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Algorithm Design & Analysis

• Design Strategy
• Divide-and-Conquer

• Dynamic Programming

• Greedy Algorithms

• Graph Algorithms

• Analysis
• Amortized Analysis

• NP-Completeness
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Polynomial Time Algorithms

• For an input with size n, the worst-case running time is              for some 
constant k

• Problems that are solvable by polynomial-time algorithms as being tractable, 
easy, or efficient

• Problems that require superpolynomial time as being intractable, or hard, or 
inefficient
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Four Color Problem

• Use total four colors s.t. the neighboring parts have different colors
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Four Color Problem (after 100 yrs)

• Finally proven (with the help of computers) by Kenneth Appel and Wolfgang 
Haken in 1976

• Their algorithm runs in O(n2) time

• First major theorem proved by a computer

• Open problems remain...
• Linear time algorithms to find a solution

• Concise, human-checkable, mathematical proofs
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Planar k-Colorability

• Given a planar graph G (e.g., a map), can we color the 
vertices with k colors such that no adjacent vertices 
have the same color?

• k = 1?

• k = 2?

• k = 3?

• k ≥ 4?
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How hard is it when k = 3?

Can we know its level of difficulty before solving it?



Planar k-Colorability
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Decision Problems v.s. 
Optimization Problems
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Decision Problems

• Definition: the answer is simply “yes” or “no” (or “1” or “0”)
• MST: Given a graph 𝐺 = 𝑉, 𝐸 and a bound 𝐾, is there a spanning tree 

with a cost at most 𝐾?

• KNAPSACK: Given a knapsack of capacity 𝐶, a set of objects with weights 
and values, and a target value 𝑉, is there a way to fill the knapsack with at 
least 𝑉 value?
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Optimization Problems

• Definition: each feasible solution has an associated value, and we 
wish to find a feasible solution with the best value (maximum or 
minimum)

• MST-OPT: Given a graph 𝐺 = 𝑉, 𝐸 , find the minimum spanning tree of 𝐺

• KNAPSACK-OPT: Given a knapsack of capacity 𝐶 and a set of objects with 
weights and values, fill the knapsack so as to maximize the total value
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Which is Easier? Why?
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How to convert an optimization problem to a related 

decision problem?

Imposing a (lower or upper) bound on the 

value to be optimized



Difficulty Levels

• Every optimization problem has a decision version that is no harder than the 
optimization problem.

• Using Aopt to solve Adec

• check if the optimal value ≤ k, constant overhead

• Using Adec to solve Aopt

• apply binary search on the value range, logarithmic overhead
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Aopt: given a graph, find the 

length of the shortest path

Adec: given a graph, determine 

whether there is a path ≤ k



P v.s. NP
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Textbook Chapter 34 – NP-Completeness 



Algorithm Design

• Algorithmic design methods to solve problems efficiently 
(polynomial time)

• Divide and conquer

• Dynamic programming

• Greedy

• “Hard” problems without known efficient algorithms 
• Hamilton, knapsack, etc.
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Complexity Classes

• Can we decide whether a problem is “too hard to solve” before investing our 
time in solving it?

• Idea: decide which complexity classes the problem belongs to via reduction
• 已知問題A很難。若能證明問題B至少跟A一樣難，那麼問題B也很難。
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To Solve v.s. Not to Solve

• Algorithm design
• Design algorithms to solve 

computational problems

• Mostly concerned with upper bounds
on resources
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• Complexity theory
• Classify problems based on their 

difficulty and identify relationships 
between classes

• Mostly concerned with lower bounds
on resources

upper bound

Problem

Problem B

Problem A

Problem B is no easier than A

lower bound



Complexity Classes

• A complexity class is “a set of problems of related resource-based 
complexity”

• Resource = time, memory, communication, ...

• Focus: decision problems and the resource of time
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P

• The class P consists of all the problems that can be solved in polynomial time.
• Sorting

• Exact string matching

• Primes

• …

• Polynomial time algorithm

• For inputs of size n, their worst-case running time is               for some 
constant k
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NP

• NP consists of the problems that can be solved in non-deterministically 
polynomial time.

• NP consists of the problems that can be “verified” in polynomial time.

• P consists of the problems that can be solved in (deterministically) 
polynomial time.
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Non-Deterministic



Deterministic Algorithm
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initial 

configuration



Non-Deterministic Algorithm
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initial 

configuration



Non-Deterministic Bubble Sort
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This is not a randomized algorithm.

Non-Deterministic-Bubble-Sort(n)

for i = 1 to n

for j = 1 to n – 1

if A[j] < A[i+1] then

Either exchange A[j] and A[i+1] or do nothing



Vertex Cover Problem (路燈問題)

• Input: a graph G

• Output: a smallest vertex subset of G that covers all edges of G.

• Known to be NP-complete 
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Illustration
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Vertex Cover (Decision Version)

• Input: a Graph G and an integer k.

• Output: Does G contain a vertex cover of size no more than k?

• Original problem → optimization problem
• 原先的路燈問題是要算出放路燈的方法

• Yes/No → decision problem
• 問k盞路燈夠不夠照亮整個公園
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Non-Deterministic Algorithm
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Non-Deterministic-Vertex-Cover(G, k)

set S = {}

for each vertex x of G

non-deterministically insert x to S

if |S| > k

output no

if S is not a vertex cover

output no

output yes



Algorithm Correctness

• If the correct answer is yes, then there is a computation path of the 
algorithm that leads to yes.

• 至少有一條路是對的

• If the correct answer is no, then all computation paths of the algorithm lead 
to no.

• 每一條路都是對的
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Non-Deterministic-Vertex-Cover(G, k)

set S = {}

for each vertex x of G

non-deterministically insert x to S

if |S| > k

output no

if S is not a vertex cover

output no

output yes



Non-Deterministic Problem Solving
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initial 

configuration

correct 

answer



Non-Deterministic Polynomial
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polynomial 

“solved” in non-deterministic polynomial time

= “verified” in polynomial time



P ⊆ NP or NP ⊆ P?

• P ⊆ NP
• A problem solvable in polynomial time is verifiable in polynomial time as well

• Any NP problem can be solved in (deterministically) exponential time?
• Yes

• Any NP problem can be solved in (deterministically) polynomial time?
• Open problem
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Why?



US$1,000,000 Per Problem

• http://www.claymath.org/millennium-problems
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Millennium Problems

• Yang–Mills and Mass Gap

• Riemann Hypothesis

• P vs NP Problem

• Navier–Stokes Equation

• Hodge Conjecture

• Poincaré Conjecture (solved by Grigori Perelman)

• Birch and Swinnerton-Dyer Conjecture
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Grigori Perelman

Fields Medal (2006), declined

Millennium Prize (2010), declined



Vinay Deolalikar

• Aug 2010 claimed a proof of P is not equal to NP.
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If P = NP

• problems that are verifiable →
solvable
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• public-key cryptography will 
be broken

Widespread belief in P ≠ NP

“If P = NP, then the world would be a profoundly different place than we

usually assume it to be. There would be no special value in “creative

leaps,” no fundamental gap between solving a problem and recognizing

the solution once it's found. Everyone who could appreciate a symphony

would be Mozart; everyone who could follow a step-by-step argument

would be Gauss...” – Scott Aaronson, MIT
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Travelling Salesman (2012)
A movie about P = NP

Best Feature Film in Silicon Valley Film Festival 2012



NP, NP-Complete, NP-Hard
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NP-Hardness

• A problem is NP-hard if it is as least as hard as all NP problems.

• In other words, a problem X is NP-hard if the following condition holds:
• If X can be solved in (deterministic) polynomial time, then all NP problems can be 

solved in (deterministic) polynomial time.
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NP-Completeness (NPC)

• A problem is NP-complete if
• it is NP-hard and

• it is in NP.

• In other words, an NP-complete problem is one of the “hardest” problems 
in the class NP.

• In other words, an NP-complete problem is a hardness representative 
problem of the class NP.

• Hardest in NP → solving one NPC can solve all NP problems (“complete”)

• It is wildly believed that NPC problems have no polynomial-time solution 
→ good reference point to judge whether a problem is in P

• We can decide if a problem is “too hard to solve” by showing it is as hard as an NPC problem

• We then focus on designing approximate algorithms or solving special cases
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Complexity Classes

• Class P: class of problems that can be solved in

• Class NP: class of problems that can be verified in

• Class NP-hard: class of problems that are “at least as hard as all NP problems”

• Class NP-complete: class of problems in both NP and NP-hard
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P ≠ NP P = NP



More Complexity Classes
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undecidable: no algorithm; e.g. 

halting problem
https://www.youtube.com/watch?v=wGLQiHXHWNk
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An Undecidable Problem –
Halting Problem

• Halting problem is to determine whether a program 𝑝 halts on input 𝑥

• Proof for undecidable via a counterexample
• Suppose ℎ can determine whether a program 𝑝 halts on input 𝑥

• ℎ(𝑝, 𝑥) = return (p halts on input x)

• Define g(p) = if h(p,p) is 0 then return 0 else HANG

• → g(g) = if h(g,g) is 0 then return 0 else HANG

• Both cases contradict the assumption:
1.g halts on g: then h(g,g)=1, which would make g(g) hang

2.g does not halt on g: then h(g,g)=0, which would make g(g) halt
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Complexity Classes

• Which one is in P?
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Shortest Simple Path Longest Simple Path

Euler Tour Hamitonian Cycle

LCS with 2 Input Sequences LCS with Arbitrary Input Sequences

Degree-Constrained Spanning Tree Minimal Spanning Tree



Candy Crush is NP-Hard
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Sudoku is NPC
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Minesweeper Consistency is NPC

• Minesweeper Consistency: Given a state of what purports to be a 
Minesweeper games, is it logically consistent?
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Polynomial-Time Reduction
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Textbook Chapter 34.3 – NP-completeness and reducibility



First NP-Complete Problem –
SAT (Satisfiability)

• Input: a Boolean formula with variables

• Output: whether there is a truth assignment for the variables that satisfies 
the input Boolean formula
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• Stephan A. Cook [FOCS 1971] proved that
▪ SAT can be solved in non-deterministic polynomial time → SAT ∈ NP

▪ If SAT can be solved in deterministic polynomial time, then so can any 
NP problems → SAT ∈ NP-hard



Reduction

• Problem A can be reduced (in polynomial time) to Problem B 
= Problem B can be reduced (in polynomial time) from Problem A

• We can find an algorithm that solves Problem B to help solve Problem A

• If problem B has a polynomial-time algorithm, then so does problem A

• Practice: design a MULTIPLY() function by ADD(), DIVIDE(), and SQUARE()
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What is the complexity of Algorithm for A?

Algorithm 

for B
? ?

Instance 𝛽 of B Answer for 𝛽 Answer for 𝛼Instance 𝛼 of A

Algorithm for A



Reduction

• A reduction is an algorithm for transforming a problem instance into another

• Definition
• Reduction from A to B implies A is not harder than B

• A ≤p B if A can be reduced to B in polynomial time

• Applications
• Designing algorithms: given algorithm for B, we can also solve A

• Classifying problems: establish relative difficulty between A and B

• Proving limits: if A is hard, then so is B
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Algorithm 

to decide B

Reduction 

Algorithm

Instance 𝛽 of B Yes
Instance 𝛼 of A

Algorithm to decide A
No

This is why we need it for proving NP-completeness!



Questions

• If A is an NP-hard problem and B can be reduced from A, then B is an NP-
hard problem?

• If A is an NP-complete problem and B can be reduced from A, then B is an 
NP-complete problem?

• If A is an NP-complete problem and B can be reduced from A, then B is an 
NP-hard problem?
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Problem Difficulty

• Q: Which one is harder?

• A: They have equal difficulty.

• Proof: 
• PARTITION ≤p KNAPSACK

• KNAPSACK ≤p PARTITION
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KNAPSACK: Given a set 

𝑎1, … , 𝑎𝑛 of non-negative 

integers, and an integer 𝐾, 

decide if there is a subset 𝑃 ⊆
1, 𝑛 such that σ𝑖∈𝑃 𝑎𝑖 = 𝐾.

PARTITION: Given a set of 𝑛
non-negative integers 

𝑎1, … , 𝑎𝑛 , decide if there is a 

subset 𝑃 ⊆ 1, 𝑛 such that 
σ𝑖∈𝑃 𝑎𝑖 = σ𝑖∉𝑃 𝑎𝑖.

Polynomial-time reducible?

Polynomial-time reducible?



Polynomial Time Reduction

• PARTITION ≤p KNAPSACK

• If we can solve KNAPSACK, how can we use that to solve PARTITION?

• KNAPSACK ≤p PARTITION

• If we can solve PARTITION, how can we use that to solve KNAPSACK?
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KNAPSACK: Given a set 

𝑎1, … , 𝑎𝑛 of non-negative 

integers, and an integer 𝐾, 

decide if there is a subset 𝑃 ⊆
1, 𝑛 such that σ𝑖∈𝑃 𝑎𝑖 = 𝐾.

PARTITION: Given a set of 𝑛
non-negative integers 

𝑎1, … , 𝑎𝑛 , decide if there is a 

subset 𝑃 ⊆ 1, 𝑛 such that 
σ𝑖∈𝑃 𝑎𝑖 = σ𝑖∉𝑃 𝑎𝑖.

Polynomial-time reducible?

Polynomial-time reducible?



PARTITION ≤p KNAPSACK

• If we can solve KNAPSACK, how can we use that to solve PARTITION?

• Polynomial-time reduction
• Set
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KNAPSACK: Given a set 𝑎1, … , 𝑎𝑛 of 

non-negative integers, and an integer 

𝐾, decide if there is a subset 𝑃 ⊆ 1, 𝑛
such that σ𝑖∈𝑃 𝑎𝑖 = 𝐾.

PARTITION: Given a set of 𝑛 non-negative 

integers 𝑎1, … , 𝑎𝑛 , decide if there is a 

subset 𝑃 ⊆ 1, 𝑛 such that σ𝑖∈𝑃 𝑎𝑖 = σ𝑖∉𝑃 𝑎𝑖.

5 6 7 8 5 6 7 8
p-time reduction

PARTITION instance KNAPSACK instance with



PARTITION ≤p KNAPSACK

• If we can solve KNAPSACK, how can we use that to solve PARTITION?

• Polynomial-time reduction
• Set

• Correctness proof: KNAPSACK returns yes if and only if an equal-size partition 
exists
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5 6 7 8 5 6 7 8
p-time reduction

PARTITION instance KNAPSACK instance with

Algorithm to decide 

KNAPSACK

P-time 

Reduction

Instance 𝛽 of 

KNAPSACK

Yes
Instance 𝛼 of 

PARTITION

Algorithm to decide PARTITION
No



KNAPSACK ≤p PARTITION

• If we can solve PARTITION, how can we use that to solve KNAPSACK?

• Polynomial-time reduction
• Set

• Add                                       ,                       
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5 6 7 8 5 6 7 8
p-time reduction

PARTITION instance

48 52

KNAPSACK instance with

KNAPSACK: Given a set 𝑎1, … , 𝑎𝑛 of 

non-negative integers, and an integer 

𝐾, decide if there is a subset 𝑃 ⊆ 1, 𝑛
such that σ𝑖∈𝑃 𝑎𝑖 = 𝐾.

PARTITION: Given a set of 𝑛 non-negative 

integers 𝑎1, … , 𝑎𝑛 , decide if there is a 

subset 𝑃 ⊆ 1, 𝑛 such that σ𝑖∈𝑃 𝑎𝑖 = σ𝑖∉𝑃 𝑎𝑖.



KNAPSACK ≤p PARTITION

• If we can solve PARTITION, how can we use that to solve KNAPSACK?

• Polynomial-time reduction
• Set

• Add                                       ,                       

• Correctness proof: PARTITION returns yes if and only if there is a subset 
𝑃 ⊆ 1, 𝑛 such that σ𝑖∈𝑃 𝑎𝑖 = 𝐾
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Algorithm to decide 

PARTITION

P-time 

Reduction

Instance 𝛽 of 

PARTITION

Yes
Instance 𝛼 of 

KNAPSACK

Algorithm to decide KNAPSACK
No

5 6 7 8 5 6 7 8
p-time reduction

PARTITION instance

48 52

KNAPSACK instance with



KNAPSACK ≤p PARTITION

• Polynomial-time reduction
• Set

• Add                                   ,                       

• Correctness proof: PARTITION returns yes if and only if there is a subset 𝑃 ⊆
1, 𝑛 such that σ𝑖∈𝑃 𝑎𝑖 = 𝐾
• “if” direction
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𝑎1 𝑎2 𝑎3 𝑎4 𝑎6𝑎1 𝑎4 𝑎3𝑎5 𝑎2

PARTITION returns yes! 



KNAPSACK ≤p PARTITION

• Polynomial-time reduction
• Set

• Add                                   ,                       

• Correctness proof: PARTITION returns yes if and only if there is a subset 𝑃 ⊆
1, 𝑛 such that σ𝑖∈𝑃 𝑎𝑖 = 𝐾
• “only if” direction

• Because                                              , if PARTITION returns yes, each set has 4𝐻 + 𝐾

• 𝑎1, … , 𝑎𝑛 must be divided into 2𝐻 − 𝐾 and 𝐾
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𝑎6𝑎2 𝑎3 𝑎4𝑎5 𝑎1 𝑎1 𝑎4 𝑎2 𝑎3

a subset 𝑃 s.t. σ𝑖∈𝑃 𝑎𝑖 = 𝐾



Reduction for Proving Limits

• Definition
• Reduction from A to B implies A is not harder than B

• A ≤p B if A can be reduced to B in polynomial time

• NP-completeness proofs
• Goal: prove that B is NP-hard

• Known: A is NP-complete/NP-hard

• Approach: construct a polynomial-time reduction algorithm to convert 𝛼 to 𝛽

• Correctness: if we can solve B, then A can be solved → A ≤p B 

• B is no easier than A → A is NP-hard, so B is NP-hard

61
If the reduction is not p-time, does this argument hold?

Algorithm 

to decide B

Reduction 

Algorithm

Instance 𝛽 of B Yes
Instance 𝛼 of A

Algorithm to decide A
No



Proving NP-Completeness
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Formal Language Framework

• Focus on decision problems

• A language L over σ is any set of strings made up of symbols from σ

• Every language L over σ is a subset of σ∗

• An algorithm A accepts a string                        if

• The language accepted by an algorithm A is the set of strings

• An algorithm A rejects a string x if
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The formal-language framework allows us to express concisely the relation 

between decision problems and algorithms that solve them. 



Proving NP-Completeness

• NP-Complete (NPC): class of decision problems in both NP and NP-hard

• In other words, a decision problem L is NP-complete if

1.L ∈ NP

2.L ∈ NP-hard (that is, L’ ≤p L for every L’ ∈ NP)
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L1

L2

L3

:

L

≤p

all NP problems

How to prove L is NP-hard ?

L1

L2

L3

:

≤p

all NP problems

L

known 

NPC 

problem

≤p

held by 

definition
Goal: prove polynomial-

time reduction



Polynomial-Time Reducible

• If                            are languages s.t. , then L2 ∈ P implies L1 ∈ P.

65

A2

Transform 

function f

𝑓 𝑥𝑥

A1



P v.s. NP

• If one proves that SAT can be solved by a polynomial-time 
algorithm, then NP = P.

• If somebody proves that SAT cannot be solved by any polynomial-
time algorithm, then NP ≠ P.
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Circuit Satisfiability Problem

• Given a Boolean combinational circuit composed of AND, OR, and NOT gates, 
is it satisfiable?

• Satisfiable: there exists an assignment s.t. outputs = 1
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Satisfiable Unsatisfiable



CIRCUIT-SAT

• CIRCUIT-SAT can be solved in non-deterministic polynomial time 

→ ∈ NP

• If CIRCUIT-SAT can be solved in deterministic polynomial time, then so can 
any NP problems 

→ ∈ NP-hard

• (proof in textbook 34.3)

• CIRCUIT-SAT is NP-complete
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CIRCUIT-SAT = {<C>: C is a satisfiable Boolean combinational circuit}



Karp’s NP-Complete Problems

1. CNF-SAT
2. 0-1 INTEGER PROGRAMMING 
3. CLIQUE
4. SET PACKING 
5. VERTEX COVER 
6. SET COVERING 
7. FEEDBACK ARC SET 
8. FEEDBACK NODE SET 
9. DIRECTED HAMILTONIAN CIRCUIT 
10.UNDIRECTED HAMILTONIAN CIRCUIT 
11.3-SAT 
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12.CHROMATIC NUMBER 
13.CLIQUE COVER 
14.EXACT COVER 
15.3-dimensional MATCHING 
16.STEINER TREE 
17.HITTING SET 
18.KNAPSACK 
19.JOB SEQUENCING 
20.PARTITION 
21.MAX-CUT 



Karp’s NP-Complete Problems

70



Formula Satisfiability Problem (SAT)

• Given a Boolean formula Φ with variables, is there a variable assignment 
satisfying Φ

• ∧ (AND), ∨ (OR), ¬ (NOT), → (implication), ↔ (if and only if)

• Satisfiable: Φ is evaluated to 1
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SAT

• Is SAT ∈ NP-Complete?

• To prove that SAT is NP-Complete, we show that
• SAT ∈ NP

• SAT ∈ NP-hard (CIRCUIT-SAT ≤p SAT)
1) CIRCUIT-SAT is a known NPC problem

2) Construct a reduction f transforming every CIRCUIT-SAT instance to an SAT instance

3) Prove that x ∈ CIRCUIT-SAT iff f(x) ∈ SAT

4) Prove that f is a polynomial time transformation
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SAT = {Φ | Φ is a Boolean formula with a satisfying assignment }



SAT ∈ NP

• Polynomial-time verification: replaces each variable in the formula with the 
corresponding value in the certificate and then evaluates the expression

73

initial 

configuration

polynomial 



SAT ∈ NP-Hard

1)CIRCUIT-SAT is a known NPC problem

2)Construct a reduction f transforming every CIRCUIT-SAT instance to an SAT 
instance
• Assign a variable to each wire in circuit C

• Represent the operation of each gate using a formula, e.g. 

• Φ = AND the output variable and the operations of all gates

74



SAT ∈ NP-Hard

• Prove that x ∈ CIRCUIT-SAT ↔ f(x) ∈ SAT
• x ∈ CIRCUIT-SAT → f(x) ∈ SAT

• f(x) ∈ SAT → x ∈ CIRCUIT-SAT

• f is a polynomial time transformation

75

CIRCUIT-SAT ≤p SAT → SAT ∈ NP-hard



3-CNF-SAT Problem

• 3-CNF-SAT: Satisfiability of Boolean formulas in 3-conjunctive normal form (3-
CNF)

• 3-CNF = AND of clauses, each of which is the OR of exactly 3 distinct literals

• A literal is an occurrence of a variable or its negation, e.g., x1 or ¬x1

76

→ satisfiable



3-CNF-SAT

• Is 3-CNF-SAT ∈ NP-Complete?

• To prove that 3-CNF-SAT is NP-Complete, we show that
• 3-CNF-SAT ∈ NP

• 3-CNF-SAT ∈ NP-hard (SAT ≤p 3-CNF-SAT)
1) SAT is a known NPC problem

2) Construct a reduction f transforming every SAT instance to an 3-CNF-SAT instance

3) Prove that x ∈ SAT iff f(x) ∈ 3-CNF-SAT

4) Prove that f is a polynomial time transformation

77

3-CNF-SAT = {Φ | Φ is a Boolean formula in 3-conjunctive normal form (3-CNF) with 

a satisfying assignment }

We focus on the reduction construction from now on, but remember that a 

full proof requires showing that all other conditions are true as well



SAT ≤p 3-CNF-SAT

a)Construct a binary parser tree for an input formula Φ and introduce a 
variable yi for the output of each internal node
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SAT ≤p 3-CNF-SAT

b)Rewrite Φ as the AND of the root variable and clauses describing the 
operation of each node
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SAT ≤p 3-CNF-SAT

c)Convert each clause Φi’ to CNF
• Construct a truth table for each clause Φi’

• Construct the disjunctive normal form for ¬Φi’

• Apply DeMorgan’s Law to get the CNF formula Φi’’
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𝒚𝟏 𝒚𝟐 𝒚𝟐 Φ1’ ¬Φ1’

1 1 1 0 1

1 1 0 1 0

1 0 1 0 1

1 0 0 0 1

0 1 1 1 0

0 1 0 0 1

0 0 1 1 0

0 0 0 1 0

𝒚𝟏 𝒚𝟐 𝒚𝟐 Φ1’

1 1 1 0

1 1 0 1

1 0 1 0

1 0 0 0

0 1 1 1

0 1 0 0

0 0 1 1

0 0 0 1



SAT ≤p 3-CNF-SAT

d)Construct Φ’’’ in which each clause Ci exactly 3 distinct literals
• 3 distinct literals: 

• 2 distinct literals:

• 1 literal only:

• Φ’’’ is satisfiable iff Φ is satisfiable

• All transformation can be done in polynomial time

• → 3-CNF-SAT is NP-Complete
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Concluding Remarks

• Proving NP-Completeness: L ∈ NPC iff L ∈ NP and L ∈ NP-hard

• Step-by-step approach for proving L in NPC:
• Prove L ∈ NP

• Prove L ∈ NP-hard

• Select a known NPC problem C

• Construct a reduction f transforming every instance of C to an instance of L

• Prove that 

• Prove that f is a polynomial time transformation L ∈ NP
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P ≠ NP

P = NP



Question?
Important announcement will be sent to 
@ntu.edu.tw mailbox & post to the course website

Course Website: http://ada.miulab.tw

Email: ada-ta@csie.ntu.edu.tw


