Algorithm Design and Analysis
Midterm Review

http://ada.miulab.tw
Yun-Nung (Vivian) Chen

Announcement

e Mini-HW 6 released
 Due on 11/28 (Thur) 14:20

e Homework 3 released soon
 Dueon 12/12 (Thur) 14:20 (three weeks)

Mini-HW 6

Given a free tree (a tree without any designated root).

Our goal is to choose a vertex to be the root of the tree, making the height of the tree as minimal as

possible.

Consider all the simple paths on the tree. Let the length of the longest simple paths on the tree be r,
and a set § containing all the vertices on all of the longest simple paths.

Please simply explain the correctness of the following statement.

(1) (20%) The height of the tree with arbitrary root > | % |.

(2) (40%) The vertex v we choose to minimize the height must satisfy: v € §

(3) (40%) The middle vertex of one of the longest simple paths is always an answer to the problem.

)

Outline @W&M

* Graph Basics

 Graph Theory

* Graph Representations
e Graph Traversal

e Breadth-First Search (BFS)
e Depth-First Search (DFS)
* DFS Applications
* Connected Components
* Strongly Connected Components
» Topological Sorting

Graph Basics
* A graph G is definedas G = (V, F)

* V: a finite, nonempty set of vertices
* E: a set of edges / pairs of vertices

vV =1{1,2,3,4,5)
E=1{(1,2),(1,3),(1,4),(2,4),(2,5), (4,5)}

Graph Basics

* Graph type
* Undirected: edge (u,v) = (v,u)
* Directed: edge (u, v) goes from vertex u to vertex v; (u,v) # (v,u)
* Weighted: edges associate with weights

V =1{1,2,3,4,5} V =1{1,2,3,4,5}
E=1{(1,2),(1,3),(1,4), E={(21),(1,3),(4,1),
(2,4),(2,5), (4,5)} (2,4),(2,5), (5,4)}

Graph Basics

« Adjacent (TH#T)
e If there is an edge (U, V), then u and v are adjacent.

* Incident ({EFR)

* If there is an edge (U, V), the edge(u, v) is incident from u and is
incident to v.

* Subgraph (&)

e Ifagraph G' = (V',E") is a subgraphof G = (V,E), then V' € V and
E'cCE

Graph Basics

* Degree
* The degree of a vertex u is the number of edges incident on u
* In-degree of u: #edges (x, u) in a directed graph
* Qut-degree of u: #edges (u, x) in a directed graph
* Degree = in-degree + out-degree
* Isolated vertex: degree =0

(2 di)

[E| =

2

Graph Basics

e Path

* a sequence of edges that connect a sequence of vertices

* If there is a path from u (source) to v (target), there is a sequence of edges
(u, il)) (i1; iZ)) r) (ik—l’ ik)! (ik' U)
e Reachable: v is reachable from u if there exists a path from u to v

* Simple Path

 All vertices except for u and v are all distinct
* Cycle

* Asimple path where u and v are the same

e Subpath

* A subsequence of the path

Graph Basics

* Connected

* Two vertices are connected if there is a path between them

* A connected graph has a path from every vertex to every other
* Tree

* a connected, acyclic, undirected graph
* Forest

* an acyclic, undirected but possibly disconnected graph

Graph Basics

* Theorem. Let G be an undirected graph. The following statements
are equivalent:
* G is atree
* Any two vertices in G are connected by a unique simple path

* G is connected, but if any edge is removed from E, the resulting graph is
disconnected.

* G isconnected and |E| = |V]| — 1
* (; is acyclic,and |E| = |V]| =1

* G is acyclic, but if any edge is added to E, the resulting graph contains a
cycle

Proofs in Textbook Appendix B.5

Graph Theory

Seven Bridges of Konigsberg (t1ER1%E)

* How to traverse all bridges where each one can only be passed through once

Euler Path and Euler Tour (—£EE&E)

* Euler path

e Can you traverse each edge in a connected graph exactly once without
lifting the pen from the paper?

* Euler tour
e Can you finish where you started?

Euler path [" ¢ Euler path II's Euler path|'s
Euler tour "t Euler tour |7t Euler tour |1’y

Euler Path and Euler Tour

Is It possible to determine whether a graph has an Euler path or an Euler tour,
without necessarily having to find one explicitly?

e Solved by Leonhard Euler in 1736
* G has a Euler path iff G has exactly O or 2 odd vertices
* G has a Euler tour iff all vertices must be even vertices

Even vertices = vertices with even degrees
Odd vertices = vertices with odd degrees

Hamiltonian Path

* Hamiltonian Path
* A path that visits each vertex exactly once

* Hamiltonian Cycle
* A Hamiltonian path where the start and destination are the same

* Both are NP-complete

MR-ty

Real-World Applications

* Modeling applications using graph theory
* What do the vertices represent?
* What do the edges represent?
* Undirected or directed?

Michelle
Obama

Knowledge Graph

Social Network

Graph Representations

Graph Representations

* How to represent a graph in computer programs?

e Two standard ways to represent a graph G = (V, E)
e Adjacency matrix
* Adjacency list

Adjacency Matrix

* Adjacency matrix =V X V matrix A with A|u]|v] = 1if (u,v) isan
edge

 For undirected graphs, 4 is symmetric; i.e., A = AT
 If weighted, store weights instead of bits in A

Complexity of Adjacency Matrix

* Space: ©(n?)

* Time for querying an edge: ©(1)

* Time for inserting an edge: ©(1)

* Time for deleting an edge: o(1)

e Time for listing all neighbors of a vertex: ©(n)

* Time for identifying all edges: ©(n?)

* Time for finding in-degree and out-degree of a vertex?

Adjacency List

* Adjacency lists = vertex indexed array of lists

* One list per vertex, where foru € V, A|u] consists of all vertices
adjacent tou

1 —> 2 —> 3

2 —> 1 — 4 —> 5
3 —> 1 —> 4 —> 6
4 —> 2 —> 3 —> 6
S —> 2

6 —_ 3 — /]

If weighted, weights are also stored in adjacency lists

Complexity of Adjacency List

* Space: O(m + n)

* Time for querying an edge: ©(deg) W O(log deg
* Time for inserting an edge: ©(1) = O(logdeg
* Time for deleting an edge: ©(deg) ® O(log deg
* Time for listing all neighbors of a vertex: ©(deg
* Time for identifying all edges: ©(m + n)

* Time for finding in-degree and out-degree of a vertex?

)
)
)
)

Representation Comparison

* Matrix representation is suitable for dense graphs
e List representation is suitable for sparse graphs

* Besides graph density, you may also choose a data structure based on the
performance of other operations

List a

Query an Insert an Delete an : Identify all
Space edge edge edge vertex's edges
g J g neighbors g
Adjacency Matrix O(n?) O(1) O(1) (1) O(n) ©(n?)
. . e(d e(1) ©(deg)
Adjacency List ©(m + n) (deg) O(deg) O(m +n)
O(logdeg) O(logdeg) O(log deg)

Graph Traversal

Textbook Chapter 22 — Elementary Graph Algorithms

Graph Traversal

* From a source vertex, systematically follow the edges of a graph to
visit all reachable vertices of the graph

* Useful to discover the structure of a graph

* Standard graph-searching algorithms
* Breadth-First Search (BFS, EE BT =
* Depth-First Search (DFS, FEBTIE =)

Breadth-First Search

Textbook Chapter 22.2 — Breadth-first search

Breadth-First Search (BFS)

220 ;1|;h_

W 1 1 I e i

Breadth-First Search (BFS)

* Input: directed/undirected graph G = (V/, E) and source s

* Qutput: a breadth-first tree with root s (Tgps) that contains all reachable
vertices

 v.d: distance fromstov, forallv eV
* Distance is the length of a shortest path in G
* v.d = o if vis not reachable from s
* v.d is also the depth of v in Tgpg
 v.m = u if (u,v) is the last edge on shortest path to v
* uis v’'s predecessor in Tggg

Breadth-First Tree

* Initially Tgrg contains only s

* As v is discovered from u, v and (u, v) are

added to TBFS

* Tgpg is not explicitly stored; can be reconstructed

fromv.m
* Implemented via a FIFO queue

* Color the vertices to keep track of progress:
* GRAY: discovered (first time encountered)
e BLACK: finished (all adjacent vertices discovered)

e WHITE: undiscovered

BFS (G, s)
for each vertex u in G.V-{s} (j(n)
u.color = WHITE
u.d = oo
u.pi = NIL
s.color = GRAY

s.d = 0

s.pi = NIL

Q = {}
ENQUEUE (Q, s)
while Q! = {}

u = DEQUEUE (Q)
for each v in G.Adj[u] ()(deg(u))
if v.color == WHITE
v.color = GRAY
v.d = u.d + 1
vV.pl = u
ENQUEUE (Q, v)
u.color = BLACK

» O (n + Z (deg(u) + 1)) = O(’I’L + m)

BFES lllustration

3

v

2
-

2 3

wermwr; Za
- () mwso
SOROENGOOLE

BFES lllustration

r) 4 u r N 4 u

3 3 3
v w X y 1% w X y
r) t u

o $oo

w X y

Shortest-Path Distance from BFS

* Definition of (s, v): the shortest-path distance from s to v = the
minimum number of edges in any path from s to v

* |f there is no path from s to v, then 6 (s, v) =

* The BFS algorithm finds the shortest-path distance to each
reachable vertex in a graph G from a given source vertex s € V.

Shortest-Path Distance from BFS

Lemma 22.1
Let G = (V,E) be a directed or undirected graph, and let s € V be an arbitrary

vertex. Then, for any edge (u,v) € E, 6(s,v) < 6(s,u) + 1.
* Proof s-v HIERAR EE 18— E B /) JRE s -u BT R AT B 1 EP A+ 1

e Case 1: u is reachable from s
e s-u-visa path from s to v with length 6(s,u) + 1
* Hence, 6(s,v) < 6(s,u) +1

e Case 2: u is unreachable from s
* Then v must be unreachable too.

* Hence, the inequality still holds. 5(s,u)

Shortest-Path Distance from BFS

Lemma 22.2
Let ¢ = (V,E) be a directed or undirected graph, and suppose BFS is run on G from

a given source vertex s € V. Then upon termination, for each vertex v € V, the value
v.d computed by BFS satisfies v.d = 6(s, v).
* Proof by induction BFS A0 (B EA R Z R EIF R

Inductive hypothesis: v.d = 6 (s, v) after n ENQUEUE ops
* Holds whenn = 1:sisin the queue and v.d = o for all v € V{s}
 Aftern + 1 ENQUEUE ops, consider a white vertex v that is discovered during the
search from a vertex u
vd=ud+1> 5(8, ’u,) -+ 1 (byinduction hypothesis)
> 0(s,v) (by Lemma 22.1)

* Vertex v is never enqueued again, so v.d never changes again

Shortest-Path Distance from BFS

Lemma 22.3
Suppose that during the execution of BFS on a graph ¢ = (V, E), the queue Q
contains the vertices (v,, v,, ..., V), Where v, is the head of Q and v, is the tail. Then,

vp.d <vy.d+landv;.d <v; ;. dforl <i<r.

Q PERZE—EEFH 16 < Q P& —FE T B+1
Q A FZ A0 18 < Q P E+1EHd 18

* Proof by induction
Inductive hypothesis:v,..d < v;.d + 1 and v;.d < v;,,.d after n queue ops
* Holds when Q = (s).
* Consider two operations for inductive step:
* Dequeue op: when Q = (v, v,, ..., 1) and dequeue v,
* Enqueue op: when Q = (v, vy, ..., 1) and enqueue v,

Shortest-Path Distance from BFS

Inductive H1 v,.d <v1.d+1 (QFRE—EHAME < QFFE—E# 7 lE+1)
hypothesis: H2 v;.d < v;y1.d,e =1,--- ,r — 1 (QFF 1E#A 1E < Q FF+1 i 47d [5)
* Dequeue op

----- v,.d < v1.d + 1 (induction hypothesis H1)
C < vo.d + 1 (induction hypothesis H2) = H1 holds
b N R R

-,r—1 - H2 holds

* Enqueue o
.._(i__ P Let u be v,,’s predecessor, Vr4+1.d = u.d+1

CL_"‘__:----- Since u has been removed from @, the new head v,

i__u__:------ satisfies u.d < vy.d (induction hypothesis H2)

Vpp1.d <u.d+1<wv.d+1 > H1 holds
vr.d < u.d + 1 (induction hypothesis H1)
Vpd < ud+1=v,11.d

v;.d =vi11.d,i=1,---,7 > H2 holds

Shortest-Path Distance from BFS

Corollary 22.4
Suppose that vertices v; and v; are enqueued during the execution of BFS, and that
v; IS enqueued before v;. Then v;.d < v;.d at the time that v; Is enqueued.

* Proof Zv v, E I Aqueue 23 v;.d < v;.d

* Lemma 22.3 proves thatv;.d < v;,;.dforl1 <i<r
* Each vertex receives a finite d value at most once during the course of BFS
* Hence, this is proved.

Shortest-Path Distance from BFS

Theorem 22.5 — BFS Correctness

Let G = (V,E) be a directed or undirected graph, and suppose that BFS is run on G
from a given source vertex s € V.

1) BFS discovers every vertex v € V that is reachable from the source s

2) Upon termination, v.d = §(s,v) forallv eV

3) For any vertex v # s that is reachable from s, one of the shortest paths from s to
v is a shortest path from s to v. followed by the edge (v.m, v)

* Proof of (1)

» All vertices v reachable from s must be discovered; otherwise they would have v.d =
o > §(s,v). (contradicting with Lemma 22.2)

Shortest-Path Distance from BFS

(2 v.d=90(s,v)VveV
* Proof of (2) by contradiction

* Assume some vertices receive d values not equal to its shortest-path distance

* Let v be the vertex with minimum & (s, v) that receives such an incorrect d value;
clearlyv # s

* By Lemma 22.2, v.d = 6(s,v), thus v.d > 6(s,v) (v must be reachable)

* Let u be the vertex immediately preceding v on a shortest path from s to v, so
6(s,v) =6(s,u) +1

* Because 8(s,u) < 8(s,v) and v is the minimum 8(s, v), we have u.d = 6(s, u)

e v.d>8G,v)=56ds,u)+1=ud+1

Shortest-Path Distance from BFS

(2 v.d=90(s,v)VveV
* Proof of (2) by contradiction (cont.)
cv.d>0G,v)=56ds,u)+1=ud+1
* When dequeuing u from Q, vertex v is either WHITE, GRAY, or BLACK
e WHITE: v.d = u.d + 1, contradiction
e BLACK: it was already removed from the queue
* By Corollary 22.4, we have v.d < u.d, contradiction
* GRAY: it was painted GRAY upon dequeuing some vertex w
* Thusv.d = w.d + 1 (by construction)

* w was removed from Q earlier than u, sow.d < u.d (by Corollary 22.4)
e v.d =w.d+1<u.d+ 1, contradiction

* Thus, (2) is proved.

Shortest-Path Distance from BFS

(3) For any vertex v # s that is reachable from s, one of the shortest paths from s to
v is a shortest path from s to v. followed by the edge (v.m, v)

* Proof of (3)

e Ifv.m =u,thenv.d = u.d + 1. Thus, we can obtain a shortest path from s to v by
taking a shortest path from s to v.m and then traversing the edge (v.m, v).

* BF'S (G,

BFS Forest

s) forms a BFS tree with all reachable v from s
* We can extend the algorithm to find a BFS forest containing every vertex in G

BFS-Visit (G, s)
s.color = GRAY

collection of BFS trees
BES (G)
for u in G.V
u.color = WHITE

u.d = o
u.n = NIL

for s in G.V
if(s.color == WHITE)

// build a BFS tree
BFS-Visit (G, s)

//explore full graph and builds up a

s.d =0
s.nm = NIL
Q = empty

ENQUEUE (Q, s)
while Q # empty
u = DEQUEUE (Q)
for v in G.adj[u]
if v.color == WHITE
v.color = GRAY
v.d = u.d + 1
V.II = u
ENQUEUE (Q, V)

u.color = BLACK

Depth-First Search

Textbook Chapter 22.3 — Depth-first search

Depth-First Search (DFS)

* Search as deep as possible and then backtrack until fmdmg a new path

i

nh I-- I.- &

0oARaERTH :l::l: I !H:Iil L
- /'I'imestarrms:discovery time / finishing time

DFS Algorithm

// Explore full graph and builds up a DFS-Visit (G, u) (D(deg(u)—%])
collection of DFS trees time = time + 1
DE'S (G) : : :
.d =t d t
for each vertex u in G.V ()(n) - ime // discover time
u.color = WHITE u.color = GRAY
u.pi = NIL for each v in G.Adj[u]
time = 0 // global timestamp if v.color == WHITE
fo? each vertex u in G.V v.pi = u
1f u.color == WHITE DFS-VISIT (G, v)
DFS-VISIT (G, u)
u.color = BLACK
time = time + 1
* Implemented via recursion (stack) u.f = time // finish time

* Color the vertices to keep track of progress:
e GRAY: discovered (first time encountered)

m» O (n + Z (deg(u) + 1)) — O(n e m)

e BLACK: finished (all adjacent vertices discovered)
 WHITE: undiscovered

DFS Properties

e Parenthesis Theorem

* Parenthesis structure: represent the discovery of vertex u with a left parenthesis “(u”
and represent its finishing by a right parenthesis “u)”. In DFS, the parentheses are
properly nested.

 White Path Theorem
* |n a DFS forest of a directed or undirected graph G = (V, E),

e vertex v is a descendant of vertex u in the forest < at the time u. d that the search
discovers u, there is a path from u to v in G consisting entirely of WHITE vertices

* Classification of Edges in G
* Tree Edge
* Back Edge
* Forward Edge
* Cross Edge

DFS Properties

e Parenthesis Theorem

* Parenthesis structure: represent the discovery of vertex u with a left parenthesis “(u”
and represent its finishing by a right parenthesis “u)”. In DFS, the parentheses are
properly nested.

Properly nested: (x (y y) X)
Not properly nested: (x (y X) y)

N I

i ééﬁ‘réé%ééll()lllll21l3ll4ll51l6
GO GEDNWWD 6V w D

Proof in textbook p. 608

DFS Properties

* White Path Theorem
* |n a DFS forest of a directed or undirected graph G = (V, E),

* vertex v is a descendant of vertex u in the forest <& at the time u. d that the
search discovers u, there is a path from u to v in G consisting entirely of WHITE
vertices

* Proof.
c
e Since vis adescendantofu, u.d < v.d
* Hence, v is WHITE at time u.d

* |In fact, since v can be any descendant of u, any vertex on the path from u to v are
WHITE at time u. d

» & (textbook p. 608)

DFS Properties

e Classification of Edges in G

* Tree Edge (GRAY to WHITE)
* Edges in the DFS forest
* Found when encountering a new vertex v by exploring (u, v)

* Back Edge (GRAY to GRAY)

* (u,v), from descendant u to ancestor v in a DFS tree

* Forward Edge (GRAY to BLACK)

* (u,v), from ancestor u to descendant v. Not a tree edge.

* Cross Edge (GRAY to BLACK)

* Any other edge between trees or subtrees. Can go between vertices in same DFS tree or in
different DFS trees

In an undirected graph, back edge = forward edge.
To avoid ambiguity, classify edge as the first type in the list that applies.

DFS Properties

* Edge classification by the color of v when visiting (u, v)
 WHITE: tree edge
* GRAY: back edge

* BLACK: forward edge or cross edge
 u.d < v.d - forward edge
 u.d > v.d - cross edge

Theorem 22.10
In DFS of an undirected graph, there are only tree edges and back edges without
forward and cross edge.

DFS Applications

* Connected Components
 Strongly Connected Components
* Topological Sort

Connected Components

Connected Components Problem

* Input: agraph G = (V,E)
e Qutput: a connected component of G
* a maximal subset U of V' s.t. any two nodes in U are connected in G

Connected Components

Problem Complexity

Upper bound = O(m + n)

Lower bound = Q(m + n)

Strongly Connected Components

Textbook Chapter 22.5 — Strongly connected components

Strongly Connected Components

* Input: a directed graph G = (V,E)
e Qutput: a connected component of G
* a maximal subset U of V s.t. any two nodes in U are reachable in G

- =~
- ~~

~ Why must the strongly
: connected components of
~~.._ agraph be disjoint?

~
S~

Algorithm

* Step 1: Run DFS on G to obtain the finish time v. f forv € V.

» Step 2: Run DFS on the transpose of G where the vertices I/ are processed in
the decreasing order of their finish time.

e Step 3: output the vertex partition by the second DFS

Transpose of A Graph

Example lllustration

G
Algorithm Correctness (g ;It‘
C

Lemma
Let C be the strongly connected component of G (and G') that contains the node u

with the largest finish time w. f. Then C cannot have any incoming edge from any
node of G not in C.

* Proof by contradiction

* Assume that (v, w) is an incoming edge to C.

* Since C is a strongly connected component of G, there cannot be any path from any
nodeof CtovingG.

* Therefore, the finish time of v has to be larger than any node in C, including u. 2>
v.f > u. f, contradiction

Algorithm Correctness

Theorem

By continuing the process from the vertex u* whose finish time u”. f Is the largest
excluding those in C, the algorithm returns the strongly connected components.

* Practice to prove using induction

Time Complexity

* Step 1: Run DFS on G to obtain the finish time v. f forv € V.

» Step 2: Run DFS on the transpose of G where the vertices I/ are processed in
the decreasing order of their finish time.

e Step 3: output the vertex partition by the second DFS

Time Complexity: O(n + m)

Problem Complexity

Upper bound = O(m + n)

Lower bound = Q(m + n)

Topological Sort

Textbook Chapter 22.4 — Topological sort

Directed Graph

Directed Acyclic Graph (DAG)

* Definition
* a directed graph without any directed cycle

a—
f\ﬁ"

70

Topological Sort Problem

* Taking courses should follow the specific order
* How to find a course taking order?

Mg £ EG=FsllN

5T SR AR S

TR Z2

B EE

Topological Sort Problem

* Input: a directed acyclic graph ¢ = (V, E)

e Qutput: a linear order of V s.t. qll edges of G going from lower-indexed nodes
to higher-indexed nodes (/=2 f)

7~

7~
O 0-0-0-0-0

Algorithm

* Run DFS on the input DAG G.
e Qutput the nodes in decreasing order of their finish time.

DFS (G) DFS-Visit (G, u)
for each vertex u 1n G.V time = time + 1
u.color = WHITE ,
. u.d = time
u.pl1 = NIL
fime = 0 u.color = GRAY
for each vertex u in G.V for each v in G.Adj[u] (outgoilng)
if u.color == WHITE if v.color == WHITE
DFS-VISIT (G, u) v.pi = u

DFS-VISIT (G, V)
u.color = BLACK
time = time + 1

u.f = time // finish time

Example lllustration

7~ ™ ~ ™ ¢
6 0-0-6-0-0 Q\\ ©
_/V 0
O '\en

>

Example lllustration

o

Q\oa

% /"\p

. Y
T

Time Complexity

* Run DFS on the input DAG G. ©(n +m)

e Qutput the nodes in decreasing order of their finish time.
* As each vertex is finished, insert it onto the front of a linked list ©(n)
* Return the linked list of vertices

DFS-Visit (G, u)
Time Complexity: O(n + m) time = time + 1
u.d = time
u.color = GRAY
DF'S (G) . .
for each vertex u in G.V tor each v in G.Ad]{u]
u.color = WHITE if v.color == WHITE
u.pi = NIL v.pli = u
time = 0 DFS-VISIT (G, V)
for each vertex u in G.V u.color = BLACK
if u.color == WHITE time = time + 1
DFS-VISIT (G, u) u.f = time // finish time

Algorithm Correctness

Lemma 22.11
A directed graph is acyclic < a DFS yields no back edges.

* Proof

e 2:suppose there is a back edge (u, v)
* visan ancestor of u in DFS forest

* There is a path from v to u in G and (u, v) completes the cycle

e & :suppose thereis acycle ¢
* Let v be the first vertex in ¢ to be discovered and u is a predecessor of vin ¢
* Upon discovering v the whole cycle from v to u is WHITE
* At time v.d, the vertices of ¢ form a path of white vertices from v to u
* By the white-path theorem, vertex u becomes a descendant of v in the DFS forest
* Therefore, (u, v) is a back edge

Algorithm Correctness

Theorem 22.12

The algorithm produces a topological sort of the input DAG. That is, if (u,v) is a
directed edge (from u to v) of G, then u. f > v.f.

e Proof

* When (u, v) is being explored, u is GRAY and there are three cases for v:
* Case 1 - GRAY

* (u,v) is a back edge (contradicting Lemma 22.11), so v cannot be GRAY
* Case 2—-WHITE

* v becomes descendant of u
* v will be finished before u . f <u.f

* Case 3 — BLACK
* vis already finished wo.f<uf

Problem Complexity

Upper bound = O(m + n)

Lower bound = Q(m + n)

Discussion

* Since cycle detection becomes back edge detection (Lemma 22.11), DFS can
be used to test whether a graph is a DAG

* Is there a topological order for cyclic graphs?

* Given a topological order, is there always a DFS traversal that produces such
an order?

To Be Continued...

Question?

Important announcement will be sent to
@ntu.edu.tw mailbox & post to the course website

Course Website: http://ada.miulab.tw
Email: ada-ta@csie.ntu.edu.tw

