T A . p _ ' R)/ Slides credited Trowa uﬂ_ XHsu-Chun Hsiao, & Michael Tsai\

- ~ 1 » a L

Algorithm Design and Analysis

Graph Algorithms (2) iy
http://ada.miulab.tw

Yun-Nung (Vivian) Chen

Midterm Feedback

Mini-HW

NTU COOL

Helpful TAs

e Course recordings (access the channel here)
Instant feedback

* Grade release

e Course recordings (two classes & last year)
* Homework hints

* TA hour changes

https://www.youtube.com/channel/UCyB2RBqKbxDPGCs1PokeUiA?view_as=subscriber

Outline @%

* DFS Applications

e Connected Components

* Strongly Connected Components
» Topological Sorting

* Minimal Spanning Trees (MST)
* Boruvka’s Algorithm
* Kruskal’s Algorithm
* Prim’s Algorithm

Depth-First Search

Textbook Chapter 22.3 — Depth-first search

Depth-First Search (DFS)

e Search as deep as possible and then backtrack until finding a new path

Wi
i i—--’

il
nnn't'l'
&) ‘ﬂ
1 mh——
A :

nooEamn(H HnNNNon-
o /mmmvew time / finishing time

Connected Components

Connected Components Problem

* Input: agraph G = (V,E)
e Qutput: a connected component of G
* a maximal subset U of V' s.t. any two nodes in U are connected in G

Connected Components

Problem Complexity

Upper bound = O(m + n)

Lower bound = Q(m + n)

Strongly Connected Components

Textbook Chapter 22.5 — Strongly connected components

Strongly Connected Components

* Input: a directed graph G = (V,E)
e Qutput: a connected component of G
* a maximal subset U of V s.t. any two nodes in U are reachable in G

- =~
- ~~

~ Why must the strongly
: connected components of
~~.._ agraph be disjoint?

~
S~

Algorithm

* Step 1: Run DFS on G to obtain the finish time v. f forv € V.

» Step 2: Run DFS on the transpose of G where the vertices I/ are processed in
the decreasing order of their finish time.

e Step 3: output the vertex partition by the second DFS

Transpose of A Graph

Example lllustration

G
Algorithm Correctness (g ;It‘
C

Lemma
Let C be the strongly connected component of G (and G') that contains the node u

with the largest finish time w. f. Then C cannot have any incoming edge from any
node of G not in C.

* Proof by contradiction

* Assume that (v, w) is an incoming edge to C.

* Since C is a strongly connected component of G, there cannot be any path from any
nodeof CtovingG.

* Therefore, the finish time of v has to be larger than any node in C, including u. 2
v.f > u. f, contradiction

Algorithm Correctness

Theorem

By continuing the process from the vertex u* whose finish time u”. f Is the largest
excluding those in C, the algorithm returns the strongly connected components.

* Practice to prove using induction

Time Complexity

* Step 1: Run DFS on G to obtain the finish time v. f forv € V.

» Step 2: Run DFS on the transpose of G where the vertices I/ are processed in
the decreasing order of their finish time.

e Step 3: output the vertex partition by the second DFS

Time Complexity: O(n + m)

Problem Complexity

Upper bound = O(m + n)

Lower bound = Q(m + n)

Topological Sort

Textbook Chapter 22.4 — Topological sort

Directed Graph

Directed Acyclic Graph (DAG)

* Definition
* a directed graph without any directed cycle

a—
f\ﬁ"

23

Topological Sort Problem

* Taking courses should follow the specific order
* How to find a course taking order?

Mg £ EG=FsllN

5T SR AR S

TR Z2

B EE

Topological Sort Problem

* Input: a directed acyclic graph ¢ = (V, E)

e Qutput: a linear order of V s.t. qll edges of G going from lower-indexed nodes
to higher-indexed nodes (/=2 f)

7~

7~
O 0-0-0-0-0

Algorithm

* Run DFS on the input DAG G.
e Qutput the nodes in decreasing order of their finish time.

DFS (G) DFS-Visit (G, u)
for each vertex u 1n G.V time = time + 1
u.color = WHITE ,
. u.d = time
u.pl1 = NIL
fime = 0 u.color = GRAY
for each vertex u in G.V for each v in G.Adj[u] (outgoilng)
if u.color == WHITE if v.color == WHITE
DFS-VISIT (G, u) v.pi = u

DFS-VISIT (G, V)
u.color = BLACK
time = time + 1

u.f = time // finish time

Example lllustration

7~ ™ ~ ™ ¢
6 0-0-6-0-0 Q\\ ©
_/V 0
O '\en

>

Example lllustration

o

Q\oa

% /"\p

. Y
T

Time Complexity

* Run DFS on the input DAG G. ©(n +m)

e Qutput the nodes in decreasing order of their finish time.
* As each vertex is finished, insert it onto the front of a linked list ©(n)
* Return the linked list of vertices

DFS-Visit (G, u)
Time Complexity: O(n + m) time = time + 1
u.d = time
u.color = GRAY
DF'S (G) . .
for each vertex u in G.V tor each v in G.Ad]{u]
u.color = WHITE if v.color == WHITE
u.pi = NIL v.pli = u
time = 0 DFS-VISIT (G, V)
for each vertex u in G.V u.color = BLACK
if u.color == WHITE time = time + 1
DFS-VISIT (G, u) u.f = time // finish time

Algorithm Correctness

Lemma 22.11
A directed graph is acyclic < a DFS yields no back edges.

* Proof

e 2:suppose there is a back edge (u, v)
* visan ancestor of u in DFS forest

* There is a path from v to u in G and (u, v) completes the cycle

e & :suppose thereis acycle ¢
* Let v be the first vertex in ¢ to be discovered and u is a predecessor of vin ¢
* Upon discovering v the whole cycle from v to u is WHITE
* At time v.d, the vertices of ¢ form a path of white vertices from v to u
* By the white-path theorem, vertex u becomes a descendant of v in the DFS forest
* Therefore, (u, v) is a back edge !

< 2 White Path Theorem: In a DFS forest of G, v is a
descendant of u in the forest < at the time u.d
that the search discovers u, there is a path from u
to v in G consisting entirely of WHITE vertices

Algorithm Correctness

Theorem 22.12

The algorithm produces a topological sort of the input DAG. That is, if (u,v) is a
directed edge (from u to v) of G, then u. f > v.f.

e Proof

* When (u, v) is being explored, u is GRAY and there are three cases for v:
* Case 1 - GRAY

* (u,v) is a back edge (contradicting Lemma 22.11), so v cannot be GRAY
* Case 2—-WHITE

* v becomes descendant of u
* v will be finished before u . f <u.f

* Case 3 — BLACK
* vis already finished wo.f<uf

Problem Complexity

Upper bound = O(m + n)

Lower bound = Q(m + n)

Discussion

* Since cycle detection becomes back edge detection (Lemma 22.11), DFS can
be used to test whether a graph is a DAG

* Is there a topological order for cyclic graphs?

* Given a topological order, is there always a DFS traversal that produces such
an order?

Minimal Spanning Tree (MST)

Textbook Chapter 23 — Minimal Spanning Trees

Spanning Tree /‘\

* Definition 1I 1
* a subgraph that is a tree and connects all vertices
e Exactlyn — 1 edges
* Acyclic
* There can be many spanning trees of a graph
* BFS and DFS also generate spanning trees

* BFS tree is typically “short and bushy”
* DFS tree is typically “long and stringy”

Minimal Spanning Tree Problem

* Input: a connected n-node m-edge graph G with edge weights w
* Qutput: a spanning tree T of G with minimum w(T)

Minimal Spanning Tree Problem

* Q: What if the graph is unweighted?
Trivial
* Q: What if the graph contains edges with negative weights?

Add a large constant to every edge; a MST remains the same

Uniqueness of MST

Theorem: MST Is unique If all edge weights are distinct

* Proof by contradiction

* Suppose there are two MSTs A and B

 Let e be the least-weight edge in AUB and e is not in both
WLOG, assume eisin A4
Add e to B; {e}UB contains a cycle C
B includes at least one edge e’ that is notin 4 buton C
Replacing e’ with e yields a MST with less cost

If edge weights are not all distinct, then the (multi-)set of weights in MST Is unique

Boruvka’s Algorithm

Inventor of MST

* Otakar Boruvka
* Czech scientist
* Introduced the problem

* Gave an O(mlogn) time algorithm
* The original paper was written in Czech in 1926
* The purpose was to efficiently provide electric coverage of Bohemia

Boruvka’s Algorithm

* Repeat the below procedure until the resulting graph becomes a single node
* For each node u, mark its lightest incident edge

* From the marked edges form a forest F, add the edges of F into the set of edges to be
reported

e Contract each maximal subtree of F into a single node

Boruvka’s Algorithm lllustration

Algorithm Correctness

Claim: If (u, v) is the lightest edge incident to u in G, (u, v) must belong

to any MST of G

* Proof via contradiction
 An MST T of G that does not contain (u, v)
* Acycle C =T U (u,v) contains an edge (u, w) in C that has larger weight than (u, v)
 T'" =T U (u,v)\(u,w) must be a spanning tree of G lighter than T

Time Complexity

* The recurrence relation

T(m,n) <T(m,n/2)+ O(m)

* We check all edges in each phase O(m)
* After each contraction phase, the number of nodes is reduced by at least one half

* Time complexity: O(’m log n)

Cycle Property

Let C be any cycle in the graph G, and let e be an edge with
the maximum weight on C. Then the MST does not contain e.
 For simplicity, assume all edge weights are distinct

* Proof by contradiction

* Suppose e is in the MST
Removing e disconnects the MST into two components T1 and T2
There exists another edge e’ in C that can reconnect T1 and T2
Since w(e’) < w(e), the new tree has a lower weight
Contradiction!

Cut Property

Let C be a cut in the graph, and let e be the edge with the

minimum cost in C. Then the MST contains e.

« Cut = a partition of the vertices
 For simplicity, assume all edge weights are distinct

* Proof by contradiction
* Suppose e is not in the current MST
* Adding e creates a cycle in the MST
* There exists another edge e’ in C that can break the cycle
* Since w(e’) > w(e), the new tree has a lower weight
e Contradiction!

Kruskal’s Algorithm

Textbook Chapter 23.2 — The algorithms of Kruskal and Prim

Kruskal’s Algorithm

* For each node u
* Make-set(u): create a set consisting of u

 For each edge (u, v), taken in non-decreasing order by weights
e if Find-set(u) #Find-set(v) (i.e., u and v are not in the same set) then
e Output edge (u, v)
e Union(u, v): union the sets containing u and v into a single set

Kruskal’s Algorithm lllustration

Kruskal’s Algorithm Correctness

Kruskal’s Algorithm Correctness

* Consider whether adding e creates a cycle:
e Ifadding e to T creates a cycle C
* Then e is the max weight edge in C
* The cycle property ensures that e is not in the MST
* If adding e = (u, v) to T does not create a cycle

* Before adding e, the current MST can be divided into two trees T1 and T2 such
thatuinTland VinT2

e e is the minimum-cost edge on the cut of T1 and T2
 The cut property ensures that e is in the MST

Kruskal’s Time Complexity

MST-KRUSKAL (G, w) // w = weights

A = empty // edge set of MST
for v in G.V

MAKE-SET (v)

sort edges of G.E into non-decreasing order by weight w O(mlogm)

for (u, v) 1in G.E, taken 1n non-decreasing order by weight m times
1f FIND-SET (u) # FIND-SET (v)
A=27AU {u, v}
UNION (u, wv)
return A

* Disjoint-set data structure with union-by-rank (Textbook Ch. 21)
* MAKE-SET: CKI)
* FIND-SET: O(logn)
* UNION: O(logn)
* The amortized cost of m operations on n elements (Exercise 21.4-4): O(mlogn)

* Total complexity: O(mlogm) = O(mlogn)

Prim’s Algorithm

Textbook Chapter 23.2 — The algorithms of Kruskal and Prim

Prim’s Algorithm

* Let T consist of an arbitrary node
Fori=1ton—1

* add the least-weighted edge incident to the current subtree T that does not incur a
cycle

Prim’s Algorithm lllustration

o—0—©

[
o—0—@

Prim’s Algorithm lllustration

o—0—©

[
o—0—@

Prim’s Algorithm lllustration

o—0—©

[
o—0—@

Prim’s Algorithm lllustration

o—0—©

[
o—0—@

Prim’s Algorithm lllustration

o—0—©

I
o—0—@

Prim’s Algorithm lllustration

o—0—©

I
o—0—@

Prim’s Algorithm lllustration

o—0—©

I
o—0—@

Prim’s Algorithm lllustration

o—0—©

I
o—0—@

Prim’s Algorithm lllustration

o—0—©

I
o—0—@

Prim’s Algorithm Correctness

Prim’s Time Complexity

MST-PRIM(G, w, r) // w = weights, r = root
for u in G.V
u.key = «
u.m o= NIL O(n)
r.key = 0
Q = G.V
while Q # empty n times
u = EXTRACT-MIN (Q) O(logn)
for v in G.adj[u] m times
if v € Q and w(u, v) < v.key
V.II = U
v.key = w(u, v) // DECREASE-KEY O(logn)

* Binary min-heap (Textbook Ch. 6)
e BUILD-MIN-HEAP: ()@n
* EXTRACT-MIN: ((logn)
* DECREASE-KEY: ()(logn)

* Total complexity: O(nlogn + mlogn) = O(mlogn)

Prim’s Time Complexity

MST-PRIM(G, w, r) // w = weights, r = root
for u in G.V
u.key = «
u.m = NIL O(n)
r.key = 0
Q = G.V
while Q # empty n times
u = EXTRACT-MIN (Q) O(logn)
for v in G.adj[u] m times
if v € Q and w(u, v) < v.key
V.II = u
v.key = w(u, v) // DECREASE-KEY Cxl)

* Fibonacci heap (Textbook Ch. 19)

* BUILD-MIN-HEAP: O(n)
e EXTRACT-MIN:O(logn) (amortized)
* DECREASE-KEY: (1) (amortized)

* Total complexity: O(m + nlogn)

Concluding Remarks

* Minimal Spanning Trees (MST)
* Boruvka’s Algorithm: O(mlogn)
* Kruskal’s Algorithm: O(mlogn)
* Prim’s Algorithm: O(mlogn) with binary min-heap
* Prim’s Algorithm: O(m + nlogn) with Fabonacci heap

Question?

Important announcement will be sent to
@ntu.edu.tw mailbox & post to the course website

Course Website: http://ada.miulab.tw
Email: ada-ta@csie.ntu.edu.tw

