
Algorithm Design and Analysis
Greedy Algorithm (1)

Yun-Nung (Vivian) Chen

http://ada.miulab.tw

Outline

• Greedy Algorithms

• Greedy #1: Activity-Selection / Interval Scheduling

• Greedy #2: Coin Changing

• Greedy #3: Fractional Knapsack Problem

• Greedy #4: Breakpoint Selection

• Greedy #5: Huffman Codes

• Greedy #6: Task-Scheduling

• Greedy #7: Scheduling to Minimize Lateness

2

Algorithm Design Strategy

• Do not focus on “specific algorithms”

• But “some strategies” to “design” algorithms

• First Skill: Divide-and-Conquer (各個擊破/分治)

• Second Skill: Dynamic Programming (動態規劃)

• Third Skill: Greedy (貪婪法則)

3

Greedy Algorithms

4

Textbook Chapter 16 – Greedy Algorithms

Textbook Chapter 16.2 – Elements of the greedy strategy

What is Greedy Algorithms?

• always makes the choice that looks best at the moment

• makes a locally optimal choice in the hope that this choice will lead to a
globally optimal solution

• not always yield optimal solution; may end up at local optimal

5

Greedy: move towards max gradient and hope it is global maximum

local maximal

global maximal

local maximal

Algorithm Design Paradigms

• Dynamic Programming
• has optimal substructure

• make an informed choice after getting
optimal solutions to subproblems

• dependent or overlapping
subproblems

6

• Greedy Algorithms
• has optimal substructure

• make a greedy choice before solving
the subproblem

• no overlapping subproblems
✓Each round selects only one subproblem

✓The subproblem size decreases

Optimal

Solution

Possible

Case 1

Possible

Case 2

Possible

Case k

max

/min

Subproblem

Solution

Subproblem

Solution

Subproblem

Solution

+

+

+

= Optimal

Solution

Greedy

Choice

Subproblem

Solution
+=

Greedy Procedure

1. Cast the optimization problem as one in which we make a choice and
remain one subproblem to solve

2. Demonstrate the optimal substructure
✓ Combining an optimal solution to the subproblem via greedy can arrive an optimal

solution to the original problem

3. Prove that there is always an optimal solution to the original problem that
makes the greedy choice

7

Greedy Algorithms

To yield an optimal solution, the problem should exhibit

1. Optimal Substructure : an optimal solution to the problem contains within
its optimal solutions to subproblems

2. Greedy-Choice Property : making locally optimal (greedy) choices leads to
a globally optimal solution

8

Proof of Correctness Skills

• Optimal Substructure : an optimal solution to the problem contains within
it optimal solutions to subproblems

• Greedy-Choice Property : making locally optimal (greedy) choices leads to a
globally optimal solution
• Show that it exists an optimal solution that “contains” the greedy choice using

exchange argument

• For any optimal solution OPT, the greedy choice 𝑔 has two cases
• 𝑔 is in OPT: done

• 𝑔 not in OPT: modify OPT into OPT’ s.t. OPT’ contains 𝑔 and is at least as good as OPT

9

OPT OPT’

𝑔

✓ If OPT’ is better than OPT, the property is proved by contradiction

✓ If OPT’ is as good as OPT, then we showed that there exists an

optimal solution containing 𝑔 by construction

Activity-Selection

/ Interval Scheduling

10

Textbook Chapter 16.1 – An activity-selection problem

Activity-Selection/ Interval Scheduling

• Input: 𝑛 activities with start times 𝑠𝑖 and finish times 𝑓𝑖 (the activities are
sorted in monotonically increasing order of finish time 𝑓1 ≤ 𝑓2 ≤ ⋯ ≤ 𝑓𝑛)

• Output: the maximum number of compatible activities

• Without loss of generality: 𝑠1 < 𝑠2 < ⋯ < 𝑠𝑛 and 𝑓1 < 𝑓2 < ⋯ < 𝑓𝑛
• 大的包小的則不考慮大的→用小的取代大的一定不會變差

11

time

1

2

3

4

5

6

activity index

21 3 4 5 6 7 8 9

Weighted Interval Scheduling

• Subproblems
• WIS(i): weighted interval scheduling for the first 𝑖 jobs

• Goal: WIS(n)

• Dynamic programming algorithm

12

i 0 1 2 3 4 5 … n

M[i]

Set 𝑣𝑖 = 1 for all 𝑖 to formulate it into the activity-selection problem

Weighted Interval Scheduling Problem

Input: 𝑛 jobs with 𝑠𝑖 , 𝑓𝑖 , 𝑣𝑖 , 𝑝(𝑗) = largest index 𝑖 < 𝑗 s.t. jobs 𝑖 and 𝑗 are compatible

Output: the maximum total value obtainable from compatible

Activity-Selection Problem

• Dynamic programming

• Optimal substructure is already proved

• Greedy algorithm

13

select the 𝑖-th activity

Why does the 𝑖-th
activity must appear

in an OPT?

Activity-Selection Problem

Input: 𝑛 activities with 𝑠𝑖 , 𝑓𝑖 , 𝑝(𝑗) = largest index 𝑖 < 𝑗 s.t. 𝑖 and 𝑗 are compatible

Output: the maximum number of activities

Greedy-Choice Property

• Goal:

• Proof
• Assume there is an OPT solution for the first 𝑖 − 1 activities (𝑀𝑖−1)

• 𝐴𝑗 is the last activity in the OPT solution→

• Replacing 𝐴𝑗 with 𝐴𝑖 does not make the OPT worse

14

time

1

2

:

i

i - 1

:

activity index

21 3 4 5 6 7 8 9

Pseudo Code

15

Act-Select(n, s, f, v, p)

M[0] = 0

for i = 1 to n

if p[i] >= 0

M[i] = 1 + M[p[i]]

return M[n]

Find-Solution(M, n)

if n = 0

return {}

return {n} ∪ Find-Solution(p[n])

Select the last compatible one (←) = Select the first compatible one (→)

Activity-Selection Problem

Input: 𝑛 activities with 𝑠𝑖 , 𝑓𝑖 , 𝑝(𝑗) = largest index 𝑖 < 𝑗 s.t. 𝑖 and 𝑗 are compatible

Output: the maximum number of activities

Coin Changing

16

Textbook Exercise 16.1

Coin Changing Problem

• Input: 𝑛 dollars and unlimited coins with values 𝑣𝑖 (1, 5, 10, 50)

• Output: the minimum number of coins with the total value 𝑛

• Cashier’s algorithm: at each iteration, add the coin with the largest value no
more than the current total

17

Does this algorithm return the OPT?

Step 1: Cast Optimization Problem

• Subproblems
• C(i): minimal number of coins for the total value 𝑖

• Goal: C(n)

18

Coin Changing Problem

Input: 𝑛 dollars and unlimited coins with values 𝑣𝑖 (1, 5, 10, 50)

Output: the minimum number of coins with the total value 𝑛

Step 2: Prove Optimal Substructure

• Suppose OPT is an optimal solution to C(i), there are 4 cases:
• Case 1: coin 1 in OPT

• OPT\coin1 is an optimal solution of C(i – v1)

• Case 2: coin 2 in OPT
• OPT\coin2 is an optimal solution of C(i – v2)

• Case 3: coin 3 in OPT
• OPT\coin3 is an optimal solution of C(i – v3)

• Case 4: coin 4 in OPT
• OPT\coin4 is an optimal solution of C(i – v4)

19

Coin Changing Problem

Input: 𝑛 dollars and unlimited coins with values 𝑣𝑖 (1, 5, 10, 50)

Output: the minimum number of coins with the total value 𝑛

Step 3: Prove Greedy-Choice Property

• Greedy choice: select the coin with the largest value no more than the
current total

• Proof via contradiction (use the case 10 ≤ 𝑖 < 50 for demo)
• Assume that there is no OPT including this greedy choice (choose 10)

→ all OPT use 1, 5, 50 to pay 𝑖
• 50 cannot be used

• #coins with value 5 < 2 → otherwise we can use a 10 to have a better output

• #coins with value 1 < 5 → otherwise we can use a 5 to have a better output

• We cannot pay 𝑖 with the constraints (at most 5 + 4 = 9)

20

Coin Changing Problem

Input: 𝑛 dollars and unlimited coins with values 𝑣𝑖 (1, 5, 10, 50)

Output: the minimum number of coins with the total value 𝑛

To Be Continued…

21

Question?
Important announcement will be sent to
@ntu.edu.tw mailbox & post to the course website

Course Website: http://ada.miulab.tw

Email: ada-ta@csie.ntu.edu.tw

