color Problem (after 100 yrs)

* Finally proven (with the help of computers) by Kenneth Appel and Wolfgang
Haken in 1976

* Their algorithm runs in O(n?) time
* First major theorem proved by a computer
* Open problems remain...

* Linear time algorithms to find a solution
* Concise, human-checkable, mathematical proofs

Planar k-Colorability

* Given a planar graph G (e.g., a map), can we color the
vertices with k colors such that no adjacent vertices
have the same color?

ck=17
e k=27
k=37
*k>47

B ow hard s e <3 .a
| Can we know its level of difficulty before solving it? I I

Planar k-Colorability

It turns out that
FOUR will do.

This section shows us that
we certainly need four.

Decision Problems v.s.
Optimization Problems

Decision Problems

 Definition: the answer is simply “yes” or “no” (or “1” or “0”)

* MST: Given a graph G = (V,E) and a bound K, is there a spanning tree
with a cost at most K?

« KNAPSACK: Given a knapsack of capacity C, a set of objects with weights
and values, and a target value V/, is there a way to fill the knapsack with at
least I/ value?

o S

NeS

——y

Optimization Problems

* Definition: each feasible solution has an associated value, and we
wish to find a feasible solution with the best value (maximum or
minimum)

* MST-OPT: Given a graph G = (V, E), find the minimum spanning tree of G

 KNAPSACK-OPT: Given a knapsack of capacity C and a set of objects with
weights and values, fill the knapsack so as to maximize the total value

Which is Easier? Why?

e \ S
. Imposing a (lower or upper) bound on the =~ %

value to be optimized

Difficulty Levels

* Every optimization problem has a decision version that is no harder than the
optimization problem.

Aopt: given a graph, find the A .. given a graph, determine

length of the shortest path whether there is a path <k

- mmp Using A, to solve Ay,
* check if the optimal value <k, constant overhead

* 4m Using A, tosolve A
* apply binary search on the value range, logarithmic overhead

NP-Hard

Pv.s. NP

Textbook Chapter 34 — NP-Completeness

Algorithm Design

* Algorithmic design methods to solve problems efficiently
(polynomial time)

* Divide and conquer
* Dynamic programming
* Greedy
* “Hard” problems without known efficient algorithms
 Hamilton, knapsack, etc.

Complexity Classes

e Can we decide whether a problem is “too hard to solve” before investing our
time in solving it?

* |dea: decide which complexity classes the problem belongs to via reduction

- BHIEIEARSE - SEcR A EBE VD IRA—1%%E - I EF BB RS -

To Solve v.s. Not to Solve

* Algorithm design * Complexity theory
* Design algorithms to solve Classify problems based on their
computational problems difficulty and identify relationships
 Mostly concerned with upper bounds between classes

onh resources * Mostly concerned with lower bounds
on resources

Problem B

............................... lower bound

4

Problem B is no easier than A

Problem

Complexity Classes

* A complexity class is “a set of problems of related resource-based
complexity”

* Resource =time, memory, communication, ...
* Focus: decision problems and the resource of time

* The class P consists of all the problems that can be solved in polynomial time.
* Sorting
e Exact string matching
* Primes

* Polynomial time algorithm

* For inputs of size n, their worst-case running time is O(?’Lk) for some
constant k

* NP consists of the problems that can be solved in non-deterministically
polynomial time.

* NP consists of the problems that can be “verified” in polynomial time.

* P consists of the problems that can be solved in (deterministically)
polynomial time.

Deterministic Algorithm

O — — —®

.

Non-Deterministic Algorithm

Lo e

&

» O—
Initial
configuration

Non-Deterministic Bubble Sort

Non-Deterministic—-Bubble-Sort (n)
for 1 = 1 ton
for 3 =1 ton - 1
if A[j] < A[i+1] then
Either exchange A[j] and A[i+l] or do nothing

Vertex Cover Problem (i%)ER1%E)

* Input: a graph G
e Qutput: a smallest vertex subset of G that covers all edges of G.
* Known to be NP-complete

lllustration

Vertex Cover (Decision Version)

* Input: a Graph G and an integer k.
e Qutput: Does G contain a vertex cover of size no more than k?

* Original problem = optimization problem
- RENBERBEEZE L NIBENG A
* Yes/No = decision problem

- Blk=EED A RREELE

Non-Deterministic Algorithm

Non-Deterministic-Vertex-Cover (G, k)
set S = {}
for each vertex x of G
non-deterministically insert x to S
if |S| > k
output no
if S is not a vertex cover
output no
output yes

Algorithm Correctness

Non-Deterministic-Vertex-Cover (G, k)
set S = {}
for each vertex x of G
non-deterministically insert x to S
if |S| > k
output no
if S is not a vertex cover
output no
output yes

* If the correct answer is yes, then there is a computation path of the
algorithm that leads to yes.

« 2 DBF—IREBEEHY
* If the correct answer is no, then all computation paths of the algorithm lead
to no.

S —IREE 2R

Non-Deterministic Problem Solving
< @
C

Initial
configuration
correct

answer

Non-Deterministic Polynomial

@—

“solved” in non-deterministic polynomial time
.= "“verified” in polynomial time '

P € NP or NP € P?

*PC NP

* A problem solvable in polynomial time is verifiable in polynomial time as well

* Any NP problem can be solved in (deterministically) exponential time?

* Yes
Why?

* Any NP problem can be solved in (deterministically) polynomial time?
* Open problem

US$1.000,000 Per Problem

* http://www.claymath.org/millennium-problems

Springer Vis eoMATH
Michael Atiyah

The Millenninpm — The lmporfance The Millenminmn ~— CMI Millenminimn
Prize Problemns of Maf‘zcmaha Prize Problenns 1‘1«1‘{0\9

Mo, | i

" ie)

A Flm

A Lecture b,
L Framgod tseyre

Michae! Afmaly

TM, Gowers

Millennium Problems

* Yang—Muills and Mass Gap <A
e Riemann Hypothesis %
* P vs NP Problem =
* Navier—Stokes Equation

* Hodge Conjecture

* Poincaré Conjecture (solved by Grigori Perelman)
* Birch and Swinnerton-Dyer Conjecture

- —

Grigori Perelman
Fields Medal (2006), declined
Millennium Prize (2010), declined

Vinay Deolalikar

* Aug 2010 claimed a proof of P is not equal to NP.

If P =NP

* problems that are verifiable =2 * public-key cryptography will
solvable be broken

“If P = NP, then the world would be a profoundly different place than we
usually assume it to be. There would be no special value Iin “creative
leaps,” no fundamental gap between solving a problem and recognizing
the solution once it's found. Everyone who could appreciate a symphony
would be Mozart; everyone who could follow a step-by-step argument
would be Gauss...” — Scott Aaronson, MIT

Widespread belief in P # NP

A movie about P = NP
Best Feature Film in Silicon Valley Film Festival 2012

NP, NP-Complete, NP-Hard

NP-Hardness

e A problem is NP-hard if it is as least as hard as all NP problem:s.

* In other words, a problem X is NP-hard if the following condition holds:

* If X can be solved in (deterministic) polynomial time, then all NP problems can be
solved in (deterministic) polynomial time.

NP-Completeness (NPC)

* A problem is NP-complete if
* it is NP-hard and
* jtisin NP.
* In other words, an NP-complete problem is one of the “hardest” problems
in the class NP.

* In other words, an NP-complete problem is a hardness representative
problem of the class NP.

* Hardest in NP = solving one NPC can solve all NP problems (“complete”)

* It is wildly believed that NPC problems have no polynomial-time solution
— good reference point to judge whether a problem is in P
* We can decide if a problem is “too hard to solve” by showing it is as hard as an NPC problem
* We then focus on designing approximate algorithms or solving special cases

Complexity Classes

* Class P: class of problems that can be solved in O(n*)

 Class NP: class of problems that can be verified in O(nk)

* Class NP-hard: class of problems that are “at least as hard as all NP problems”
* Class NP-complete: class of problems in both NP and NP-hard

P=NP=
NP-Complete

More Complexity Classes

recognizable

decidable

undecidable: no algorithm; e.g.

halting problem
EXPSPACE

EXPTIME
PSPACE=NPSPACE

THE RALTING PROBLEM

An Undecidable Problem —
Halting Problem

* Halting problem is to determine whether a program p halts on input x

* Proof for undecidable via a counterexample
* Suppose h can determine whether a program p halts on input x
* h(p,x) =return (p halts on input x)
e Define g(p) = if h(p,p) is O then return 0 else HANG
« 2 g(g) =if h(g,g) is 0 then return 0 else HANG
* Both cases contradict the assumption:
1.g halts on g: then h(g,g)=1, which would make g(g) hang
2.g does not halt on g: then h(g,g)=0, which would make g(g) halt

, . Toops :»ﬂ: -

Complexity Classes
* Which oneis in P?

Shortest Simple Path Longest Simple Path

Euler Tour Hamitonian Cycle

LCS with 2 Input Sequences LCS with Arbitrary Input Sequences

Degree-Constrained Spanning Tree Minimal Spanning Tree

Candy Crush i1s NP-Hard

Bejeweled, Candy Crush and other match-three games are (NP-)Hard!

What is this all about?

This is an implementation of the reduction provided in the paper Bejeweled,_Candy Crush and other Match-Three Games are (NP)-
Hard which has been accepted for presentation at the 2074 JEEE Conference on Computational Intelligence and Games (CIG 2014).
To find more about what NP-Hard means you can read this blog post or the corresponding page on Wikipedia.

About the authors

We are an Italian group of three people: Luciano Guala, Stefano Leucci, and Emanuele Natale. We had the weird idea to spend our
weekends proving that Candy Crush Saga is NP-Hard. We also thought that it was nice to put online an implementation of our
hardness reduction... so here it is!

Rules

Swap two adjacent gems in order to match three or more gems of the same kind. The matched gems will pop, and the gems above will fall. It is possibile to have chains of
pops.

For a complete understanding of what's going on please read the paper on ArXiv.
In a nutshell (for those "tl;dr" folks): you can swap one or two gems on each choice wire from the top one to the bottom one, then you have to traverse the goal wire to
reach the goal gem. Popping a wire means setting the corresponing variable to true.

Sudoku i1s NPC

Minesweeper Consistency Is NPC

* Minesweeper Consistency: Given a state of what purports to be a
Minesweeper games, is it logically consistent?

BELG) BLBAE) = 1 % } : K BT 1| ﬂ

R iy :11 1:| 1 1 e R W

lli)
N
W

[N | e
Lad | | e |)

M|

Polynomial-Time Reduction

Textbook Chapter 34.3 — NP-completeness and reducibility

First NP-Complete Problem —
SAT (Satisfiability)

* Input: a Boolean formula with variables

* Qutput: whether there is a truth assignment for the variables that satisfies
the input Boolean formula

(xVyVz)A(xVyVZzZ)AZTVy)

 Stephan A. Cook [FOCS 1971] proved that
= SAT can be solved in non-deterministic polynomial time = SAT € NP

= |f SAT can be solved in deterministic polynomial time, then so can any
NP problems = SAT € NP-hard

Reduction

* Problem A can be reduced (in polynomial time) to Problem B
= Problem B can be reduced (in polynomial time) from Problem A

* We can find an algorithm that solves Problem B to help solve Problem A

Instance a of A Instance S of B NGl Answer for S Answer for a
> — > ? >
n

* |f problem B has a polynomial-time algorithm, then so does problem A

 Practice: design a MULTIPLY() function by ADD(), DIVIDE(), and SQUARE()

Reduction

* A reduction is an algorithm for transforming a problem instance into another

Instance a of A I =E[ie o)y Instance B of B IR G Yes
Algorithm § to decide B ¥
0

* Definition
e Reduction from A to B implies A is not harder than B

* A< Bif Acan be reduced to B in polynomial time
* Applications
* Designing algorithms: given algorithm for B, we can also solve A

 Classifying problems: establish relative difficulty between A and B
* Proving Iimlts if Ais hard, thensoisB e

__

Questions

* If Ais an NP-hard problem and B can be reduced from A, then B is an NP-
hard problem?

* If Ais an NP-complete problem and B can be reduced from A, then B is an
NP-complete problem?

* If Ais an NP-complete problem and B can be reduced from A, then B is an
NP-hard problem?

Problem Difficulty
* Q: Which one is harder? /\Polynomial—time reducible?

KNAPSACK: Given a set PARTITION: Given a set of n

{aq, ..., a,} of non-negative // non-negative integers

integers, and an integer K, {aq, ...,a,}, decide if there is a
decide if there is a subset P S subset P € [1,n] such that

[1,n] such that };cpa; = K. Qiep Ai = Qigp 4.

U Polynomial-time reducible?

* A: They have equal difficulty.

* Proof:
 PARTITION Sp KNAPSACK
* KNAPSACK Sp PARTITION

Polynomial Time Reduction

/\Polynomial—time reducible?

KNAPSACK: Given a set PARTITION: Given a set of n

{aq, ..., a,} of non-negative // non-negative integers

integers, and an integer K, {aq, ...,a,}, decide if there is a
decide if there is a subset P S subset P € [1,n] such that

[1,n] such that };cpa; = K. Qiep Ai = Qigp 4.

U Polynomial-time reducible?
* PARTITION < KNAPSACK

* |If we can solve KNAPSACK, how can we use that to solve PARTITION?

* KNAPSACK <, PARTITION
* |f we can solve PARTITION, how can we use that to solve KNAPSACK?

PARTITION =) KNAPSACK

£)

suchthat };cpa; = K.

KNAPSACK: Given a set {ay, ..., a,,} of 4
non-negative integers, and an integer
K, decide if there is a subset P € [1,n]

PARTITION: Given a set of n non-negative

integers {a4, ..., a,, }, decide if there is a
subset P € [1,n] such that };cp a; = Yiep a;.

* |f we can solve KNAPSACK, how can we use that to solve PARTITION?
* Polynomial-time reduction

* Set K = %Z?:l a;
S

6

v

p-time reduction

8

PARTITION instance

» |5 |6 | 7|8

KNAPSACK instance with
K =3 x26=13

PARTITION =) KNAPSACK

uSlCE O Petimes S WS ECYHUR Algorithm to decide ves
PARTITION E=EC[TE 6 KNAPSACK KNAPSACK
No

* |f we can solve KNAPSACK, how can we use that to solve PARTITION?

* Polynomial-time reduction

*Set K =23" a p-time reduction
5 6 7 8 > I5) 6N N7 |8

PARTITION instance KNAPSACK instance with
K =3 x26=13

e Correctness proof: KNAPSACK returns yes if and only if an equal-size partition
exists

KNAPSACK s, PARTITION

KNAPSACK: Given a set {aq, ..., a,, } of // PARTITION: Given a set of n non-negative

non-negative integers, and an integer integers {a4, ..., a,, }, decide if there is a
K, decide if there is a subset P € [1,n] subset P € [1,n] such that };cp a; = Xiep a;.

such that };;cp a; = K.
* |f we can solve PARTITION, how can we use that to solve KNAPSACK?

* Polynomial-time reduction
1 n
e Set H = 5 Zi:l %) 8H + 2K

* Add @y 41 = 2H + 2K ,an42 =4H _ _ A
p-time reduction ‘

5| [6]|[7][8 » 5] [e] [7] [e] [48]|52)

KNAPSACK instance with K = 11 PARTITION instance

L

KNAPSACK s, PARTITION

: _ o Y
Instance o Of =R s USIERENOON Algorithm to decide =
KNAPSACK B =G PARTITION PARTITION \
0

* |f we can solve PARTITION, how can we use that to solve KNAPSACK?
* Polynomial-time reduction

_ 1y
cSet H=35) . SH + 2K

* Add ap41 = 2H + 2K ,an42 =4H _ _ A
p-time reduction

|
5| [6]|[7][8 » 5] [e] [7] [e] [48]|52)

KNAPSACK instance with K =11 PARTITION instance
* Correctness proof: PARTITION returns yes if and only if there is a subset @6

P C [1,n]suchthat };cpa; = K

L

58

KNAPSACK s, PARTITION

* Polynomial-time reduction
e Set H = %Z?:l a;
« Adday1 =2H + 2K, anyo =4H
e Correctness proof: PARTITION returns yes if and only if there is a subset P ©
|1,n] suchthat };cpa; = K

o “if” direction

K 4H + K 4H + K
A A A
| ! [! | !
a; | |a, | |as | |aq ‘ a; | |ay . a, | |as .
............ 3 4H
o _ KZH + 2K K

PARTITION returns yes!

KNAPSACK s, PARTITION

* Polynomial-time reduction
. _ 1 .
Set H = 5 2?21 a;
e Adda,,+1 = 2H 4+ 2K, any2 = 4H

e Correctness proof: PARTITION returns yes if and only if there is a subset P ©
|1,n] suchthat };cpa; = K
* “only if” direction
. BecauseZ?;LlQ a; = 8H + 2K, if PARTITION returns yes, each set has 4H + K
* {ay,...,a,} must be divided into 2H — K and K

AH + K 4H + K K
A A A
| ! | ! | !
a2 | |as . a; | |a, - ‘ a; | |ag | |ay | |as
E : 2H—|—2K e : AH
2Hf— K K asubsetP s.t. };cpa; =K

Reduction for Proving Limits

Instance « of A F=EG[ile) | Instance 8 of B BUNRIS T Yes
Algorithm | to decide B ¥
0

e Definition
* Reduction from A to B implies A is not harder than B
* A< Bif Acan be reduced to B in polynomial time

 NP-completeness proofs
* Goal: prove that B is NP-hard
e Known: A is NP-complete/NP-hard
Approach: construct a polynomial-time reduction algorithm to convert a to
Correctness: if we can solve B, then A can be solved 2 A <, B
B is no easier than A = Ais NP-hard, so B is NP-hard MWD

__

If the reduction is not p-time, does this argument hold?

Proving NP-Completeness

Formal Language Framework

* Focus on decision problems
* Alanguage L over) is any set of strings made up of symbols from)
* Every language L over) is a subset of }.*

S ={e0;1;10;11;101; 111;--- }

The formal-language framework allows us to express concisely the relation
' between decision problems and algorithms that solve them.

* An algorithm A accepts a string € {0,1}* if A(z) = 1

* The language accepted by an algorithm A is the set of strings
L={xe{0,1}*: A(x) = 1}

* An algorithm A rejects a string x if A(x) =0

Proving NP-Completeness

* NP-Complete (NPC): class of decision problems in both NP and NP-hard
* In other words, a decision problem L is NP-complete if

1.L € NP

2.L € NP-hard (thatis, L' < L for every L" € NP)

How to prove L is NP-hard ?

held by Goal: prove polynomial-

definition time reduction
L, sp L, ~.<
L \\ known <
2 L L
L * s NPC
> L - problem

all NP problems all NP problems

Polynomial-Time Reducible

e If L1,Lo C {0,1}* are languages s.t. L1 <, L2, then L2 € P implies L1 € P.

Yes, x € Ly

X Transform
function f

No, = ¢ L

Pv.s. NP

* If one proves that SAT can be solved by a polynomial-time
algorithm, then NP = P.

* If somebody proves that SAT cannot be solved by any polynomial-
time algorithm, then NP z P.

Circuit Satisfiability Problem

* Given a Boolean combinational circuit composed of AND, OR, and NOT gates,
is it satisfiable?

 Satisfiable: there exists an assignment s.t. outputs =1

-
D

Y

s

U}?W
JY VY

oo

Satisfiable Unsatisfiable

CIRCUIT-SAT

CIRCUIT-SAT = {<C>: C is a satisfiable Boolean combinational circuit}

* CIRCUIT-SAT can be solved in non-deterministic polynomial time
- ENP

* If CIRCUIT-SAT can be solved in deterministic polynomial time, then so can
any NP problems

—> € NP-hard
* (proof in textbook 34.3)
* CIRCUIT-SAT is NP-complete

Karp’s NP-Complete Problems

1. CNF-SAT 12.CHROMATIC NUMBER Sy
2. 0-1 INTEGER PROGRAMMING 13.CLIQUE COVER

3. CLIQUE 14 .EXACT COVER

4. SET PACKING 15.3-dimensional MATCHING

5. VERTEX COVER 16.STEINER TREE

6. SET COVERING 17.HITTING SET

/. FEEDBACK ARC SET 18.KNAPSACK

8. FEEDBACK NODE SET 19.JOB SEQUENCING

9. DIRECTED HAMILTONIAN CIRCUIT 20.PARTITION

10.UNDIRECTED HAMILTONIAN CIRCUIT 21.MAX-CUT
11.3-SAT

Karp’s NP-Complete Problems

1 Clique Cowr]

Satisfiability

3-5AT -

Chromatic Number

0-1 Programming]

*] Exact Com}—
=4 Knapsack

i Steiner Tree

—#] Hitting Set]

—ﬂ 3D Matching

Clique

Feedback Node Set]

Panition}—o Max Cut]

lob Sequencing]

S
Set Packing]

-
Node Cover

>

Undirected HCP]

Formula Satisfiability Problem (SAT)

* Given a Boolean formula @ with variables, is there a variable assignment
satisfying @

¢ = ((x1 = x2) V((—x1 ¢ x3) VIy)) A 2o

A (AND), V (OR), = (NOT), = (implication), <> (if and only if)
e Satisfiable: @ is evaluated to 1

r1 =0,20 =0,23 =1, 24 =1

SAT

SAT = {® | ® is a Boolean formula with a satisfying assignment }
* Is SAT € NP-Complete?

* To prove that SAT is NP-Complete, we show that
* SAT € NP

e SAT € NP-hard (CIRCUIT-SAT Sp SAT)

1) CIRCUIT-SAT is a known NPC problem

2) Construct a reduction f transforming every CIRCUIT-SAT instance to an SAT instance
3) Prove that x € CIRCUIT-SAT iff f(x) € SAT

4) Prove that fis a polynomial time transformation

SAT € NP

* Polynomial-time verification: replaces each variable in the formula with the
corresponding value in the certificate and then evaluates the expression

¢ = ((x1 — x2) V((—x1 > 23) Vxy)) Ao

L1 :0,2132 :0,333: 1,:134: 1

initial
configuration

I* polynomial =‘

SAT € NP-Hard

1) CIRCUIT-SAT is a known NPC problem

2) Construct a reduction f transforming every CIRCUIT-SAT instance to an SAT
Instance

* Assign a variable to each wire in circuit C
* Represent the operation of each gate using a formula, e.g.
* O = AND the output variable and the operations of all gates =19 <> (27 A xs A x9)

=

X1

X2

=

o
4\’57
|

X
x3—| >SO—4

SAT € NP-Hard

45:35'10

. D X B X, T

* Prove that x € CIRCUIT-SAT <> f(x) € SAT
« x € CIRCUIT-SAT > f(x) € SAT
« f(x) € SAT = x € CIRCUIT-SAT

A

} A
x (
Do — //:

X . (x7 > (x1 A T2 A 2y))

— :Di A (
A

A

__

* fis a polynomial time transformation | CIRCUIT-SAT <, SAT > SAT € NP-hard

__

3-CNF-SAT Problem

» 3-CNF-SAT: Satisfiability of Boolean formulas in 3-conjunctive normal form (3-
CNF)

(il?l V —X1 V —Iilﬁg) /\ (393 V I V 334) A\ (—IZIJ1 V I3 V —I.CU4)

* 3-CNF = AND of clauses, each of which is the OR of exactly 3 distinct literals
* Aliteral is an occurrence of a variable or its negation, e.g., x; or -x;

r1 =0,29 =0,23 = 1,4 = 1 > satisfiable

3-CNF-SAT

3-CNF-SAT = {® | ® is a Boolean formula in 3-conjunctive normal form (3-CNF) with
a satisfying assignment }

* Is 3-CNF-SAT € NP-Complete?

e To prove that 3-CNF-SAT is NP-Complete, we show that
* 3-CNF-SAT € NP

e 3-CNF-SAT € NP-hard (SAT <, 3-CN F-SAT)

1) SAT is a known NPC problem

2) Construct a reduction f transforming every SAT instance to an 3-CNF-SAT instance
3) Prove that x € SAT iff f(x) € 3-CNF-SAT

4) Prove that fis a polynomial time transformation

We focus on the reduction construction from now on, but remember that a
full proof requires showing that all other conditions are true as well

SAT <, 3-CNF-SAT

a)Construct a binary parser tree for an input formula ® and introduce a
variable y; for the output of each internal node

¢ = ((x1 = x2) V((—x1 <> x3) VIy)) A o

SAT <, 3-CNF-SAT

b)Rewrite @ as the AND of the root variable and clauses describing the
operation of each node

SAT <, 3-CNF-SAT

¢ =y1 N(y1 < (y2 A ~22))]
(

c)Convert each clause ®,” to CNF A
* Construct a truth table for each clause @/ A

* Construct the disjunctive normal form for =@/’ A

* Apply DeMorgan’s Law to get the CNF formula ®,” N

A

<
p—
<
N
<
N
©
|_\\l
d
©
H\l

=) = (Y1 Ay2 Axz2) V (y1 A —ya A x2)
V (yl A =y N _'CCQ) V (_'yl N Yo N —1.682)
¢ = (my1 V —y2 V x2) A (my1 Vo V —xs)
A(=y1 Vya Vo) A(yrV g2 V)

—u(a/\b):—-a\/ﬁb
—u(a\/b):—-a/\ﬁb

PRIk ORP[O OC|F,|O

olo|lo|lOo|R|RP|R |k
o|lo|r|kR|O|lO|R|F
O|lRr|O|lRr|O|FR | O|R
oO|lo|rRr|O|R|FR | O|R

SAT <, 3-CNF-SAT

d)Construct @"" in which each clause C, exactly 3 distinct literals
3 distinct literals: C; =1, Via Vis
e 2 distinct literals: C, =1, v 5

Cf,;:ll\/lzz(ll\/lzvp)/\(ll\/lg\/_lp)
e 1literalonly: ¢, =1

Ci=l=(0IVpVgNIVpVHANIVPV=g) AV -pV—q)

» @’ is satisfiable iff @ is satisfiable
 All transformation can be done in polynomial time
e = 3-CNF-SAT is NP-Complete

Concluding Remarks

* Proving NP-Completeness: L € NPCiff L € NP and L € NP-hard
* Step-by-step approach for proving L in NPC:
* Prove L € NP

* Prove L € NP-hard
* Select a known NPC problem C

* Construct a reduction f transforming every instance of C to an instance of L
* Provethatz € C <— f(x) € C,Vx € {0,1}*
* Prove that f is a polynomial time transformation L € NP

{0,13* f {0,13*

o— |
——e

Question?

Important announcement will be sent to
@ntu.edu.tw mailbox & post to the course website

Course Website: http://ada.miulab.tw
Email: ada-ta@csie.ntu.edu.tw

