

Algorithm Design and Analysis Greedy Algorithm (1)

http://ada.miulab.tw

Yun-Nung (Vivian) Chen

Outline

- Greedy Algorithms
- Greedy #1: Activity-Selection / Interval Scheduling
- Greedy #2: Coin Changing
- Greedy #3: Fractional Knapsack Problem
- Greedy #4: Breakpoint Selection
- Greedy #5: Huffman Codes
- Greedy #6: Task-Scheduling
- Greedy #7: Scheduling to Minimize Lateness

Algorithm Design Strategy

- Do not focus on "specific algorithms"
- But "some strategies" to "design" algorithms
- First Skill: Divide-and-Conquer (各個擊破/分治)
- Second Skill: Dynamic Programming (動態規劃)
- Third Skill: Greedy (貪婪法則)

Greedy Algorithms

Textbook Chapter 16 – Greedy Algorithms Textbook Chapter 16.2 – Elements of the greedy strategy

What is Greedy Algorithms?

- always makes the choice that looks best at the moment
- makes a locally optimal choice in the hope that this choice will lead to a globally optimal solution
 - not always yield optimal solution; may end up at local optimal

Greedy: move towards max gradient and hope it is global maximum

Algorithm Design Paradigms

- Dynamic Programming
 - has optimal substructure
 - make an informed choice after getting optimal solutions to subproblems
 - dependent or overlapping subproblems

- Greedy Algorithms
 - has optimal substructure
 - make a greedy choice before solving the subproblem
 - no overlapping subproblems
 - ✓ Each round selects only one subproblem
 - ✓ The subproblem size decreases

Greedy Procedure

- 1. Cast the optimization problem as one in which we make a choice and remain one subproblem to solve
- 2. Demonstrate the optimal substructure
 - Combining an optimal solution to the subproblem via greedy can arrive an optimal solution to the original problem
- **3.** Prove that there is always an optimal solution to the original problem that makes the greedy choice

Greedy Algorithms

To yield an optimal solution, the problem should exhibit

- 1. Optimal Substructure : an optimal solution to the problem contains within its optimal solutions to subproblems
- 2. Greedy-Choice Property : making locally optimal (greedy) choices leads to a globally optimal solution

Proof of Correctness Skills

- Optimal Substructure : an optimal solution to the problem contains within it optimal solutions to subproblems
- Greedy-Choice Property : making locally optimal (greedy) choices leads to a globally optimal solution
 - Show that it exists an optimal solution that "contains" the greedy choice using exchange argument
 - For any optimal solution OPT, the greedy choice g has two cases
 - *g* is in OPT: done
 - g not in OPT: modify OPT into OPT' s.t. OPT' contains g and is at least as good as OPT

✓ If OPT' is better than OPT, the property is proved by contradiction
 ✓ If OPT' is as good as OPT, then we showed that there exists an optimal solution containing *g* by construction

Activity-Selection / Interval Scheduling

Textbook Chapter 16.1 – An activity-selection problem

Activity-Selection/Interval Scheduling

- Input: *n* activities with start times s_i and finish times f_i (the activities are sorted in monotonically increasing order of finish time $f_1 \leq f_2 \leq \cdots \leq f_n$)
- Output: the maximum number of compatible activities
- Without loss of generality: $s_1 < s_2 < \cdots < s_n$ and $f_1 < f_2 < \cdots < f_n$
 - •大的包小的則不考慮大的 → 用小的取代大的一定不會變差

Weighted Interval Scheduling

Weighted Interval Scheduling Problem

Input: *n* jobs with $\langle s_i, f_i, v_i \rangle$, p(j) = largest index i < j s.t. jobs *i* and *j* are compatible Output: the maximum total value obtainable from compatible

- Subproblems
 - WIS(i): weighted interval scheduling for the first i jobs
 - Goal: WIS(n)
- Dynamic programming algorithm

$$M_i = \begin{cases} 0 & \text{if } i = 0\\ \max(v_i + M_{p(i)}, M_{i-1}) & \text{otherwise} \end{cases}$$

$$\stackrel{\textbf{i} \quad \textbf{0} \quad \textbf{1} \quad \textbf{2} \quad \textbf{3} \quad \textbf{4} \quad \textbf{5} \quad \dots \quad \textbf{n} \\ \textbf{M[i]} \quad \textbf{M[i]} \quad$$

Activity-Selection Problem

Activity-Selection Problem

Input: *n* activities with $\langle s_i, f_i \rangle$, p(j) = largest index i < j s.t. *i* and *j* are compatible Output: the maximum number of activities

• Dynamic programming

$$M_{i} = \begin{cases} 0 & \text{if } i = 0\\ \max(1 + M_{p(i)}, M_{i-1}) & \text{otherwise} \end{cases}$$

- Optimal substructure is already proved
- Greedy algorithm

$$M_i = \begin{cases} 0 & \text{if } i = 0\\ 1 + M_{p(i)} & \text{otherwise} \end{cases}$$
select the *i*-th activity

Greedy-Choice Property

- **Goal:** $1 + M_{p(i)} \ge M_{i-1}$
- Proof
 - Assume there is an OPT solution for the first i 1 activities (M_{i-1})
 - A_i is the last activity in the OPT solution $\rightarrow M_{i-1} = 1 + M_{p(j)}$
 - Replacing A_i with A_i does not make the OPT worse

Pseudo Code

Activity-Selection Problem

Input: *n* activities with $\langle s_i, f_i \rangle$, p(j) = largest index i < j s.t. *i* and *j* are compatible Output: the maximum number of activities

<pre>Act-Select(n, s, f, v, p) M[0] = 0 for i = 1 to n if p[i] >= 0 M[i] = 1 + M[p[i]] return M[n]</pre>	$T(n) = \Theta(n)$
<pre>Find-Solution(M, n) if n = 0 return {} return {n} U Find-Solution(p[n])</pre>	$T(n) = \Theta(n)$

Select the **last** compatible one (\leftarrow) = Select the **first** compatible one (\rightarrow)

Coin Changing

Textbook Exercise 16.1

16

Coin Changing Problem

- Input: n dollars and unlimited coins with values $\{v_i\}$ (1, 5, 10, 50)
- Output: the minimum number of coins with the total value *n*
- **Cashier's algorithm**: at each iteration, add the coin with the largest value no more than the current total

Step 1: Cast Optimization Problem

Coin Changing Problem

Input: *n* dollars and unlimited coins with values $\{v_i\}$ (1, 5, 10, 50) Output: the minimum number of coins with the total value *n*

- Subproblems
 - C (i): minimal number of coins for the total value i
 - Goal: C(n)

Step 2: Prove Optimal Substructure

Coin Changing Problem

Input: *n* dollars and unlimited coins with values $\{v_i\}$ (1, 5, 10, 50) Output: the minimum number of coins with the total value *n*

- Suppose OPT is an optimal solution to C (i), there are 4 cases:
 - Case 1: coin 1 in OPT
 - OPT\coin1 is an optimal solution of C (i v_1)
 - Case 2: coin 2 in OPT
 - OPT\coin2 is an optimal solution of C (i v_2)
 - Case 3: coin 3 in OPT
 - OPT\coin3 is an optimal solution of C (i v_{3})
 - Case 4: coin 4 in OPT
 - OPT\coin4 is an optimal solution of C (i $-v_4$)

$$C_i = \min_j (1 + C_{i-v_j})$$

Step 3: Prove Greedy-Choice Property

Coin Changing Problem

Input: *n* dollars and unlimited coins with values $\{v_i\}$ (1, 5, 10, 50) Output: the minimum number of coins with the total value *n*

- Greedy choice: select the coin with the largest value no more than the current total
- Proof via contradiction (use the case $10 \le i < 50$ for demo)
 - Assume that there is no OPT including this greedy choice (choose 10)
 - \rightarrow all OPT use 1, 5, 50 to pay i
 - 50 cannot be used
 - #coins with value 5 < 2 \rightarrow otherwise we can use a 10 to have a better output
 - #coins with value $1 < 5 \rightarrow$ otherwise we can use a 5 to have a better output
 - We cannot pay i with the constraints (at most 5 + 4 = 9)

To Be Continued...

Question?

Important announcement will be sent to @ntu.edu.tw mailbox & post to the course website

Course Website: http://ada.miulab.tw Email: ada-ta@csie.ntu.edu.tw