g@i%

‘ National Taiwan University

Outline @MT)

 Amortized analysis

e #1: Stack Operations
* Aggregate method
e Accounting method
* Potential method

* #2: Binary Counter
* Aggregate method
e Accounting method
* Potential method

Algorithm Design & Analysis

* Design Strategy
* Divide-and-Conquer
* Dynamic Programming
* Greedy Algorithms
* Graph Algorithms
* Analysis
 Amortized Analysis

Amortized Analysis

Textbook Chapter 17 — Amortized Analysis

Data-Structure Operations

* A data structure comes with operations that organize the stored
data

* Different operations may have different costs
* The same operation may have different costs

PuUsH Pop cost
MuLTipoP 1

operations
stack P

QO Q\) 9\36\8\?09 ? Q\B%\e\q\ﬁ’\(\?\)ee\?oq Q\ﬁY\QOQ\\
W W

Worst Case Time Complexity

Cost of stack operations
PUSH(S, x) = O(1)

Por(S) = O(1)

MULTIPOP(S, k) = O(min(|S|, k))

O(n)

PuUsH Pop cost
MuLTieop | worst-case

operations
X e e 5
stack ?\36 906 9\36 i 09(5?06‘3‘906‘69\36%06%?0? ngex\?o?\b‘\

W W

Worst Case Time Complexity

Stack Operations
Suppose that we apply a sequence of n operations on a data structure. What is the
time complexity of the procedure?

* n-th operation takes MuLTIPOP(S, n) = O(n) time in the worst case
* n operations take O(n?) time

Can this be an over-estimate? Q

What if only a few operations take O(n) time and
the rest of them take O(1) time?

The worst-case bound is not tight because this
expensive Multipop operation cannot occur so frequently!

Amortized Analysis

* Goal: obtain an accurate worst-case bound in executing a sequence of
operations on a given data structure

* An upper bound for any sequence of n operations

 Comparison: types of running-time analysis

Worst case Running time guarantee for any input of size n
Average case Expected running time for a random input of size n
Probabilistic Expected running time of a randomized algorithm

Amortized Worst-case running time for a sequence of n operations

3 Methods for Amortized Analysis

Aggregate method (R £E)%)

« Determine an upper bound T(n) on the cost over any sequence of n operations
« The average cost per operation is then T(n)/n
« All operations have the same amortized cost

Accounting method (CIR%)

« Each operation is assigned an amortized cost (may differ from the actual cost)
« Each object of the data structure is associated with a credit
* Need to ensure that every object has sufficient credit at any time

Potential method (fiI8E}%)

« Similar to accounting method; each operation is assigned an amortized cost
» The data structure as a whole maintains a credit (i.e., potential)
* Need to ensure that the potential level is nonnegative at any time

Stack Operations

Textbook Chapter 17.1 — Aggregate analysis
Textbook Chapter 17.2 — The accounting method
Textbook Chapter 17.3 — The potential method

Stack Operations

Stack Operations

Suppose that we apply a sequence of n operations on a data structure. What is the
time complexity of the procedure?

* Implementation with an array or a linked list

PUSH(S, X): inset an element x into S O(1)

PopP(S): pop the top element from S O(1)

MULTIPOP(S, k): pop top k elements from S at once O(min(|S], k)

PUSH v PopP MULTIPOP (S, k)
MuLTiPoP while not STACK-EMPTY (S) and k > O
POP (S)
k =k -1
stack

Aggregate Method (BRE%)

e Approach:
1. Determine an upper bound T (n) on the cost of any sequence of n operations
2. Calculate the amortized cost per operation as T(n)/n
3. All operations have the same amortized cost

T(n) = Amortized cost of each op = T(n)
cost | n
Al \

operations
op, op, ...

Aggregate Method for Stack

* The number of each operation type

PUSH(S, X): inset an element x into S Npush
PoP(S): pop the top element from S Noop - N
MULTIPOP(S, k): pop top k elements from S at once MNisufiiaas

* These n,,, + N, 1.0, OPEFations together take at most O(npusn)

__

e Total cost for n operations: "push - O(1) + O(npusn) = O(n)

 Amortized cost per operation: 07(2”) = O(1)

Another Thinking

* Once the push operation is taken, we prepare the additional cost for the
future usage of multipop

——

Accounting Method (G2IR}%)

* |dea: save credits from the operations that take less cost for future use of
operations that take more cost (£ ¥1 {5 B IEE B[R MoperationsiF I/t 7 K
AR, HARKRIEER S E’Joperatlonsﬁ})

e Approach:

1. Each operation is assigned a valid amortized cost
* If amortized cost > actual cost, the difference becomes credit (%)

/

\

* Credit is deposited in an object of the data structure
* |f amortized cost < actual cost, then withdraw (#2) stored credits

2. Validity check: ensure that every object has sufficient credit for any sequence of n
operations

3. Calculate total amortized cost based on individual ones

Accounting Method (G2IR}%) &)

* Validity check: ensure that every object has sufficient credit for any times of
n operations (RNEEBIRF)
* c.: the actual cost of the i-th operation
 C.: the amortized cost of the i-th operation
- For all sequences of n operations, we require Z > Z

Accounting Method Aggregate Method
E_ach type of operations can have a Each type of operations have its actual cost
different amortized cost Compute amortized cost using T(n)

Assign valid amortized costs first and
then compute T(n)

Accounting Method for Stack

. Assign the amortized cost

PUSH(S, X) 1 2
PoP(S) 1 0
MULTIPOP(S, K) min(|S|, k) 0

. Show that for each object s.t. ZC@ = ZCZ

e PUsH: the pushed element is dep05|ted Sl credit
* Pop and MuLTIPOP: use the credit stored with the popped element
* There is always enough credit to pay for each operation

. Each amortized cost is O(1) > total amortized cost is O(n)

Potential Method (fiL8E}Z)

* |dea: represent the prepaid work as “potential,” which can be released to pay
for future operations (the potential is associated with the whole data
structure rather than specific objects)

e Approach:

1. Select a potential function that takes the current data structure state as input and
outputs a “potential level”

2. Validity check: ensure that the potential level is nonnegative
. Calculate the amortized cost of each operation based on the potential function
4. Calculate total amortized cost based on individual ones

W

Potential Method Accounting Method
The data structure has credits Each object within the data structure has its credit

Potential Method (fiI8E3%) _

* Potential function ® maps any state of the data structure to a real number

* D,: the initial state of data structure
* D;: the state of data structure after i-th operation

* c.: the actual cost of i-th operation
« &:the amortized cost of i-th operation, defined as ¢; = ¢; + ®(D;) — ®(D;_1)

Zc = (ci +®(D;) — ®(D;_1))

Potential Method (fiIAE3%) B,

e Total amortized cost
mn T

¢ =Y ¢+ ®(Dy) — (Dy)
1 1=1

1

* To obtain an upper bound on the actual cost >, & > > .., ¢
* Define a potential function such that ®(D,,) — ®(Dy) > 0
* Usually we set ®(Dy) =0,9(D;) >0

Potential Method for Stack

. Define ®(D;) to be the number of elements in the stack after the i-th

operation c;: the actual cost of i-th operation

_ VaIidity check: C;: the amortized cost of i-th operation
* The stack is initially empty = ®(Dj) = 0

* The number of elements in the stack is always 20 2 ®(D;) > 0

. Compute amortized cost of each operation:

* PUSH(S, X): ¢; = ¢; + (I)(D@) — (I)(Dz_l) =1+ (’S| + 1) — ‘S’ = 2

* Por(S):¢; =¢; + (D) —P(D;1)=1+(|S|—-1)—|S|=0

* Muttipor(S, k): ¢; = 0 @a@ T i

. All operations have O(1) amortized cost = total amortized cost is O(n)

Fibonacci Heap

Prim’s Time Complexity

MST-PRIM(G, w, r) // w = weights, r = root
for u in G.V
u.key = =
u.m = NIL O(n)
r.key = 0
Q = G.V
while Q # empty n times
u = EXTRACT-MIN (Q) O(logn)
for v in G.adj[u] m times
if v € Q and w(u, v) < v.key
V.II = U
v.key = w(u, v) // DECREASE-KEY O(1)

* Fibonacci heap (Textbook Ch. 19)

* BUILD-MIN-HEAP: O(n)
[- EXTRACT-MIN:O(logn) (amortized) }

* DECREASE-KEY: (1) (amortized)

e Total complexity: O(m + nlogn)

Dijkstra’s Time Complexity

DIJKSTRA (G, w, s)
INITIALIZATION (G, s)

S = empty

Q = G.v // INSERT O(n)

while Q # empty n times
u = EXTRACT-MIN (Q) O(logn)
S = sU{u}
for v in G.adj[u] m times

RELAX (u, v, w)

INITIALIZATION (G, s)
for v in G.V
v.d = o

V.
s.d

A

|

2

H

=
=
G

* Fabonacci heap (Textbook Ch. 19)

* BUILD-MIN-HEAP: O(n)
* EXTRACT-MIN: O(logn) (amortized)
* DECREASE-KEY: O(1) (amortized)

* Total complexity: O(m + nlogn)

RELAX (u, v, w)
if v.d > u.d + w(u, v)
// DECREASE-KEY
v.d = u.d + w(u, v)
V.II = U

o(1)

Binary Counter

Textbook Chapter 17.1 — Aggregate analysis
Textbook Chapter 17.2 — The accounting method
Textbook Chapter 17.3 — The potential method

Binary Counter

Binary Counter
Suppose that a counter is initially zero. We increment the counter n times. How
many bits are altered throughout the process?

* Implementation with a k-bit array 0

INCREMENT (A) 1 1001
i =0 10 1010
while 1 < A.length and A[1] == 11 1011

A[i] = 0 Increment
P21+ 100 1100
if 1 < A.length 101 1101
Af1] =1 110 1110
111 1111

e Each operation takes O(log n) time in the worst case

* n operations take O(n log n) time

1000 10000

Aggregate Method for Binary Counter

Counter Total Cost of First n
Al3I Al at AlO] Operations
0 0 0 0 0

0
1 0 0 0 1 1
2 0 0 1 0 3
3 0 0 1 1 4
4 0 1 0 0 7
5 0 1 0 1 8
6 0 1 1 0 10
7 0 1 1 1 11
s | 1 0 0 0 15

_ ~ flip every increment
_ _ flip every 2 increments
flip every 4 increments

flii everi 8 increments

Aggregate Method for Binary Counter

 Total #bits flipping in n increment operations:

T
n N — e o —_
2 14 ok <"

* Total cost of the sequence: O(n)

* Amortized cost per operation: O(n)
n

= 0(1)

Accounting Method for Binary Counter

1. Assign the amortized cost

bit 0 = bit 1 1 2 (Z$1%bit 1)) @
bit 1 = hit O 1 0 (HEEEbit 1 ESL)
Increment #flipped bits 2 for setting a bitto 1

2. Validity check:
e Each bit 0 to bit 1, we save additional S1 in the bit 1
* When bit 1 becomes to bit 0, we spend the saved cost

3. Each increment

e Change many 1s to Os = free
* Change exactlyaOto1 -2 O(1)

* Each amortized cost is O(1) = total amortized cost is O(n)

Accounting Method for Binary Counter

Counter Total Cost of First n
0 0 0 0 0

0
1 0 0 0 1 1
2 0 0 1 ¥ 0 3
3 0 0 1 W 1 @ 4
4 0 1 0 0 7
5 0 1 & 0 1 & 8
6 0 1 @ 1 0 10
7 0 1 & 1 @ 1 11
8 1 0 0 0 15

Amortized cost per operation is O(1)
Total amortized cost of n operations is O(n)

Potential Method for Binary Counter

. Define ®(D;) to be the number of 1s in the counter after the i-th

operation c;: the actual cost of i-th operation
. Validity check: &.: the amortized cost of i-th operation

* The counter is initially zero > ®(Dg) =0
 The number of 1’s cannot be negative > ®(D;) > 0
. Compute amortized cost of each INCREMENT:
* Let LSB,(/) be the number of continuous 1s in the suffix
* For example, LSB,(01011011) = 2, and LSB,(01011111) =5
637; = C; + (I)(DZ) — (I)(D@_l)
= (LSBo(i —1)4+ 1)+ (®(D;j_1) — LSBy(i — 1)+ 1) — ®(D;_1) = 2

. All operations have O(1) amortized cost = total amortized cost is O(n)

Concluding Remarks

Aggregate method (R £E)%)

» Determine an upper bound T (n) on the cost over any sequence of n operations
* The average cost per operation is then T(n)/n
« All operations have the same amortized cost

Accounting method (FC1&R)Z%)

» Each operation is assigned an amortized cost (may differ from the actual cost)
» Each object of the data structure is associated with a credit
* Need to ensure that every object has sufficient credit at any time

Potential method (fiIBE)%)

« Similar to accounting method; each operation is assigned an amortized cost
* The data structure as a whole maintains a credit (i.e., potential)
* Need to ensure that the potential level is nonnegative at any time

Question?

Important announcement will be sent to
@ntu.edu.tw mailbox & post to the course website

Course Website: http://ada.miulab.tw
Emalil: ada-ta@csie.ntu.edu.tw

