
Algorithm Design and Analysis
Dynamic Programming (2)

Yun-Nung (Vivian) Chen

http://ada.miulab.tw

Announcement

• Homework 2 released
• Due on 11/12 (Thur) 13:00 (2.5 weeks left)

• Writing: print out the A4 hard copy and submit to NTU COOL

• Programming: submit to Online Judge – http://ada-judge.csie.ntu.edu.tw

2

http://ada-judge.csie.ntu.edu.tw/

Homework 2

3

Outline
• Dynamic Programming
• DP #1: Rod Cutting
• DP #2: Stamp Problem
• DP #3: Sequence Alignment Problem

• Longest Common Subsequence (LCS) / Edit Distance
• Viterbi Algorithm
• Space Efficient Algorithm

• DP #4: Matrix-Chain Multiplication
• DP #5: Weighted Interval Scheduling
• DP #6: Knapsack Problem

• 0/1 Knapsack
• Unbounded Knapsack
• Multidimensional Knapsack
• Fractional Knapsack

4

動腦一下 –囚犯問題
• 有100個死囚，隔天執行死刑，典獄長開恩給他們一個存活的機會。

• 當隔天執行死刑時，每人頭上戴一頂帽子(黑或白)排成一隊伍，在死刑執行前，由隊
伍中最後的囚犯開始，每個人可以猜測自己頭上的帽子顏色(只允許說黑或白)，猜對
則免除死刑，猜錯則執行死刑。

• 若這些囚犯可以前一天晚上先聚集討論方案，是否有好的方法可以使總共存活的囚
犯數量期望值最高？

5

猜測規則
• 囚犯排成一排，每個人可以看到前面所有人的帽子，但看不到自己及後面囚犯的。

• 由最後一個囚犯開始猜測，依序往前。

• 每個囚犯皆可聽到之前所有囚犯的猜測內容。

6

……

Example: 奇數者猜測內容為前面一位的帽子顏色→存活期望值為75人

有沒有更多人可以存活的好策略?

Vote for Your Answer

7

https://fast-poll.com/poll/9376b781

https://fast-poll.com/poll/9376b781

DP#4: Matrix-Chain Multiplication

8

Textbook Chapter 15.2 – Matrix-chain multiplication

Matrix-Chain Multiplication

• Input: a sequence of n matrices 𝐴1, … , 𝐴𝑛
• Output: the product of 𝐴1𝐴2…𝐴𝑛

9

𝐴1 𝐴2 𝐴3 𝐴4
𝐴𝑛

……

𝐴1.cols=𝐴2.rows

𝐴1and 𝐴2are compatible.

Observation

• Each entry takes 𝑞 multiplications

• There are total 𝑝𝑟 entries

10

A B C

Matrix multiplication is associative: 𝐴 𝐵𝐶 = (𝐴𝐵)𝐶. The time required by

obtaining 𝐴 × 𝐵 × 𝐶 could be affected by which two matrices multiply first .

Example

• Overall time is

11

= =

Example

• Overall time is

12

= =

Matrix-Chain Multiplication Problem

• Input: a sequence of integers 𝑙0, 𝑙1, … , 𝑙𝑛
• 𝑙𝑖−1 is the number of rows of matrix 𝐴𝑖
• 𝑙𝑖 is the number of columns of matrix 𝐴𝑖

• Output: an order of performing 𝑛 − 1 matrix multiplications in the minimum
number of operations to obtain the product of 𝐴1𝐴2…𝐴𝑛

13

𝐴1 𝐴2 𝐴3 𝐴4
𝐴𝑛

……

𝐴1.cols=𝐴2.rows

𝐴1and 𝐴2are compatible.

Do not need to compute the result but find the fast way to get the result!

(computing “how to fast compute” takes less time than “computing via a bad way”)

Brute-Force Naïve Algorithm

• 𝑃𝑛: how many ways for 𝑛 matrices to be multiplied

• The solution of 𝑃𝑛 is Catalan numbers, Ω
4𝑛

𝑛
3
2

, or is also Ω 2𝑛

14

Exercise 15.2-3

Step 1: Characterize an OPT Solution

• Subproblems
• M(i, j): the min #operations for obtaining the product of 𝐴𝑖 …𝐴𝑗
• Goal: M(1, n)

• Optimal substructure: suppose we know the OPT to M(i, j), there are k
cases:

• Case k: there is a cut right after Ak in OPT

15

Matrix-Chain Multiplication Problem

Input: a sequence of integers 𝑙0, 𝑙1, … , 𝑙𝑛 indicating the dimensionality of 𝐴𝑖
Output: an order of matrix multiplications with the minimum number of operations

左右所花的運算量是M(i, k)及M(k+1, j)的最佳解

𝐴𝑖𝐴𝑖+1…𝐴𝑘 𝐴𝑘+1𝐴𝑘+2…𝐴𝑗

𝑖 ≤ 𝑘 < 𝑗

Step 2: Recursively Define the Value of an
OPT Solution

• Suppose we know the optimal solution to M(i, j), there are k cases:
• Case k: there is a cut right after Ak in OPT

• Recursively define the value

16

左右所花的運算量是M(i, k)及M(k+1, j)的最佳解

𝐴𝑘+1..𝑗
𝐴𝑖.rows

=𝑙𝑖−1

𝐴𝑘.cols=𝑙𝑘

𝐴𝑘+1.rows=𝑙𝑘

𝐴𝑗.cols=𝑙𝑗

𝐴𝑖𝐴𝑖+1…𝐴𝑘 𝐴𝑘+1𝐴𝑘+2…𝐴𝑗 =

Matrix-Chain Multiplication Problem

Input: a sequence of integers 𝑙0, 𝑙1, … , 𝑙𝑛 indicating the dimensionality of 𝐴𝑖
Output: an order of matrix multiplications with the minimum number of operations

Step 3: Compute Value of an OPT Solution

• Bottom-up method: solve smaller subproblems first

• How many subproblems to solve
• #combination of the values 𝑖 and 𝑗 s.t. 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛

17

Matrix-Chain Multiplication Problem

Input: a sequence of integers 𝑙0, 𝑙1, … , 𝑙𝑛 indicating the dimensionality of 𝐴𝑖
Output: an order of matrix multiplications with the minimum number of operations

Step 3: Compute Value of an OPT Solution

18

Matrix-Chain(n, l)

initialize two tables M[1..n][1..n] and B[1..n-1][2..n]

for i = 1 to n

M[i][i] = 0 // boundary case

for p = 2 to n // p is the chain length

for i = 1 to n – p + 1 // all i, j combinations

j = i + p – 1

M[i][j] = ∞
for k = i to j – 1 // find the best k

q = M[i][k] + M[k + 1][j] + l[i - 1] * l[k] * l[j]

if q < M[i][j]

M[i][j] = q

return M

Dynamic Programming Illustration

19

How to decide the

order of the matrix

multiplication?

1 2 3 4 5 6 … n

1 0

2 0

3 0

4 0

5 0

6 0

： 0

n 0

Step 4: Construct an OPT Solution by
Backtracking

20

Matrix-Chain(n, l)

initialize two tables M[1..n][1..n] and B[1..n-1][2..n]

for i = 1 to n

M[i][i] = 0 // boundary case

for p = 2 to n // p is the chain length

for i = 1 to n – p + 1 // all i, j combinations

j = i + p – 1

M[i][j] = ∞
for k = i to j – 1 // find the best k

q = M[i][k] + M[k + 1][j] + l[i - 1] * l[k] * l[j]

if q < M[i][j]

M[i][j] = q

B[i][j] = k // backtracking

return M and B

Print-Optimal-Parens(B, i, j)

if i == j

print 𝐴𝑖
else

print “(”

Print-Optimal-Parens(B, i, B[i][j])

Print-Optimal-Parens(B, B[i][j] + 1, j)

print “)”

Exercise

Matrix 𝑨𝟏 𝑨𝟐 𝑨𝟑 𝑨𝟒 𝑨𝟓 𝑨𝟔

Dimension 30 x 35 35 x 15 15 x 5 5 x 10 10 x 20 20 x 25

21

1 2 3 4 5 6

1 0

2 0

3 0

4 0

5 0

6 0

15,750

2,625

750

1,000

5,000

7,875

4,375

2,500

3,500

9,375

7,125

53,75

11,875

10,500

15,125

1 2 3 4 5 6

1

2

3

4

5

6

1

2

3

4

5

1

3

3

5

3

3

3

3

3

3

DP#5: Weighted Interval Scheduling

22

Textbook Exercise 16.2-2

Interval Scheduling

• Input: 𝑛 job requests with start times 𝑠𝑖, finish times 𝑓𝑖
• Output: the maximum number of compatible jobs

• The interval scheduling problem can be solved using an “early-finish-time-
first” greedy algorithm in 𝑂(𝑛) time

23

“Greedy Algorithm”

Next topic!

time

1

2

3

4

5

6

job index

21 3 4 5 6 7 8 9

Weighted Interval Scheduling

• Input: 𝑛 job requests with start times 𝑠𝑖, finish times 𝑓𝑖, and values 𝑣𝑖
• Output: the maximum total value obtainable from compatible jobs

24

time

1

3

3

4

3

1

1

2

3

4

5

6

job index

21 3 4 5 6 7 8 9

Assume that the requests are sorted in non-decreasing order (𝑓𝑖 ≤ 𝑓𝑗 when 𝑖 < 𝑗)

𝑝(𝑗) = largest index 𝑖 < 𝑗 s.t. jobs 𝑖 and 𝑗 are compatible

e.g. 𝑝 1 = 0, 𝑝 2 = 0, 𝑝 3 = 1, 𝑝 4 = 1, 𝑝 5 = 4, 𝑝 6 = 3

Step 1: Characterize an OPT Solution

• Subproblems
• WIS(i): weighted interval scheduling for the first 𝑖 jobs

• Goal: WIS(n)

• Optimal substructure: suppose OPT is an optimal solution to WIS(i), there
are 2 cases:

• Case 1: job 𝑖 in OPT
• OPT\{𝑖} is an optimal solution of WIS(p(i))

• Case 2: job 𝑖 not in OPT
• OPT is an optimal solution of WIS(i-1)

25

time

1

3

3

4

3

1

1

2

3

4

5

6

job index

21 3 4 5 6 7 8 9

4

1

Weighted Interval Scheduling Problem

Input: 𝑛 jobs with 𝑠𝑖 , 𝑓𝑖 , 𝑣𝑖 , 𝑝(𝑗) = largest index 𝑖 < 𝑗 s.t. jobs 𝑖 and 𝑗 are compatible

Output: the maximum total value obtainable from compatible

Step 2: Recursively Define the Value of an
OPT Solution

• Optimal substructure: suppose OPT is an optimal solution to WIS(i), there
are 2 cases:

• Case 1: job 𝑖 in OPT
• OPT\{𝑖} is an optimal solution of WIS(p(i))

• Case 2: job 𝑖 not in OPT
• OPT is an optimal solution of WIS(i-1)

• Recursively define the value

26

Weighted Interval Scheduling Problem

Input: 𝑛 jobs with 𝑠𝑖 , 𝑓𝑖 , 𝑣𝑖 , 𝑝(𝑗) = largest index 𝑖 < 𝑗 s.t. jobs 𝑖 and 𝑗 are compatible

Output: the maximum total value obtainable from compatible

Step 3: Compute Value of an OPT Solution

• Bottom-up method: solve smaller subproblems first

27

i 0 1 2 3 4 5 … n

M[i]

WIS(n, s, f, v, p)

M[0] = 0

for i = 1 to n

M[i] = max(v[i] + M[p[i]], M[i - 1])

return M[n]

Weighted Interval Scheduling Problem

Input: 𝑛 jobs with 𝑠𝑖 , 𝑓𝑖 , 𝑣𝑖 , 𝑝(𝑗) = largest index 𝑖 < 𝑗 s.t. jobs 𝑖 and 𝑗 are compatible

Output: the maximum total value obtainable from compatible

Step 4: Construct an OPT Solution by
Backtracking

• Bottom-up method: solve smaller subproblems first

28

i 0 1 2 3 4 5 6

M[i] 0 1 3 4 5 6 7

time

1

3

3

4

3

1

1

2

3

4

5

6

job index

21 3 4 5 6 7 8 9

Weighted Interval Scheduling Problem

Input: 𝑛 jobs with 𝑠𝑖 , 𝑓𝑖 , 𝑣𝑖 , 𝑝(𝑗) = largest index 𝑖 < 𝑗 s.t. jobs 𝑖 and 𝑗 are compatible

Output: the maximum total value obtainable from compatible

Step 4: Construct an OPT Solution by
Backtracking

29

WIS(n, s, f, v, p)

M[0] = 0

for i = 1 to n

M[i] = max(v[i] + M[p[i]], M[i - 1])

return M[n]

Weighted Interval Scheduling Problem

Input: 𝑛 jobs with 𝑠𝑖 , 𝑓𝑖 , 𝑣𝑖 , 𝑝(𝑗) = largest index 𝑖 < 𝑗 s.t. jobs 𝑖 and 𝑗 are compatible

Output: the maximum total value obtainable from compatible

Find-Solution(M, n)

if n = 0

return {}

if v[n] + M[p[n]] > M[n-1] // case 1

return {n} ∪ Find-Solution(p[n])

return Find-Solution(n-1) // case 2

DP#3: Knapsack (背包問題)

30

Textbook Exercise 16.2-2

Knapsack Problem

• Input: 𝑛 items where 𝑖-th item has value 𝑣𝑖 and weighs 𝑤𝑖 (𝑣𝑖 and 𝑤𝑖 are
positive integers)

• Output: the maximum value for the knapsack with capacity of 𝑊

• Variants of knapsack problem
• 0-1 Knapsack Problem: 每項物品只能拿一個

• Unbounded Knapsack Problem: 每項物品可以拿多個

• Multidimensional Knapsack Problem: 背包空間有限

• Multiple-Choice Knapsack Problem: 每一類物品最多拿一個

• Fractional Knapsack Problem: 物品可以只拿部分

31

Knapsack Problem

• Input: 𝑛 items where 𝑖-th item has value 𝑣𝑖 and weighs 𝑤𝑖 (𝑣𝑖 and 𝑤𝑖 are
positive integers)

• Output: the maximum value for the knapsack with capacity of 𝑊

• Variants of knapsack problem
• 0-1 Knapsack Problem: 每項物品只能拿一個

• Unbounded Knapsack Problem: 每項物品可以拿多個

• Multidimensional Knapsack Problem: 背包空間有限

• Multiple-Choice Knapsack Problem: 每一類物品最多拿一個

• Fractional Knapsack Problem: 物品可以只拿部分

32

Step 1: Characterize an OPT Solution

• Subproblems

• ZO-KP(i, w): 0-1 knapsack problem within 𝑤 capacity for the first 𝑖 items
• Goal: ZO-KP(n, W)

• Optimal substructure: suppose OPT is an optimal solution to ZO-KP(i,
w), there are 2 cases:

• Case 1: item 𝑖 in OPT
• OPT\{𝑖} is an optimal solution of ZO-KP(i - 1, w - wi)

• Case 2: item 𝑖 not in OPT
• OPT is an optimal solution of ZO-KP(i - 1, w)

33

0-1 Knapsack Problem

Input: 𝑛 items where 𝑖-th item has value 𝑣𝑖 and weighs 𝑤𝑖

Output: the max value within 𝑊 capacity, where each item is chosen at most once

ZO-KP(i) ZO-KP(i, w)

consider the available capacity

Step 2: Recursively Define the Value of an
OPT Solution

• Optimal substructure: suppose OPT is an optimal solution to ZO-KP(i,
w), there are 2 cases:

• Case 1: item 𝑖 in OPT
• OPT\{𝑖} is an optimal solution of ZO-KP(i - 1, w - wi)

• Case 2: item 𝑖 not in OPT
• OPT is an optimal solution of ZO-KP(i - 1, w)

• Recursively define the value

34

0-1 Knapsack Problem

Input: 𝑛 items where 𝑖-th item has value 𝑣𝑖 and weighs 𝑤𝑖

Output: the max value within 𝑊 capacity, where each item is chosen at most once

Step 3: Compute Value of an OPT Solution

• Bottom-up method: solve smaller subproblems first

35

i\w 0 1 2 3 … w … W

0

1

2

i

n

0-1 Knapsack Problem

Input: 𝑛 items where 𝑖-th item has value 𝑣𝑖 and weighs 𝑤𝑖

Output: the max value within 𝑊 capacity, where each item is chosen at most once

Step 3: Compute Value of an OPT Solution

• Bottom-up method: solve smaller subproblems first

36

i\w 0 1 2 3 4 5

0 0 0 0 0 0 0

1 0 4 4 4 4 4

2 0 4 9 13 13 13

3 0 4 9 13 20 24

i wi vi

1 1 4

2 2 9

3 4 20

𝑊 = 5

0-1 Knapsack Problem

Input: 𝑛 items where 𝑖-th item has value 𝑣𝑖 and weighs 𝑤𝑖

Output: the max value within 𝑊 capacity, where each item is chosen at most once

Step 3: Compute Value of an OPT Solution

• Bottom-up method: solve smaller subproblems first

37

ZO-KP(n, v, W)

for w = 0 to W

M[0, w] = 0

for i = 1 to n

for w = 0 to W

if(wi > w)

M[i, w] = M[i-1, w]

else

M[i, w] = max(vi + M[i-1, w-wi], M[i-1, w])

return M[n, W]

0-1 Knapsack Problem

Input: 𝑛 items where 𝑖-th item has value 𝑣𝑖 and weighs 𝑤𝑖

Output: the max value within 𝑊 capacity, where each item is chosen at most once

Step 4: Construct an OPT Solution by
Backtracking

38

ZO-KP(n, v, W)

for w = 0 to W

M[0, w] = 0

for i = 1 to n

for w = 0 to W

if(wi > w)

M[i, w] = M[i-1, w]

else

M[i, w] = max(vi + M[i-1, w-wi], M[i-1, w])

return M[n, W]

Find-Solution(M, n, W)

S = {}

w = W

for i = n to 1

if M[i, w] > M[i – 1, w] // case 1

w = w – wi
S = S ∪ {i}

return S

Pseudo-Polynomial Time

• Polynomial: polynomial in the length of the input (#bits for the input)

• Pseudo-polynomial: polynomial in the numeric value

• The time complexity of 0-1 knapsack problem is Θ 𝑛𝑊
• 𝑛: number of objects

• 𝑊: knapsack’s capacity (non-negative integer)

• polynomial in the numeric value

= pseudo-polynomial in input size

= exponential in the length of the input

• Note: the size of the representation of 𝑊 is log2𝑊

39

= 2𝑚 = 𝑚

Knapsack Problem

• Input: 𝑛 items where 𝑖-th item has value 𝑣𝑖 and weighs 𝑤𝑖 (𝑣𝑖 and 𝑤𝑖 are
positive integers)

• Output: the maximum value for the knapsack with capacity of 𝑊

• Variants of knapsack problem
• 0-1 Knapsack Problem: 每項物品只能拿一個

• Unbounded Knapsack Problem: 每項物品可以拿多個

• Multidimensional Knapsack Problem: 背包空間有限

• Multiple-Choice Knapsack Problem: 每一類物品最多拿一個

• Fractional Knapsack Problem: 物品可以只拿部分

40

Step 1: Characterize an OPT Solution

• Subproblems
• U-KP(i, w): unbounded knapsack problem with 𝑤 capacity for the first 𝑖 items

• Goal: U-KP(n, W)

41

Unbounded Knapsack Problem

Input: 𝑛 items where 𝑖-th item has value 𝑣𝑖 and weighs 𝑤𝑖 has unlimited supplies

Output: the max value within 𝑊 capacity

0-1 Knapsack Problem Unbounded Knapsack Problem

each item can be chosen at most once each item can be chosen multiple times

a sequence of binary choices: whether to

choose item 𝑖
a sequence of 𝑖 choices: which one (from 1
to 𝑖) to choose

Time complexity = Θ 𝑛𝑊 Time complexity = Θ 𝑛2𝑊

Can we do better?

Step 1: Characterize an OPT Solution

• Subproblems
• U-KP(w): unbounded knapsack problem with 𝑤 capacity
• Goal: U-KP(W)

• Optimal substructure: suppose OPT is an optimal solution to U-KP(w), there are
𝑛 cases:

• Case 1: item 1 in OPT
• Removing an item 1 from OPT is an optimal solution of U-KP(w – w1)

• Case 2: item 2 in OPT
• Removing an item 2 from OPT is an optimal solution of U-KP(w – w2)

:

• Case 𝑛: item 𝑛 in OPT
• Removing an item 𝑛 from OPT is an optimal solution of U-KP(w - wn)

42

Unbounded Knapsack Problem

Input: 𝑛 items where 𝑖-th item has value 𝑣𝑖 and weighs 𝑤𝑖 has unlimited supplies

Output: the max value within 𝑊 capacity

Step 2: Recursively Define the Value of an
OPT Solution

• Optimal substructure: suppose OPT is an optimal solution to U-KP(w),
there are 𝑛 cases:

• Case 𝑖: item 𝑖 in OPT
• Removing an item i from OPT is an optimal solution of U-KP(w – w1)

• Recursively define the value

43

只考慮背包還裝的下的情形

Unbounded Knapsack Problem

Input: 𝑛 items where 𝑖-th item has value 𝑣𝑖 and weighs 𝑤𝑖 has unlimited supplies

Output: the max value within 𝑊 capacity

Step 3: Compute Value of an OPT Solution

• Bottom-up method: solve smaller subproblems first

44

w 0 1 2 3 4 5 … W

M[w]

i wi vi

1 1 4

2 2 9

3 4 20

𝑊 = 5

Unbounded Knapsack Problem

Input: 𝑛 items where 𝑖-th item has value 𝑣𝑖 and weighs 𝑤𝑖 has unlimited supplies

Output: the max value within 𝑊 capacity

Step 3: Compute Value of an OPT Solution

• Bottom-up method: solve smaller subproblems first

45

w 0 1 2 3 4 5

M[w] 0 4 9 13 18 22

Unbounded Knapsack Problem

Input: 𝑛 items where 𝑖-th item has value 𝑣𝑖 and weighs 𝑤𝑖 has unlimited supplies

Output: the max value within 𝑊 capacity

i wi vi

1 1 4

2 2 9

3 4 20

𝑊 = 5

Step 3: Compute Value of an OPT Solution

• Bottom-up method: solve smaller subproblems first

46

U-KP(v, W)

for w = 0 to W

M[w] = 0

for w = 0 to W

for i = 1 to n

if(wi <= w)

tmp = vi + M[w - wi]

M[w] = max(M[w], tmp)

return M[W]

Unbounded Knapsack Problem

Input: 𝑛 items where 𝑖-th item has value 𝑣𝑖 and weighs 𝑤𝑖 has unlimited supplies

Output: the max value within 𝑊 capacity

Step 4: Construct an OPT Solution by
Backtracking

47

U-KP(v, W)

for w = 0 to W

M[w] = 0

for w = 0 to W

for i = 1 to n

if(wi <= w)

tmp = vi + M[w - wi]

M[w] = max(M[w], tmp)

return M[W]

Find-Solution(M, n, W)

for i = 1 to n

C[i] = 0 // C[i] = # of item i in solution

w = W

for i = i to n

while w > 0

if(wi <= w && M[w] == (vi + M[w - wi]))

w = w - wi
C[i] += 1

return C

Knapsack Problem

• Input: 𝑛 items where 𝑖-th item has value 𝑣𝑖 and weighs 𝑤𝑖 (𝑣𝑖 and 𝑤𝑖 are
positive integers)

• Output: the maximum value for the knapsack with capacity of 𝑊

• Variants of knapsack problem
• 0-1 Knapsack Problem: 每項物品只能拿一個

• Unbounded Knapsack Problem: 每項物品可以拿多個

• Multidimensional Knapsack Problem: 背包空間有限

• Multiple-Choice Knapsack Problem: 每一類物品最多拿一個

• Fractional Knapsack Problem: 物品可以只拿部分

48

Step 1: Characterize an OPT Solution

• Subproblems
• M-KP(i, w, d): multidimensional knapsack problem with 𝑤 capacity and 𝑑 size for the

first 𝑖 items
• Goal: M-KP(n, W, D)

• Optimal substructure: suppose OPT is an optimal solution to M-KP(i, w, d),
there are 2 cases:

• Case 1: item 𝑖 in OPT
• OPT\{𝑖} is an optimal solution of M-KP(i - 1, w - wi, d – di)

• Case 2: item 𝑖 not in OPT
• OPT is an optimal solution of M-KP(i - 1, w, d)

49

Multidimensional Knapsack Problem

Input: 𝑛 items where 𝑖-th item has value 𝑣𝑖, weighs 𝑤𝑖, and size 𝑑𝑖
Output: the max value within 𝑊 capacity and with the size of 𝑫, where each item is

chosen at most once

Step 2: Recursively Define the Value of an
OPT Solution

• Optimal substructure: suppose OPT is an optimal solution to M-KP(i, w,
d), there are 2 cases:

• Case 1: item 𝑖 in OPT
• OPT\{𝑖} is an optimal solution of M-KP(i - 1, w - wi, d – di)

• Case 2: item 𝑖 not in OPT
• OPT is an optimal solution of M-KP(i - 1, w, d)

• Recursively define the value

50

Multidimensional Knapsack Problem

Input: 𝑛 items where 𝑖-th item has value 𝑣𝑖, weighs 𝑤𝑖, and size 𝑑𝑖
Output: the max value within 𝑊 capacity and with the size of 𝑫, where each item is

chosen at most once

Exercise

• Step 3: Compute Value of an OPT Solution

• Step 4: Construct an OPT Solution by Backtracking

• What is the time complexity?

51

Multidimensional Knapsack Problem

Input: 𝑛 items where 𝑖-th item has value 𝑣𝑖, weighs 𝑤𝑖, and size 𝑑𝑖
Output: the max value within 𝑊 capacity and with the size of 𝑫, where each item is

chosen at most once

Knapsack Problem

• Input: 𝑛 items where 𝑖-th item has value 𝑣𝑖 and weighs 𝑤𝑖 (𝑣𝑖 and 𝑤𝑖 are
positive integers)

• Output: the maximum value for the knapsack with capacity of 𝑊

• Variants of knapsack problem
• 0-1 Knapsack Problem: 每項物品只能拿一個

• Unbounded Knapsack Problem: 每項物品可以拿多個

• Multidimensional Knapsack Problem: 背包空間有限

• Multiple-Choice Knapsack Problem: 每一類物品最多拿一個

• Fractional Knapsack Problem: 物品可以只拿部分

52

Multiple-Choice Knapsack Problem

• Input: 𝑛 items
• 𝑣𝑖,𝑗: value of 𝑗-th item in the group 𝑖

• 𝑤𝑖,𝑗: weight of 𝑗-th item in the group 𝑖

• 𝑛𝑖: number of items in group 𝑖

• 𝑛: total number of items (σ𝑛𝑖)

• 𝐺: total number of groups

• Output: the maximum value for the knapsack with capacity of 𝑊, where the
item from each group can be selected at most once

53

group 1 group 2 group 3

Step 1: Characterize an OPT Solution

• Subproblems
• MC-KP(w): 𝑤 capacity

• MC-KP(i, w): 𝑤 capacity for the first 𝑖 groups

• MC-KP(i, j, w): 𝑤 capacity for the first 𝑗 items from first 𝑖 groups

54

Multiple-Choice Knapsack Problem

Input: 𝑛 items with value 𝑣𝑖,𝑗 and weighs 𝑤𝑖,𝑗 (𝑛𝑖: #items in group 𝑖, 𝐺: #groups)

Output: the max value within 𝑊 capacity, where each group is chosen at most once

Which one is more suitable for this problem?

the constraint is for groups

Step 1: Characterize an OPT Solution

• Subproblems
• MC-KP(i, w): multi-choice knapsack problem with 𝑤 capacity for the first 𝑖 groups

• Goal: MC-KP(G, W)

• Optimal substructure: suppose OPT is an optimal solution to MC-KP(i,
w), for the group 𝑖, there are 𝑛𝑖 + 1 cases:

• Case 1: no item from 𝑖-th group in OPT
• OPT is an optimal solution of MC-KP(i - 1, w)

:

• Case 𝑗 + 1: 𝑗-th item from 𝑖-th group (itemi,j) in OPT
• OPT\itemi,j is an optimal solution of MC-KP(i - 1, w – wi,j)

55

Multiple-Choice Knapsack Problem

Input: 𝑛 items with value 𝑣𝑖,𝑗 and weighs 𝑤𝑖,𝑗 (𝑛𝑖: #items in group 𝑖, 𝐺: #groups)

Output: the max value within 𝑊 capacity, where each group is chosen at most once

Step 2: Recursively Define the Value of an
OPT Solution

• Optimal substructure: suppose OPT is an optimal solution to MC-KP(i,
w), for the group 𝑖, there are 𝑛𝑖 + 1 cases:

• Case 1: no item from 𝑖-th group in OPT
• OPT is an optimal solution of MC-KP(i - 1, w)

• Case 𝑗 + 1: 𝑗-th item from 𝑖-th group (itemi,j) in OPT
• OPT\itemi,j is an optimal solution of MC-KP(i - 1, w – wi,j)

• Recursively define the value

56
𝑛𝑖 + 1

Multiple-Choice Knapsack Problem

Input: 𝑛 items with value 𝑣𝑖,𝑗 and weighs 𝑤𝑖,𝑗 (𝑛𝑖: #items in group 𝑖, 𝐺: #groups)

Output: the max value within 𝑊 capacity, where each group is chosen at most once

Step 3: Compute Value of an OPT Solution

• Bottom-up method: solve smaller subproblems first

57

i\w 0 1 2 3 … w … W

0

1

2

i

n

Multiple-Choice Knapsack Problem

Input: 𝑛 items with value 𝑣𝑖,𝑗 and weighs 𝑤𝑖,𝑗 (𝑛𝑖: #items in group 𝑖, 𝐺: #groups)

Output: the max value within 𝑊 capacity, where each group is chosen at most once

Step 3: Compute Value of an OPT Solution

• Bottom-up method: solve smaller subproblems first

58

MC-KP(n, v, W)

for w = 0 to W

M[0, w] = 0

for i = 1 to G // consider groups 1 to i

for w = 0 to W // consider capacity = w

M[i, w] = M[i - 1, w]

for j = 1 to ni // check j-th item in group i

if(vi,j + M[i - 1, w - wi,j] > M[i, w])

M[i, w] = vi,j + M[i - 1, w - wi,j]

return M[G, W]

Multiple-Choice Knapsack Problem

Input: 𝑛 items with value 𝑣𝑖,𝑗 and weighs 𝑤𝑖,𝑗 (𝑛𝑖: #items in group 𝑖, 𝐺: #groups)

Output: the max value within 𝑊 capacity, where each group is chosen at most once

Step 4: Construct an OPT Solution by
Backtracking

59

MC-KP(n, v, W)

for w = 0 to W

M[0, w] = 0

for i = 1 to G // consider groups 1 to i

for w = 0 to W // consider capacity = w

M[i, w] = M[i - 1, w]

for j = 1 to ni // check items in group i

if(vi,j + M[i - 1, w - wi,j] > M[i, w])

M[i, w] = vi,j + M[i - 1, w - wi,j]

B[i, w] = j

return M[G, W], B[G, W]

Practice to write the pseudo code for Find-Solution()

Knapsack Problem

• Input: 𝑛 items where 𝑖-th item has value 𝑣𝑖 and weighs 𝑤𝑖 (𝑣𝑖 and 𝑤𝑖 are
positive integers)

• Output: the maximum value for the knapsack with capacity of 𝑊

• Variants of knapsack problem
• 0-1 Knapsack Problem: 每項物品只能拿一個

• Unbounded Knapsack Problem: 每項物品可以拿多個

• Multidimensional Knapsack Problem: 背包空間有限

• Multiple-Choice Knapsack Problem: 每一類物品最多拿一個

• Fractional Knapsack Problem: 物品可以只拿部分

60

Fractional Knapsack Problem

• Input: 𝑛 items where 𝑖-th item has value 𝑣𝑖 and weighs 𝑤𝑖 (𝑣𝑖 and 𝑤𝑖 are
positive integers)

• Output: the maximum value for the knapsack with capacity of 𝑊, where we
can take any fraction of items

• Dynamic programming algorithm should work

• Choose maximal
𝑣𝑖

𝑤𝑖
(類似CP值) first

61

“Greedy Algorithm”

Next topic!

Can we do better?

Concluding Remarks

• “Dynamic Programming”: solve many subproblems in polynomial time for which a
naïve approach would take exponential time

• When to use DP
• Whether subproblem solutions can combine into the original solution
• When subproblems are overlapping
• Whether the problem has optimal substructure
• Common for optimization problem

• Two ways to avoid recomputation
• Top-down with memoization
• Bottom-up method

• Complexity analysis
• Space for tabular filling
• Size of the subproblem graph

62

Question?
Important announcement will be sent to
@ntu.edu.tw mailbox & post to the course website

Course Website: http://ada.miulab.tw

Email: ada-ta@csie.ntu.edu.tw

