Algorithm Design and Analysis
Midterm Review

http://ada.miulab.tw
Yun-Nung (Vivian) Chen

Announcement

 Homework assignment
e HW2 due on 11/12 1pm
« HW21FZEFE S ER217
« HW2{FERBEE BT IRE Kk LA

 Midterm announcement

e Next week!!!

Midterm!!!

* Date: 11/14 (Thursday)
e Time: 14:20-17:20 (3 hours)
* Location: R102 + R104 (check the seat assignment before entering the room)

* Content
* Recurrence and Asymptotic Analysis

* Divide and Conquer

* Dynamic Programming

* Greedy
* Based on slides, assignments, and some variations (practice via textbook exercises)
* Format: Yes/No, Multiple-Choice, Short Answer, Prove/Explanation

e Easy: ¥65%, Medium: ~25%, Hard: ~10%

Algorithm Design & Analysis Process

1) Formulate a problem {Design Step}
2) Develop an algorithm
3) Prove the correctness _

. i : Analysis Step
4) Analyze running time/space requirement

Algorithm Analysis

* Analysis Skills
* Prove by contradiction
* Induction
* Asymptotic analysis
* Problem instance
* Algorithm Complexity
* In the worst case, what is the growth of function an algorithm takes

* Problem Complexity

* In the worst case, what is the growth of the function the optimal algorithm of the
problem takes

Algorithm Design Strategy

* Do not focus on “specific algorithms”
e But “some strategies” to “design” algorithms

e First Skill: Divide-and-Conquer (& {EZ& 1)
» Second Skill: Dynamic Programming (EI 8853 1))
e Third Skill: Greedy (E25)58)

Divide-and-Conquer

What iIs Divide-and-Conquer?

* Solve a problem recursively

* Apply three steps at each level of the recursion

1. Divide the problem into a number of subproblems that are smaller
instances of the same problem (ECE/)\BY [E) 1% 5 78)

2. Conquer the subproblems by solving them recursively @
If the subproblem sizes are small enough Nconlen
* then solve the subproblems base case

* else recursively solve itself recursive case 4

3. Combine the solutions to the subproblems into the solution for 3 Combine
the original problem

How to Solve Recurrence Relations?

1. Substitution Method (Bt %)

* Guess a bound and then prove by induction
2. Recursion-Tree Method (JE 3815 %)

* Expand the recurrence into a tree and sum up the cost

3. Master Method (EA T A/ KENA)

* Apply Master Theorem to a specific form of recurrences

Master Theorem

The proofisin Ch. 4.6

divide a problem of size n into a subproblems, each of size % Is solved in time T (g) recursively

Let T'(n) be a positive function satisfying the following recurrence relation

T(n) = O(1) if n <1 Should follow
"Z - T(®)+ f(n) ifn>1, | this format

where a > 1 and b > 1 are constants.
e Case 1: If f(n) = O(n!°8 2=¢) for some constant e > 0, then T'(n) = O(n!°%).
e Case 2: If f(n) = ©(n'°8 %), then T'(n) = O(n!°% % . logn).
o Case 3: If

— f(n) = Q(n'°& 1) for some constant ¢ > 0, and

—a- f(}) <c- f(n) for some constant ¢ < 1 and all sufficiently large n,

then T'(n) = O(f(n)).

When to Use D&C?

* Analyze the problem about
* Whether the problem with small inputs can be solved directly
* Whether subproblem solutions can be combined into the original solution
* Whether the overall complexity is better than naive

* If no, then
* Try to modify it or add more information

* Try another way for dividing
* Do not use D&C

Pseudo-Polynomial Time

* Polynomial: polynomial in the length of the input (#bits for the input)
* Pseudo-polynomial: polynomial in the numeric value

* The time complexity of 0-1 knapsack problem is @(nl¥/)
* n: number of objects
 W: knapsack’s capacity (non-negative integer)
* polynomial in the numeric value
= pseudo-polynomial in input size
= exponential in the length of the input
* Note: the size of the representation of W is log, W
=2M =m

Dynamic Programming

What Is Dynamic Programming?

* Dynamic programming, like the divide-and-conquer method, solves problems
by combining the solutions to subproblems

- HZEE S
« EEBEE MR
* “Dynamic”: time-varying
* “Programming”: a tabular method

Algorithm Design Paradigms

* Divide-and-Conquer * Dynamic Programming
 partition the problem into * partition the problem into dependent
independent or disjoint subproblems or overlapping subproblems
* repeatedly solving the common e avoid recomputation
subsubproblems v Top-down with memoization

- more work than necessary v’ Bottom-up method

Dynamic Programming Procedure

* Apply four steps

Characterize the structure of an optimal solution

Recursively define the value of an optimal solution

Compute the value of an optimal solution, typically in a bottom-up fashion
Construct an optimal solution from computed information

W N e

When to Use DP?

* Analyze the problem about
* Whether subproblem solutions can combine into the original solution
 When subproblems are overlapping
 Whether the problem has optimal substructure
 Common for optimization problem
* Two ways to avoid recomputation
e Top-down with memoization
e Bottom-up method
* Complexity analysis
» Space for tabular filling
* Size of the subproblem graph

Greedy Algorithms

What I1s Greedy Algorithms?

* always makes the choice that looks best at the moment

* makes a locally optimal choice in the hope that this choice will lead to a
globally optimal solution

* not always yield optimal solution; may end up at local optimal

local maximal global maximal

%i 8% local maximal
;6“’/

Algorithm Design Paradigms

* Dynamic Programming * Greedy Algorithms
* has optimal substructure * has optimal substructure
* make an informed choice after getting * make a greedy choice before solving
optimal solutions to subproblems the subproblem
* dependent or overlapping * no overlapping subproblems
subproblems v’ Each round selects only one subproblem

M Possible Subproblem v’ The subproblem size decreases
Casel |M Solution
Possible Subproblem
+ :)
Case 2 Solution Optimal Wl Greedy Wl Subproblem
Solution M Choice Solution

@] Possible Subproblem
Casek [N Solution

Optimal™ BtV
Solution /min 7

Greedy Procedure

1. Cast the optimization problem as one in which we make a choice and
remain one subproblem to solve

2. Demonstrate the optimal substructure

v' Combining an optimal solution to the subproblem via greedy can arrive an optimal
solution to the original problem

3. Prove that there is always an optimal solution to the original problem that
makes the greedy choice

Proof of Correctness Skills

e Optimal Substructure : an optimal solution to the problem contains within
it optimal solutions to subproblems

* Greedy-Choice Property : making locally optimal (greedy) choices leads to a
globally optimal solution

* Show that it exists an optimal solution that “contains” the greedy choice using
exchange argument

* For any optimal solution OPT, the greedy choice g has two cases
* gisin OPT: done
* g notin OPT: modify OPT into OPT’ s.t. OPT’ contains g and is at least as good as OPT

v If OPT is better than OPT, the property is proved by contradiction
) v If OPT is as good as OPT, then we showed that there exists an
optimal solution containing g by construction

When to Use Greedy?

* Analyze the problem about
 Whether the problem has optimal substructure
* Whether we can make a greedy choice and remain only one subproblem
 Common for optimization problem

Optimal M Greedy + Subproblem
Solution M Choice Solution

Exercises

Short Answer Questions

* True or False: To prove the correctness of a greedy algorithm, we must prove
that every optimal solution contains our greedy choice.

* Given the following recurrence relation, provide a valid traversal order to fill
the DP table or justify why no valid traversal exists.

A(i,j) = F(A(i =2, +1), A + 1, — 2))

Matrix-Chain Multiplication

* Input: a sequence of integers [y, l4, ..., [,
* [;_4 is the number of rows of matrix A;
* [; is the number of columns of matrix 4;

e Qutput: an order of performing n — 1 matrix multiplications in the maximum
number of operations to obtain the product of A4, ... 4,

A1 $ AZ A3 A4 An
i<k<j

Q: Does optimal substructure still hold?

Painting

* Put stickers in a single row on each tube to indicate its color.
* There are k types of stickers.

* Tubes with the same color should have the same sticker pattern and should
be prefix free.

Color red pink orange yellow green blue purple black

®
#Tubes 25 15 12 19 7 12 8 2

* Minimize the total number of stickers put on all tubes
 3-ary prefix tree (each node can have at most k children).

3-arry Huffman Coding

* The total length is

Color red pink orange yellow green blue purple black

®
#Tubes 25 15 12 19 7 12 8 2

O O
]

2514+ (124+15+194+8+12)-24(74+2)-3= 184

T/F Question

* Given a file containing a sequence of 8-bit characters (256 characters), if the
maximum character frequency is less than k of the minimum character
frequency in the file, then a binary Human code is always worse than or
equal to an 8-bit fixed length code (in terms of the length of the encoded

file).
e What is the minimal value of k?

* https://stackoverflow.com/questions/8960698/huffman-coding-prove-on-a-8-bit-
sequence

https://stackoverflow.com/questions/8960698/huffman-coding-prove-on-a-8-bit-sequence

Zh R Practice 1

1. Maximum Subarray of a Circular Infinite Sequence (2015 midterm) Recall
that a maximum subarray of A is a contiguous subarray as,--- ,a; of A such that quq a;
is maximized over all s and ¢, 0 < s < ¢. -

Given a circular infinite sequence A = (ag, a1, as,---) in which a; = a; if i = j mod n,
please answer the following questions.

1. Suppose) o<, @i > 0. What is the length of the maximum subarray of A? Briefly
explain your answer.

2. Suppose Zogi -n @i < 0. Please briefly explain why the length of any maximum
subarray is at most n.

3. Please design an algorithm to find a maximum subarray of the circular infinite se-
quence A in O(nlogn) time. Can you reduce the running time of your algorithm to
O(n)? Please justify the correctness and running time of your algorithm.

Zh R Practice 2

2. Fair Division of Christmas Gifts (2014 midterm) Christmas is approaching.
You're helping Santa Clauses to distribute gifts to children.

For ease of delivery, you are asked to divide n gifts into two groups such that the weight
difference of these two groups is minimized. The weight of each gift is a positive integer.
Please design an algorithm to find an optimal division minimizing the value difference. The
algorithm should find the minimal weight difference as well as the groupings in O(n.S) time,
where S is the total weight of these n gifts. Briefly justify the correctness of your algorithm.

Hint: This problem can be converted into making one set as close to S/2 as possible.

Zh 8 Practice 3

3. Zombie Apocalypse (2016 midterm) Due to a zombie virus outbreak, some cities
have been occupied by zombies and are no longer safe. You and your survivor team need
to travel through several cities to get to a far away shelter.

There are n cities forming a line topology. You are at city 1 now and the shelter is at

city n. The location of city i is L[i], and L[i] < L[j] V1 <i < j <mn. z[i] =1 indicates city
i has been occupied by zombies; otherwise, z[i] = 0 indicates the city is still safe to stop at
night.

If you plan to move at most 100km a day, and you need to rest at a safe city at night,
please design a greedy algorithm to pick the cities for resting at night so that you can arrive
at the shelter as soon as possible. Your algorithm should run in O(n) time. Please show
that your algorithm has the greedy choice property.

Question?

Important announcement will be sent to
@ntu.edu.tw mailbox & post to the course website

Course Website: http://ada.miulab.tw
Email: ada-ta@csie.ntu.edu.tw

