

# Algorithm Design and Analysis Graph Algorithms (2)

http://ada.miulab.tw

Yun-Nung (Vivian) Chen









- Mini-HW
- NTU COOL
- Helpful TAs
- Course recordings (access the channel <u>here</u>)
- Instant feedback



- Grade release
- Course recordings (two classes & last year)
- Homework hints
- TA hour changes

#### **Outline**



- DFS Applications
  - Connected Components
  - Strongly Connected Components
  - Topological Sorting
- Minimal Spanning Trees (MST)
  - Boruvka's Algorithm
  - Kruskal's Algorithm
  - Prim's Algorithm



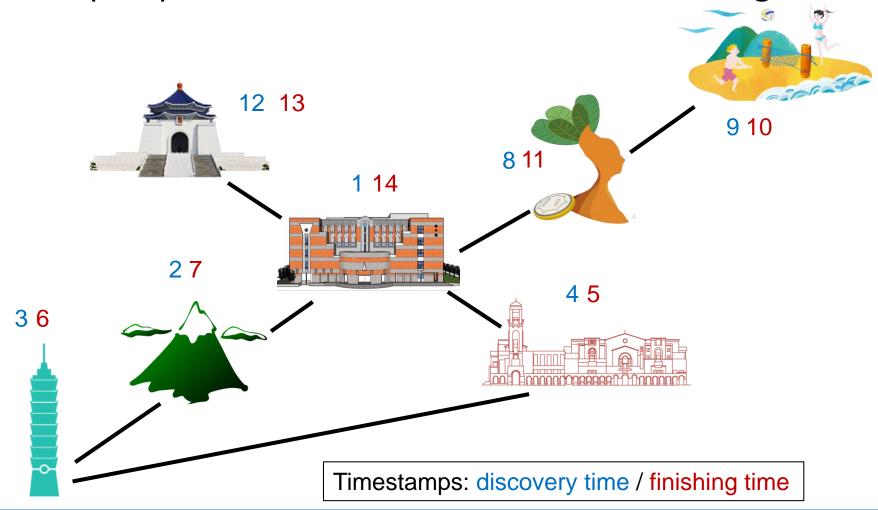
## Depth-First Search

Textbook Chapter 22.3 – Depth-first search



## Depth-First Search (DFS)

Search as deep as possible and then backtrack until finding a new path



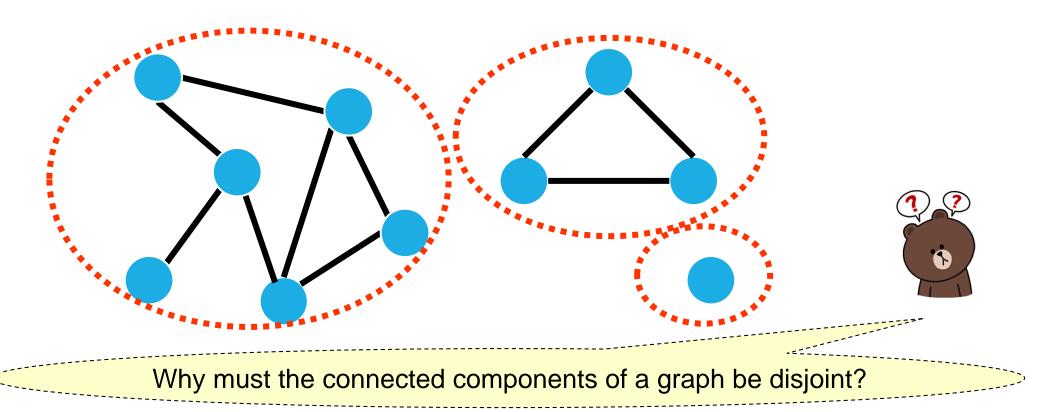


## **Connected Components**

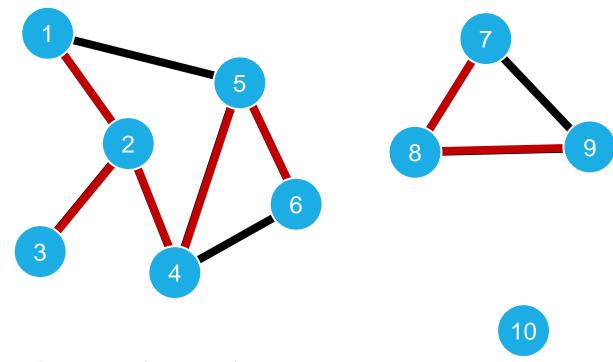


## **Connected Components Problem**

- Input: a graph G = (V, E)
- Output: a connected component of *G* 
  - a maximal subset U of V s.t. any two nodes in U are connected in G



### **Connected Components**



Time Complexity: O(n+m)

BFS and DSF both find the connected components with the same complexity

### **Problem Complexity**



Upper bound = O(m+n)

Lower bound =  $\Omega(m+n)$ 

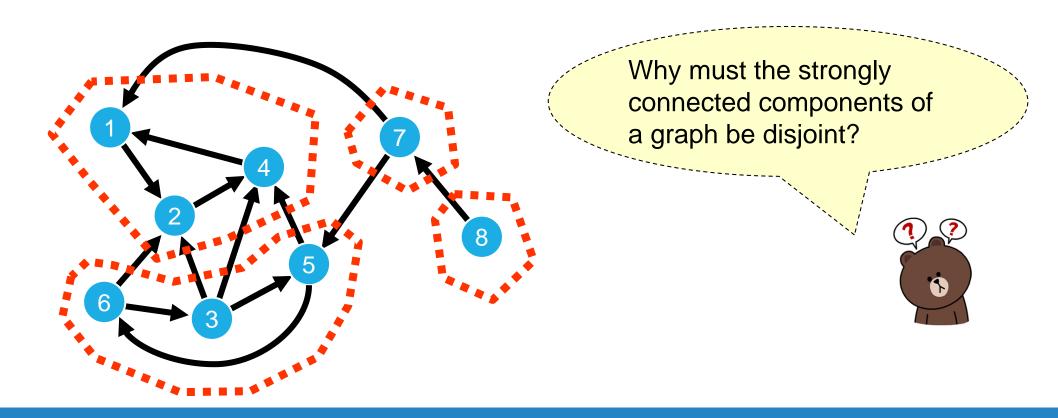


## Strongly Connected Components

Textbook Chapter 22.5 – Strongly connected components

## **Strongly Connected Components**

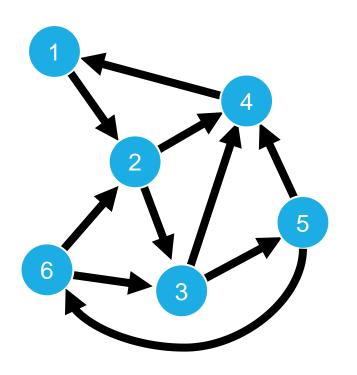
- Input: a directed graph G = (V, E)
- Output: a connected component of *G* 
  - a maximal subset U of V s.t. any two nodes in U are reachable in G

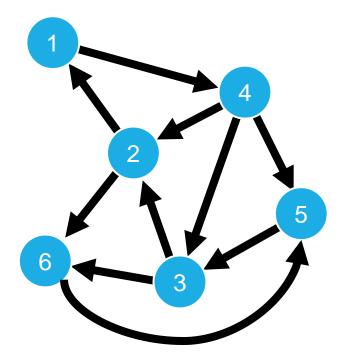


## Algorithm

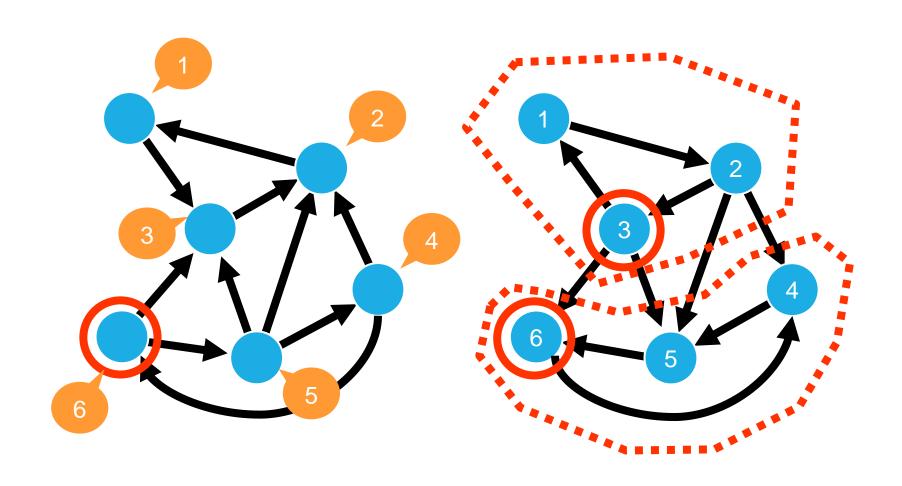
- Step 1: Run DFS on G to obtain the finish time v. f for  $v \in V$ .
- Step 2: Run DFS on the transpose of G where the vertices V are processed in the decreasing order of their finish time.
- Step 3: output the vertex partition by the second DFS

## Transpose of A Graph

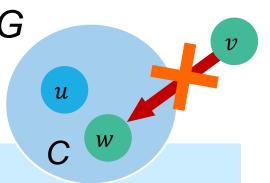




## **Example Illustration**



## **Algorithm Correctness**



#### Lemma

Let C be the strongly connected component of G (and  $G^T$ ) that contains the node u with the largest finish time u. f. Then C cannot have any incoming edge from any node of G not in C.

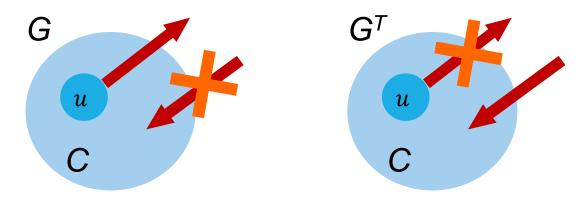
- Proof by contradiction
  - Assume that (v, w) is an incoming edge to C.
  - Since C is a strongly connected component of G, there cannot be any path from any node of C to v in G.
  - Therefore, the finish time of v has to be larger than any node in C, including u.  $\rightarrow v$ . f > u. f, contradiction

## **Algorithm Correctness**

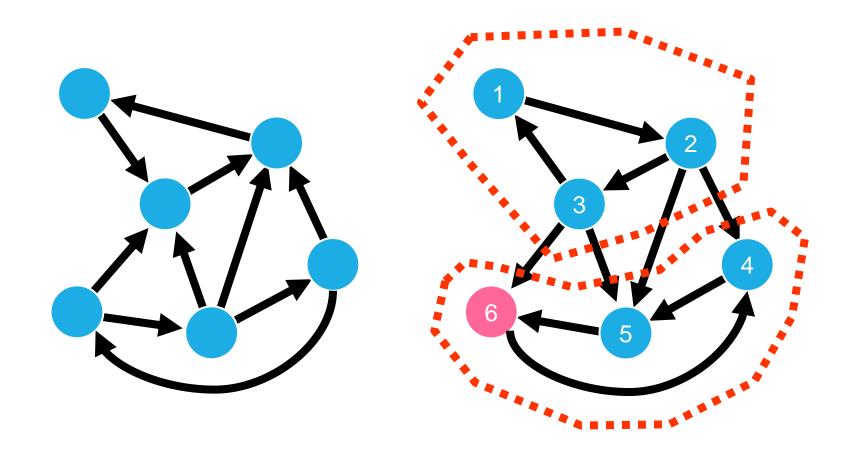
#### **Theorem**

By continuing the process from the vertex  $u^*$  whose finish time  $u^*$ . f is the largest excluding those in C, the algorithm returns the strongly connected components.

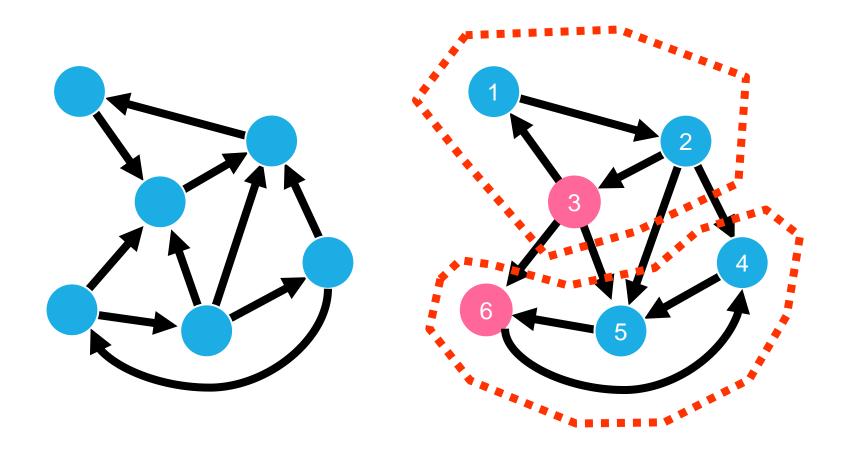
Practice to prove using induction



## **Example**



## **Example**



## **Time Complexity**

- Step 1: Run DFS on G to obtain the finish time v. f for  $v \in V$ .
- Step 2: Run DFS on the transpose of G where the vertices V are processed in the decreasing order of their finish time.
- Step 3: output the vertex partition by the second DFS

Time Complexity:  $\Theta(n+m)$ 

### **Problem Complexity**



Upper bound = O(m+n)

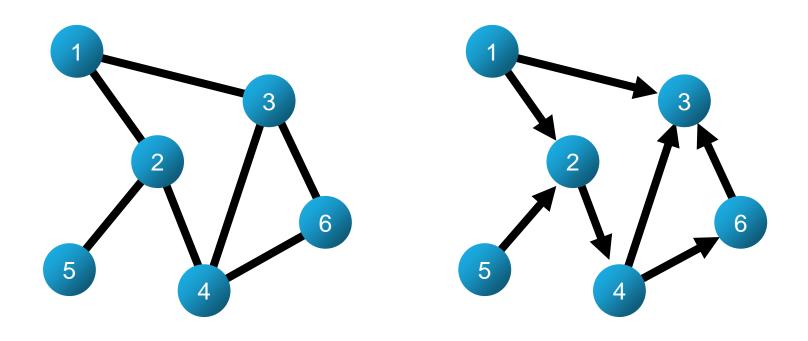
Lower bound =  $\Omega(m+n)$ 



## **Topological Sort**

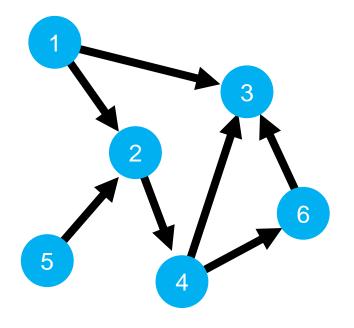
Textbook Chapter 22.4 – Topological sort

## **Directed Graph**



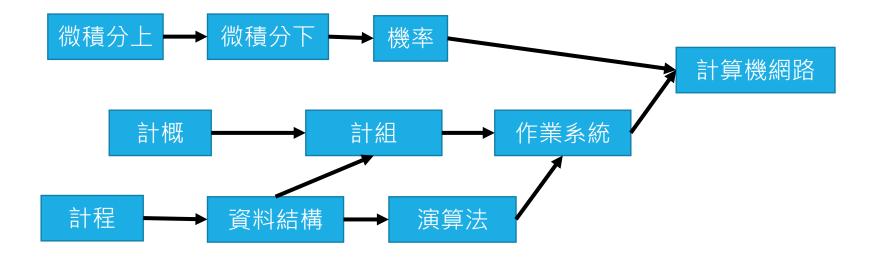
## Directed Acyclic Graph (DAG)

- Definition
  - a directed graph without any directed cycle



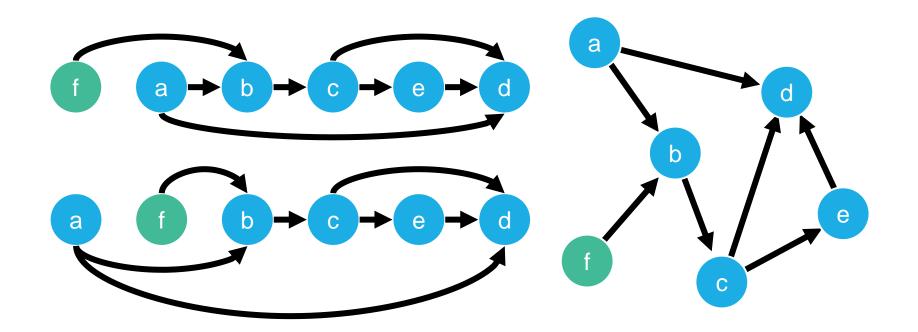
### **Topological Sort Problem**

- Taking courses should follow the specific order
- How to find a course taking order?



### **Topological Sort Problem**

- Input: a directed acyclic graph G = (V, E)
- Output: a linear order of V s.t. all edges of G going from lower-indexed nodes to higher-indexed nodes (左 $\rightarrow$ 右)



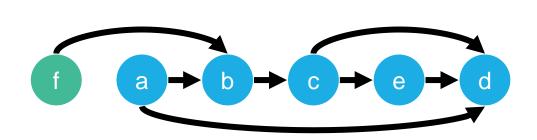
## **Algorithm**

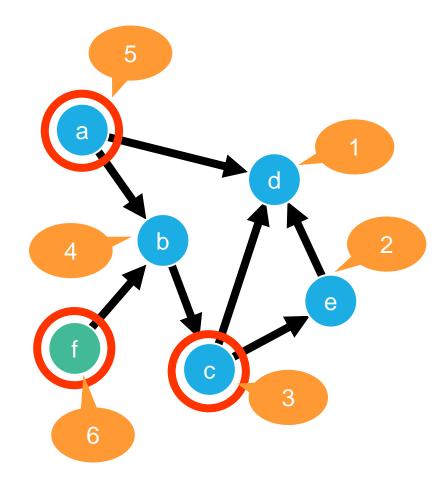
- Run DFS on the input DAG G.
- Output the nodes in decreasing order of their finish time.

```
DFS(G)
  for each vertex u in G.V
    u.color = WHITE
    u.pi = NIL
    time = 0
  for each vertex u in G.V
    if u.color == WHITE
        DFS-VISIT(G, u)
```

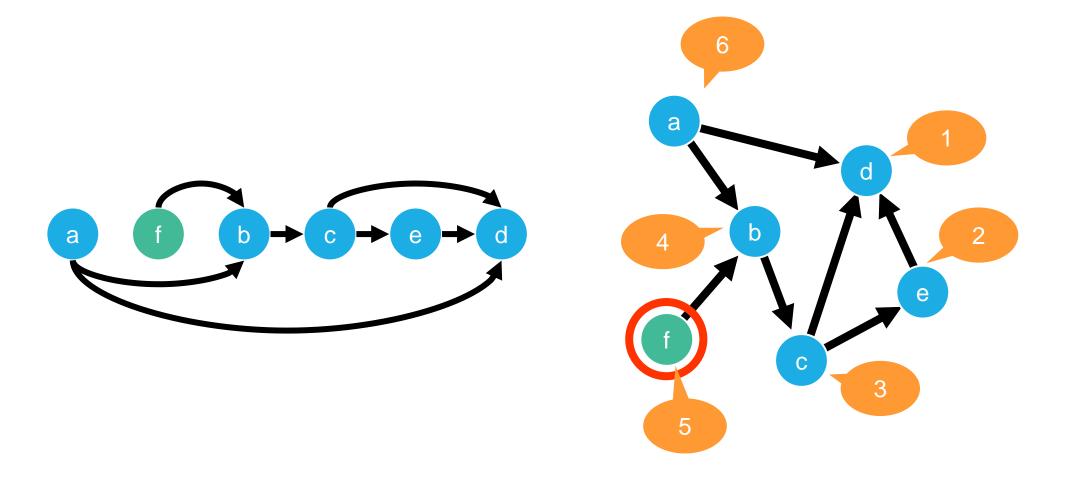
```
DFS-Visit(G, u)
 time = time + 1
 u.d = time
 u.color = GRAY
 for each v in G.Adj[u] (outgoing)
   if v.color == WHITE
     v.pi = u
     DFS-VISIT(G, v)
 u.color = BLACK
 time = time + 1
 u.f = time // finish time
```

## **Example Illustration**





## **Example Illustration**



## **Time Complexity**

- Run DFS on the input DAG *G*.  $\Theta(n+m)$
- Output the nodes in decreasing order of their finish time.
  - As each vertex is finished, insert it onto the front of a linked list  $\Theta(n)$
  - Return the linked list of vertices

Time Complexity:  $\Theta(n+m)$ 

```
DFS(G)
  for each vertex u in G.V
    u.color = WHITE
    u.pi = NIL
  time = 0
  for each vertex u in G.V
    if u.color == WHITE
        DFS-VISIT(G, u)
```

```
DFS-Visit(G, u)
  time = time + 1
  u.d = time
  u.color = GRAY
  for each v in G.Adj[u]
   if v.color == WHITE
     v.pi = u
     DFS-VISIT(G, v)
  u.color = BLACK
  time = time + 1
  u.f = time // finish time
```

## **Algorithm Correctness**

#### Lemma 22.11

A directed graph is acyclic  $\Leftrightarrow$  a DFS yields no back edges.

- Proof
  - $\rightarrow$ : suppose there is a back edge (u, v)
    - *v* is an ancestor of *u* in DFS forest
    - There is a path from v to u in G and (u, v) completes the cycle
  - $\leftarrow$  : suppose there is a cycle c
    - Let v be the first vertex in c to be discovered and u is a predecessor of v in c
    - Upon discovering v the whole cycle from v to u is WHITE
    - At time v.d, the vertices of c form a path of white vertices from v to u
    - By the white-path theorem, vertex u becomes a descendant of v in the DFS forest
    - Therefore, (u, v) is a back edge



White Path Theorem: In a DFS forest of G, v is a descendant of u in the forest  $\Leftrightarrow$  at the time u. d that the search discovers u, there is a path from u to v in G consisting entirely of WHITE vertices

## **Algorithm Correctness**

#### Theorem 22.12

The algorithm produces a topological sort of the input DAG. That is, if (u, v) is a directed edge (from u to v) of G, then  $u \cdot f > v \cdot f$ .

- Proof
  - When (u, v) is being explored, u is GRAY and there are three cases for v:
    - Case 1 GRAY
      - (u, v) is a back edge (contradicting Lemma 22.11), so v cannot be GRAY
    - Case 2 WHITE
      - *v* becomes descendant of *u*
      - v will be finished before u
    - Case 3 BLACK
      - v is already finished

$$\rightarrow v.f < u.f$$

$$\rightarrow v.f < u.f$$

### **Problem Complexity**



Upper bound = O(m+n)

Lower bound =  $\Omega(m+n)$ 

#### **Discussion**

- Since cycle detection becomes back edge detection (Lemma 22.11), DFS can be used to test whether a graph is a DAG
- Is there a topological order for cyclic graphs?
- Given a topological order, is there always a DFS traversal that produces such an order?

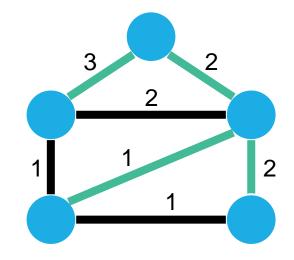


## Minimal Spanning Tree (MST)

Textbook Chapter 23 – Minimal Spanning Trees

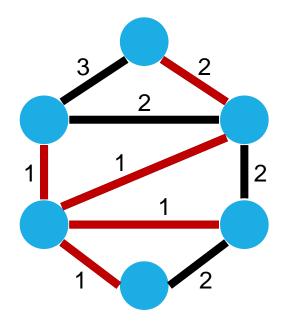
## **Spanning Tree**

- Definition
  - a subgraph that is a tree and connects all vertices
    - Exactly n-1 edges
    - Acyclic
  - There can be many spanning trees of a graph
- BFS and DFS also generate spanning trees
  - BFS tree is typically "short and bushy"
  - DFS tree is typically "long and stringy"



## Minimal Spanning Tree Problem

- Input: a connected n-node m-edge graph G with edge weights w
- Output: a spanning tree T of G with minimum w(T)



WLOG: we may assume that all edge weights are distinct

#### Minimal Spanning Tree Problem

• Q: What if the graph is unweighted?

Trivial

Q: What if the graph contains edges with negative weights?

Add a large constant to every edge; a MST remains the same

#### **Uniqueness of MST**

#### Theorem: MST is unique if all edge weights are distinct

- Proof by contradiction
  - Suppose there are two MSTs A and B
  - Let e be the least-weight edge in  $A \cup B$  and e is not in both
  - WLOG, assume *e* is in *A*
  - Add e to B;  $\{e\} \cup B$  contains a cycle C
  - B includes at least one edge e' that is not in A but on C
  - Replacing e' with e yields a MST with less cost

If edge weights are not all distinct, then the (multi-)set of weights in MST is unique



# Borůvka's Algorithm



#### **Inventor of MST**

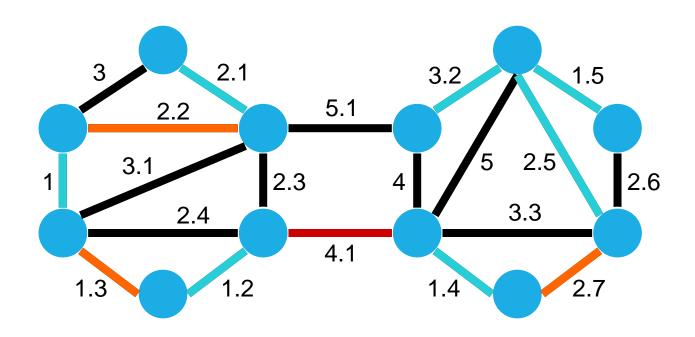
- Otakar Borůvka
  - Czech scientist
  - Introduced the problem
  - Gave an  $O(m \log n)$  time algorithm
    - The original paper was written in Czech in 1926
    - The purpose was to efficiently provide electric coverage of Bohemia



### Borůvka's Algorithm

- Repeat the below procedure until the resulting graph becomes a single node
  - For each node u, mark its lightest incident edge
  - From the marked edges form a forest F, add the edges of F into the set of edges to be reported
  - Contract each maximal subtree of F into a single node

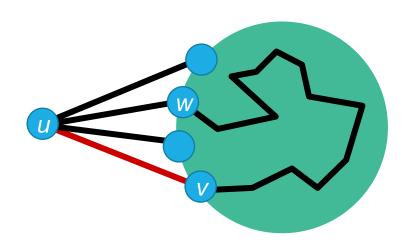
#### Borůvka's Algorithm Illustration



#### **Algorithm Correctness**

Claim: If (u, v) is the lightest edge incident to u in G, (u, v) must belong to any MST of G

- Proof via contradiction
  - An MST T of G that does not contain (u, v)
  - A cycle  $C = T \cup (u, v)$  contains an edge (u, w) in C that has larger weight than (u, v)
  - $T' = T \cup (u, v) \setminus (u, w)$  must be a spanning tree of G lighter than T



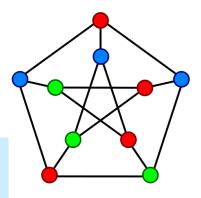
#### **Time Complexity**

The recurrence relation

$$T(m,n) \le T(m,n/2) + O(m)$$

- We check all edges in each phase ightharpoonup O(m)
- After each contraction phase, the number of nodes is reduced by at least one half
- Time complexity:  $O(m \log n)$

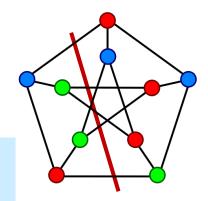
## **Cycle Property**



Let C be any cycle in the graph G, and let e be an edge with the maximum weight on C. Then the MST does not contain e.

- For simplicity, assume all edge weights are distinct
- Proof by contradiction
  - Suppose e is in the MST
  - Removing e disconnects the MST into two components T1 and T2
  - There exists another edge e' in C that can reconnect T1 and T2
  - Since w(e') < w(e), the new tree has a lower weight
  - Contradiction!

### **Cut Property**



Let C be a cut in the graph, and let e be the edge with the minimum cost in C. Then the MST contains e.

- Cut = a partition of the vertices
- For simplicity, assume all edge weights are distinct
- Proof by contradiction
  - Suppose e is not in the current MST
  - Adding e creates a cycle in the MST
  - There exists another edge e' in C that can break the cycle
  - Since w(e') > w(e), the new tree has a lower weight
  - Contradiction!



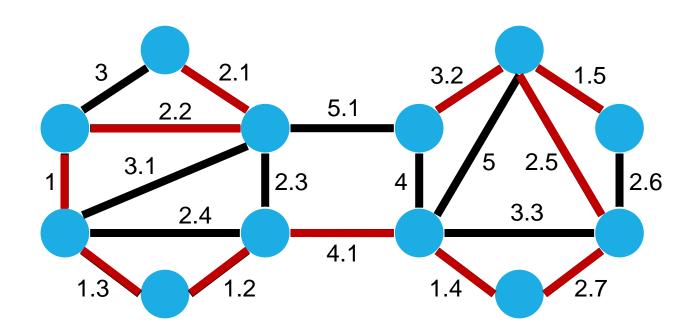
## Kruskal's Algorithm

Textbook Chapter 23.2 – The algorithms of Kruskal and Prim

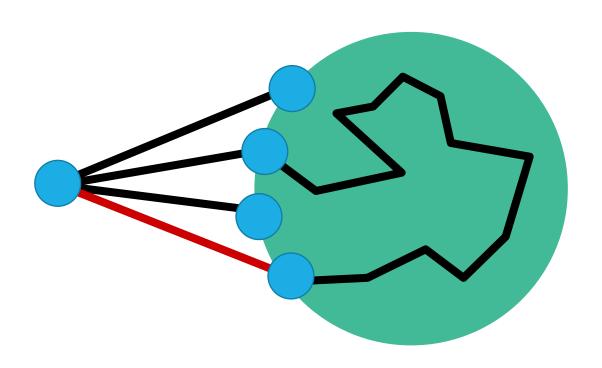
#### Kruskal's Algorithm

- For each node u
  - Make-set(u): create a set consisting of u
- For each edge (u, v), taken in non-decreasing order by weights
  - if Find-set(u)  $\neq$ Find-set(v) (i.e., u and v are not in the same set) then
    - Output edge (u, v)
    - Union(u, v): union the sets containing u and v into a single set

#### Kruskal's Algorithm Illustration



#### Kruskal's Algorithm Correctness



The lightest edge incident to a vertex must be in the MST

#### Kruskal's Algorithm Correctness

- Consider whether adding e creates a cycle:
  - If adding e to T creates a cycle C
    - Then e is the max weight edge in C
    - The cycle property ensures that e is not in the MST
  - If adding e = (u, v) to T does not create a cycle
    - Before adding e, the current MST can be divided into two trees T1 and T2 such that u in T1 and V in T2
    - e is the minimum-cost edge on the cut of T1 and T2
    - The <u>cut property</u> ensures that e is in the MST

#### Kruskal's Time Complexity

```
MST-KRUSKAL(G, w) // w = weights
A = empty // edge set of MST
for v in G.V
    MAKE-SET(v)
sort edges of G.E into non-decreasing order by weight w
for (u, v) in G.E, taken in non-decreasing order by weight
    if FIND-SET(u) ≠ FIND-SET(v)
    A = A U {u, v}
    UNION(u, v)
return A
```

- Disjoint-set data structure with union-by-rank (Textbook Ch. 21)
  - MAKE-SET: O(1)• FIND-SET:  $O(\log n)$ • UNION:  $O(\log n)$
  - The amortized cost of m operations on n elements (Exercise 21.4-4):  $O(m \log n)$
- Total complexity:  $O(m \log m) = O(m \log n)$

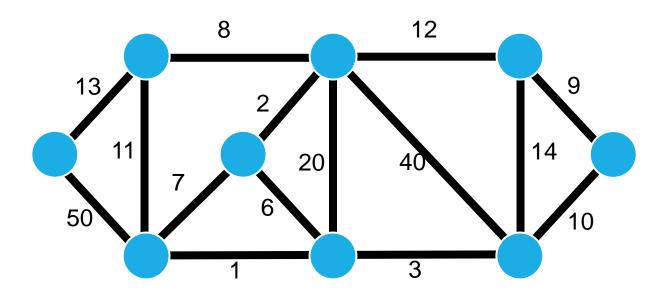


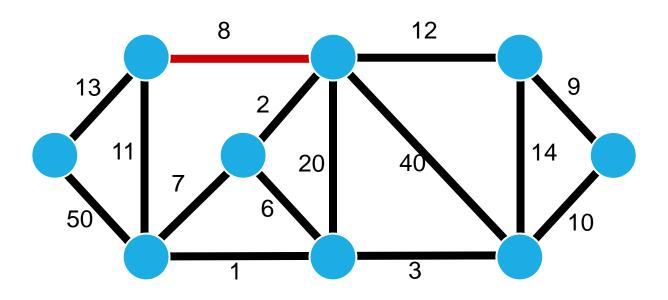
## Prim's Algorithm

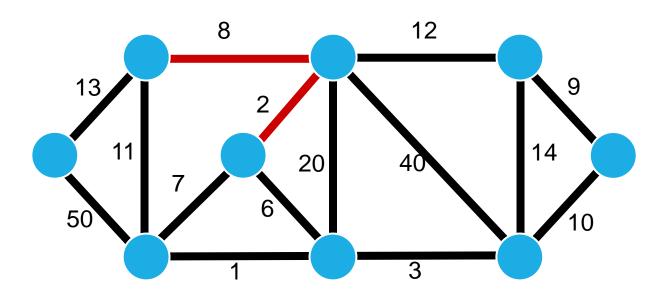
Textbook Chapter 23.2 – The algorithms of Kruskal and Prim

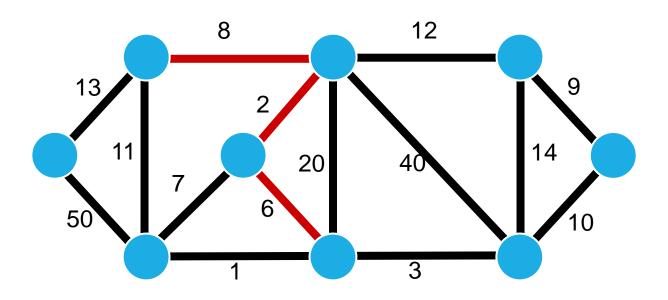
#### Prim's Algorithm

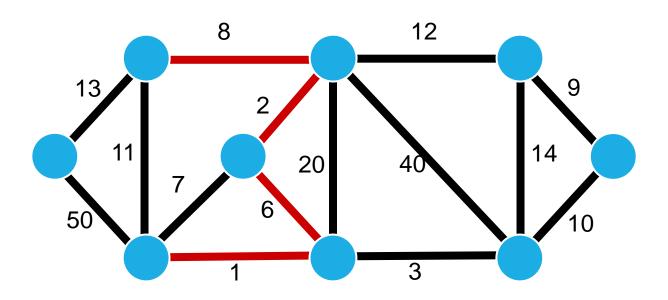
- Let *T* consist of an arbitrary node
- For i = 1 to n 1
  - add the least-weighted edge incident to the current subtree T that does not incur a cycle

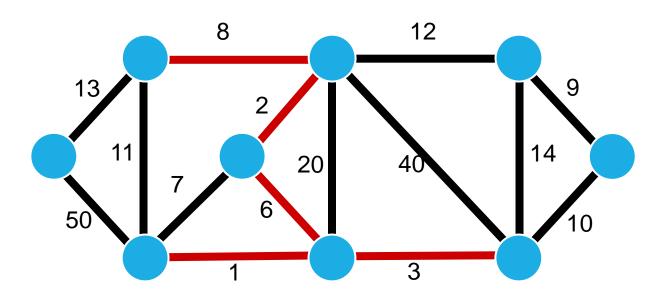


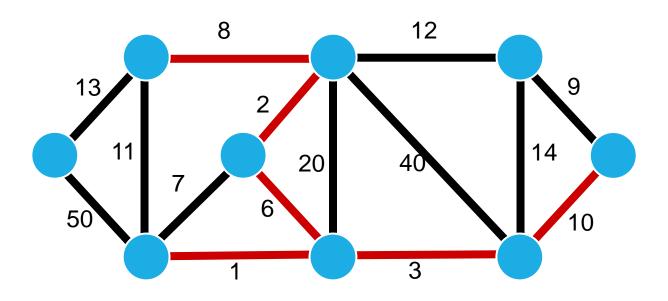


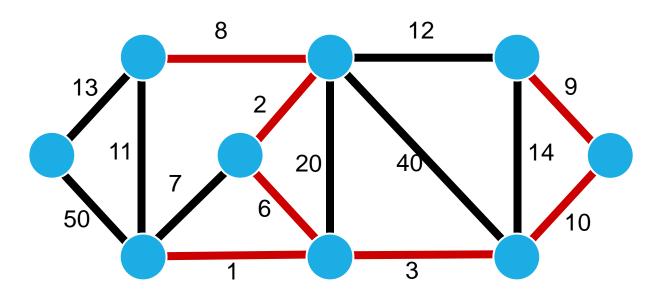


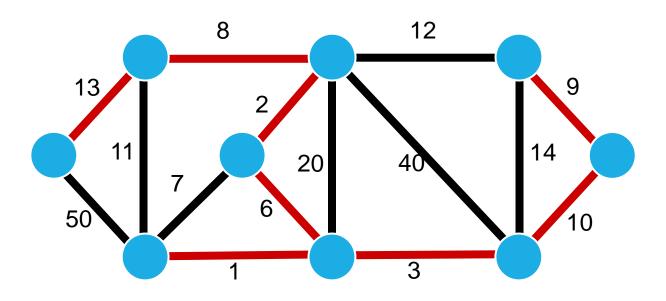




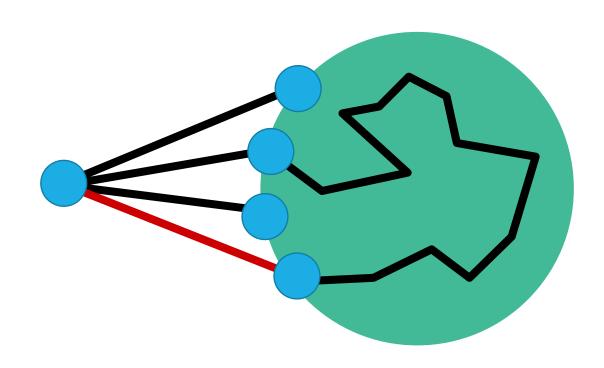








#### Prim's Algorithm Correctness



The lightest edge incident to a vertex must be in the MST

#### **Prim's Time Complexity**

```
MST-PRIM(G, w, r) // w = weights, r = root
  for u in G.V
    u.key = \infty
    u.\pi = NIL
  r.key = 0
  Q = G.V
  while Q \neq empty
                                                      n times
    u = EXTRACT-MIN(0)
                                                     O(\log n)
    for v in G.adj[u]
                                                     m times
      if v \in Q and w(u, v) < v.key
        v.\pi = u
        v.key = w(u, v) // DECREASE-KEY
                                                     O(\log n)
```

Binary min-heap (Textbook Ch. 6)

```
• BUILD-MIN-HEAP: O(n)
• EXTRACT-MIN: O(\log n)
• DECREASE-KEY: O(\log n)
```

• Total complexity:  $O(n \log n + m \log n) = O(m \log n)$ 

#### **Prim's Time Complexity**

```
MST-PRIM(G, w, r) // w = weights, r = root
  for u in G.V
    u.key = \infty
    u.\pi = NIL
  r.key = 0
  Q = G.V
  while Q \neq empty
                                                     n times
    u = EXTRACT-MIN(Q)
                                                     O(\log n)
    for v in G.adj[u]
                                                     m times
      if v \in Q and w(u, v) < v.key
        v.\pi = u
        v.key = w(u, v) // DECREASE-KEY
                                                     O(1)
```

- Fibonacci heap (Textbook Ch. 19)
  - BUILD-MIN-HEAP: O(n)
  - EXTRACT-MIN:  $O(\log n)$  (amortized)
  - DECREASE-KEY: O(1) (amortized)
- Total complexity:  $O(m + n \log n)$

#### **Concluding Remarks**

- Minimal Spanning Trees (MST)
  - Boruvka's Algorithm:  $O(m \log n)$
  - Kruskal's Algorithm:  $O(m \log n)$
  - Prim's Algorithm:  $O(m \log n)$  with binary min-heap
  - Prim's Algorithm:  $O(m + n \log n)$  with Fabonacci heap



## Question?

Important announcement will be sent to @ntu.edu.tw mailbox & post to the course website

Course Website: http://ada.miulab.tw

Email: ada-ta@csie.ntu.edu.tw