
Algorithm Design and Analysis
Divide and Conquer (1)

Yun-Nung (Vivian) Chen

http://ada.miulab.tw

Algorithm Design Strategy

• Do not focus on “specific algorithms”

• But “some strategies” to “design” algorithms

• First Skill: Divide-and-Conquer (各個擊破/分治)

2

Outline
• Recurrence (遞迴)
• Divide-and-Conquer
• D&C #1: Tower of Hanoi (河內塔)
• D&C #2: Merge Sort
• D&C #3: Bitonic Champion
• D&C #4: Maximum Subarray
• Solving Recurrences

• Substitution Method
• Recursion-Tree Method
• Master Method

• D&C #5: Matrix Multiplication
• D&C #6: Selection Problem
• D&C #7: Closest Pair of Points Problem

3

Divide-and-Conquer

之神乎奇技

Divide-and-Conquer 首部曲

What is Divide-and-Conquer?

• Solve a problem recursively

• Apply three steps at each level of the recursion
1. Divide the problem into a number of subproblems that are smaller instances of the

same problem (比較小的同樣問題)

2. Conquer the subproblems by solving them recursively
If the subproblem sizes are small enough

• then solve the subproblems

• else recursively solve itself

3. Combine the solutions to the subproblems into the solution for the original problem

4

base case

recursive case

Divide-and-Conquer Benefits

• Easy to solve difficult problems
• Thinking: solve easiest case + combine smaller solutions into the original solution

• Easy to find an efficient algorithm
• Better time complexity

• Suitable for parallel computing (multi-core systems)

• More efficient memory access
• Subprograms and their data can be put in cache in stead of accessing main memory

5

Recurrence (遞迴)

6

Recurrence Relation

• Definition

A recurrence is an equation or inequality that describes a function in terms
of its value on smaller inputs.

• Example

Fibonacci sequence (費波那契數列)
• Base case: F(0) = F(1) = 1

• Recursive case: F(n) = F(n-1) + F(n-2)

7

n 0 1 2 3 4 5 6 7 8 …

F(n) 1 1 2 3 5 8 13 21 34 …

2
1 1

3

5

8

13

21

Recurrent Neural Network (RNN)

8
http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/

Recurrence Benefits

• Easy & Clear
• Define base case and recursive case

• Define a long sequence

9

Base case

Recursive case
F(0), F(1), F(2)……………

unlimited sequence

a program for solving F(n)

Fibonacci(n) // recursive function:程式中會呼叫自己的函數
if n < 2 // base case: termination condition

return 1

// recursive case: call itself for solving subproblems

return Fibonacci(n-1) + Fibonacci(n-2)

important otherwise the program cannot stop

Recurrence v.s. Non-Recurrence

10

Fibonacci(n)

if n < 2

____return 1

a[0] <- 1

a[1] <- 1

for i = 2 … n

____a[i] = a[i-1] + a[i-2]

return a[n]

Fibonacci(n)

if n < 2 // base case

____return 1

// recursive case

return Fibonacci(n-1) + Fibonacci(n-2)

Recursive function
• Clear structure

• Poor efficiency

Non-recursive function
• Better efficiency

• Unclear structure

Recurrence Benefits

• Easy & Clear
• Define base case and recursive case

• Define a long sequence

11

Hanoi(n) is not easy to solve.

✓ It is easy to solve when n is small

✓ we can find the relation between Hanoi(n) & Hanoi(n-1)

a program for solving Hanoi(n)

Base case

Recursive case

If a problem can be simplified into a base case and a recursive case,

then we can find an algorithm that solves this problem.

Base case

Recursive case
F(0), F(1), F(2)……………

unlimited sequence

a program for solving F(n)

D&C #1: Tower of Hanoi

12

Tower of Hanoi (河內塔)

• Problem: move n disks from A to C

• Rules
• Move one disk at a time

• Cannot place a larger disk onto a smaller disk

13Play online: https://www.mathsisfun.com/games/towerofhanoi.html

A B C

Hanoi(1)

• Move 1 from A to C

14

Disk 1

A B C

→ 1 move in total

Base case

Disk 1

Hanoi(2)

• Move 1 from A to B

• Move 2 from A to C

• Move 1 from B to C

15

Disk 2

A B C

Disk 1

→ 3 moves in total

Disk 1 Disk 2

Disk 1

Hanoi(3)

• How to move 3 disks?

• How many moves in total?

16

Disk 3

A B C

Disk 2

Disk 1

Hanoi(n)

• How to move n disks?

• How many moves in total?

17

Disk n

A B C

Disk n-1

Disk n-2

Hanoi(n)

• To move n disks from A to C (for n > 1):
1. Move Disk 1~n-1 from A to B

18

Disk n

A B C

Disk n-1

Disk n-2

Hanoi(n)

• To move n disks from A to C (for n > 1):
1. Move Disk 1~n-1 from A to B

19

Disk n

A B C

Disk n-1

Disk n-2

Hanoi(n)

• To move n disks from A to C (for n > 1):
1. Move Disk 1~n-1 from A to B

2. Move Disk n from A to C

20

Disk n

A B C

Disk n-1

Disk n-2

Hanoi(n)

• To move n disks from A to C (for n > 1):
1. Move Disk 1~n-1 from A to B

2. Move Disk n from A to C

21

Disk n

A B C

Disk n-1

Disk n-2

Hanoi(n)

• To move n disks from A to C (for n > 1):
1. Move Disk 1~n-1 from A to B

2. Move Disk n from A to C

3. Move Disk 1~n-1 from B to C

22

A B C

Disk n-1

Disk n-2

Disk n

Hanoi(n)

• To move n disks from A to C (for n > 1):
1. Move Disk 1~n-1 from A to B

2. Move Disk n from A to C

3. Move Disk 1~n-1 from B to C

23

A B C

Disk n-1

Disk n-2

Disk n

→2Hanoi(n-1) + 1 moves in total

recursive case

Pseudocode for Hanoi

• Call tree

24

Hanoi(n, src, dest, spare)

if n==1 // base case

Move disk from src to dest

else // recursive case

Hanoi(n-1, src, spare, dest)

Move disk from src to dest

Hanoi(n-1, spare, dest, src)

No need to combine the

results in this case

Hanoi(3, A, C, B)

Hanoi(2, A, B, C) Hanoi(2, B, C, A)

Hanoi(1,A,C,B) Hanoi(1,C,B,A) Hanoi(1,B,A,C) Hanoi(1,A,C,B)

Algorithm Time Complexity

• 𝑇 𝑛 = #moves with n disks

• Base case: 𝑇 1 = 1

• Recursive case (𝑛 > 1): 𝑇 𝑛 = 2𝑇 𝑛 − 1 + 1

• We will learn how to derive 𝑇 𝑛 later

25

Hanoi(n, src, dest, spare)

if n==1 // base case

Move disk from src to dest

else // recursive case

Hanoi(n-1, src, spare, dest)

Move disk from src to dest

Hanoi(n-1, spare, dest, src)

Further Questions

• Q1: Is 𝑂 2𝑛 tight for Hanoi? Can 𝑇 𝑛 < 2𝑛 − 1?

• Q2: What about more than 3 pegs?

• Q3: Double-color Hanoi problem
• Input: 2 interleaved-color towers

• Output: 2 same-color towers

26

D&C #2: Merge Sort

27

Textbook Chapter 2.3.1 – The divide-and-conquer approach

Sorting Problem

28

6

Input: unsorted list of size n

Output: sorted list of size n

What are the base case

and recursive case?

3 5 1 8 7 2 4

1 2 3 4 5 6 7 8

Divide-and-Conquer

• Base case (n = 1)
• Directly output the list

• Recursive case (n > 1)
• Divide the list into two sub-lists

• Sort each sub-list recursively

• Merge the two sorted lists

29

1 3 65 2 4 7 8 2 sublists of size n/2

of comparisons = Θ(𝑛)

How?

Illustration for n = 10

30

6 3 5 1 8 9 7 2 10 4

6 3 5 1 8 9 7 2 10 4

6 3 5 1 8 9 7 2 10 4

6 3 5 1 8 9 7 2 10 4

6 3 9 7

Illustration for n = 10

31

6 3 5 1 8 9 7 2 10 4

6 3 5 1 8 9 7 2 10 4

6 3 5 1 8 9 7 2 10 4

6 3 5 1 8 9 7 2 10 4

6 3 9 7

63

63 5 81

63 5 81

7 9

2 7 9 4 10

109742

10987654321

Pseudocode for Merge Sort

• Divide a list of size n into 2 sublists
of size n/2

• Recursive case (𝑛 > 1)
• Sort 2 sublists recursively using

merge sort
• Base case (𝑛 = 1)

• Return itself

• Merge 2 sorted sublists into one
sorted list in linear time

32

MergeSort(A, p, r)

// base case

if p == r

___return

// recursive case

// divide

q = [(p+r-1)/2]

// conquer

MergeSort(A, p, q)

MergeSort(A, q+1, r)

// combine

Merge(A, p, q, r)

1. Divide

2. Conquer

3. Combine

Time Complexity for Merge Sort

• Divide a list of size n into 2 sublists
of size n/2

• Recursive case (𝑛 > 1)
• Sort 2 sublists recursively using

merge sort
• Base case (𝑛 = 1)

• Return itself

• Merge 2 sorted sublists into one
sorted list in linear time

33

MergeSort(A, p, r)

// base case

if p == r

___return

// recursive case

// divide

q = [(p+r-1)/2]

// conquer

MergeSort(A, p, q)

MergeSort(A, q+1, r)

// combine

Merge(A, p, q, r)

1. Divide

2. Conquer

3. Combine

▪ 𝑇 𝑛 = time for running MergeSort(A, p, r)
with 𝑟– 𝑝 + 1 = 𝑛

Time Complexity for Merge Sort

• Simplify recurrences

• Ignore floors and ceilings (boundary conditions)

• Assume base cases are constant (for small n)

34

2nd expansion

1st expansion

The expansion stops when 2𝑘 = 𝑛

kth expansion

Theorem 1

• Theorem

• Proof
• There exists positive constant 𝑎, 𝑏 s.t.

• Use induction to prove
• n = 1, trivial

• n > 1,

35

Inductive

hypothesis

How to Solve Recurrence Relations?

1. Substitution Method (取代法)
• Guess a bound and then prove by induction

2. Recursion-Tree Method (遞迴樹法)
• Expand the recurrence into a tree and sum up the cost

3. Master Method (套公式大法/大師法)
• Apply Master Theorem to a specific form of recurrences

Let’s see more examples first and come back to this later

36

D&C #3: Bitonic Champion Problem

37

Bitonic Champion Problem

38

The bitonic sequence means “increasing before the champion and

decreasing after the champion” (冠軍之前遞增、冠軍之後遞減)

3 7 9 17 35 28 21 18 6 4

Bitonic Champion Problem Complexity

39

Why not Ω(n)?

Why?

Bitonic Champion Problem Complexity

• When there are n inputs, any solution has n different outputs

• Any comparison-based algorithm needs Ω(log 𝑛) time in the worst case

40

n

Ω(log 𝑛)

Bitonic Champion Problem Complexity

41

Divide-and-Conquer

• Idea: divide A into two subproblems and then find the final champion based
on the champions from two subproblems

42

Champion(i, j)

if i==j // base case

return i

else // recursive case

k = floor((i+j)/2)

l = Champion(i, k)

r = Champion(k+1, j)

if A[l] > A[r]

return l

if A[l] < A[r]

return r

Output = Champion(1, n)

Illustration for n = 10

43

3 7 9 17 35 28 21 18 6 4

3 7 9 17 35 28 21 18 6 4

3 7 9 17 35 28 21 18 6 4

3 7 9 17 35 28 21 18 6 4

3 7 28 21

Proof of Correctness

• Practice by yourself!

44

Champion(i, j)

if i==j // base case

return i

else // recursive case

k = floor((i+j)/2)

l = Champion(i, k)

r = Champion(k+1, j)

if A[l] > A[r]

return l

if A[l] < A[r]

return r

Output = Chamption(1, n)

Hint: use induction on (j – i) to
prove Champion(i, j) can

return the champion from A[i … j]

Algorithm Time Complexity

• 𝑇 𝑛 = time for running Champion(i, j) with 𝑗 – 𝑖 + 1 = 𝑛

45

Champion(i, j)

if i==j // base case

return i

else // recursive case

k = floor((i+j)/2)

l = Champion(i, k)

r = Champion(k+1, j)

if A[l] > A[r]

return l

if A[l] < A[r]

return r

• Divide a list of size n into 2
sublists of size n/2

• Recursive case
• Find champions from 2 sublists recursively

• Base case
• Return itself

• Choose the final champion by a
single comparison

1. Divide

2. Conquer

3. Combine

Theorem 2

• Theorem

• Proof
• There exists positive constant 𝑎, 𝑏 s.t.

• Use induction to prove
• n = 1, trivial

• n > 1,

46

Inductive

hypothesis

Bitonic Champion Problem Complexity

47

Can we have a better

algorithm by using the

bitonic sequence property?

Improved Algorithm

48

Champion-2(i, j)

if i==j // base case

return i

else // recursive case

k = floor((i+j)/2)

if A[k] > A[k+1]

return Champion(i, k)

if A[k] < A[k+1]

return Champion(k+1, j)

Champion(i, j)

if i==j // base case

return i

else // recursive case

k = floor((i+j)/2)

l = Champion(i, k)

r = Champion(k+1, j)

if A[l] > A[r]

return l

if A[l] < A[r]

return r

Illustration for n = 10

49

3 7 9 17 35 28 21 18 6 4

3 7 9 17 35

17 35

35

Correctness Proof

• Practice by yourself!

50

Champion-2(i, j)

if i==j // base case

return i

else // recursive case

k = floor((i+j)/2)

if A[k] > A[k+1]

return Champion(i, k)

if A[k] < A[k+1]

return Champion(k+1, j)

Output = Champion-2(1, n)

Two crucial observations:

• If 𝐴[1…𝑛] is bitonic, then so is 𝐴[𝑖, 𝑗] for any

indices 𝑖 and 𝑗 with 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛.

• For any indices 𝑖, 𝑗, and 𝑘 with 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛,

we know that 𝐴[𝑘] > 𝐴[𝑘 + 1] if and only if

the maximum of 𝐴[𝑖 … 𝑗] lies in 𝐴[𝑖 …𝑘].

Algorithm Time Complexity

• 𝑇 𝑛 = time for running Champion-2(i, j) with 𝑗 – 𝑖 + 1 = 𝑛

51

▪ Divide a list of size n into 2
sublists of size n/2

▪ Recursive case

▪ Find champions from 1 sublists
recursively

▪ Base case

▪ Return itself

▪ Return the champion

1. Divide

2. Conquer

3. Combine

Champion-2(i, j)

if i==j // base case

return i

else // recursive case

k = floor((i+j)/2)

if A[k] > A[k+1]

return Champion(i, k)

if A[k] < A[k+1]

return Champion(k+1, j)

Algorithm Time Complexity

• 𝑇 𝑛 = time for running Champion-2(i, j) with 𝑗 – 𝑖 + 1 = 𝑛

52

Champion-2(i, j)

if i==j // base case

return i

else // recursive case

k = floor((i+j)/2)

if A[k] > A[k+1]

return Champion(i, k)

if A[k] < A[k+1]

return Champion(k+1, j)

The algorithm time complexity is 𝑂 log 𝑛
• each recursive call reduces the size of (j

- i) into half

• there are 𝑂 log 𝑛 levels

• each level takes 𝑂 1

Theorem 3

• Theorem

• Proof

53

Practice to prove by induction

Bitonic Champion Problem Complexity

54

D&C #4: Maximum Subarray

55

Textbook Chapter 4.1 – The maximum-subarray problem

Coding Efficiency

• How can we find the most efficient time interval for continuous coding?

56

5pm 6pm 7pm 8pm 9pm 10pm 11pm 12am 1am 2am 3am

1

2

3

4

-4-3

-2

-1

0

Coding power

戰鬥力 (K)

7pm-2:59am

Coding power= 8k

Maximum Subarray Problem

57

3 7 9 17 5 28 21 18 6 4

-3 7 -9 17 -5 28 -21 18 -6 4

-3 -7 -9 -17 -5 -28 -21 -18 -6 -4

O(n3) Brute Force Algorithm

58

MaxSubarray-1(i, j)

for i = 1,…,n

for j = 1,…,n

S[i][j] = - ∞

for i = 1,…,n

for j = i,i+1,…,n

S[i][j] = A[i] + A[i+1] + … + A[j]

return Champion(S)

O(n2) Brute Force Algorithm

59

MaxSubarray-2(i, j)

for i = 1,…,n

for j = 1,…,n

S[i][j] = - ∞

R[0] = 0

for i = 1,…,n

R[i] = R[i-1] + A[i]

for i = 1,…,n

for j = i+1,i+2,…,n

S[i][j] = R[j] - R[i-1]

return Champion(S)

R[n] is the sum over A[1…n]

Max Subarray Problem Complexity

60

Divide-and-Conquer

• Base case (n = 1)
• Return itself (maximum subarray)

• Recursive case (n > 1)
• Divide the array into two sub-arrays

• Find the maximum sub-array recursively

• Merge the results

61

How?

Where is the Solution?

• The maximum subarray for any input must be in one of following cases:

62

Case 1: left

Case 2: right

Case 3: cross the middle

Case 1: MaxSub(A, i, j) = MaxSub(A, i, k)

Case 2: MaxSub(A, i, j) = MaxSub(A, k+1, j)

Case 3: MaxSub(A, i, j) cannot be expressed using MaxSub!

Case 3: Cross the Middle

• Goal: find the maximum subarray that crosses the middle

• Observation
• The sum of 𝐴[𝑥 …𝑘] must be the maximum among 𝐴[𝑖 …𝑘] (left: 𝑖 ≤ 𝑘)

• The sum of 𝐴[𝑘 + 1…𝑦] must be the maximum among 𝐴[𝑘 + 1… 𝑗] (right: 𝑗 > 𝑘)

• Solvable in linear time → Θ 𝑛

63

(1) Start from the middle to find

the left maximum subarray

(2) Start from the middle to find

the right maximum subarray

The solution of Case 3 is the combination of (1) and (2)

Divide-and-Conquer Algorithm

64

MaxCrossSubarray(A, i, k, j)

left_sum = -∞
sum=0

for p = k downto i

sum = sum + A[p]

if sum > left_sum

left_sum = sum

max_left = p

right_sum = -∞
sum=0

for q = k+1 to j

sum = sum + A[q]

if sum > right_sum

right_sum = sum

max_right = q

return (max_left, max_right, left_sum + right_sum)

Combine

ConquerDivide

Divide-and-Conquer Algorithm

65

MaxSubarray(A, i, j)

if i == j // base case

return (i, j, A[i])

else // recursive case

k = floor((i + j) / 2)

(l_low, l_high, l_sum) = MaxSubarray(A, i, k)

(r_low, r_high, r_sum) = MaxSubarray(A, k+1, j)

(c_low, c_high, c_sum) = MaxCrossSubarray(A, i, k, j)

if l_sum >= r_sum and l_sum >= c_sum // case 1

return (l_low, l_high, l_sum)

else if r_sum >= l_sum and r_sum >= c_sum // case 2

return (r_low, r_high, r_sum)

else // case 3

return (c_low, c_high, c_sum)

MaxSubarray(A, i, j)

if i == j // base case

return (i, j, A[i])

else // recursive case

k = floor((i + j) / 2)

(l_low, l_high, l_sum) = MaxSubarray(A, i, k)

(r_low, r_high, r_sum) = MaxSubarray(A, k+1, j)

(c_low, c_high, c_sum) = MaxCrossSubarray(A, i, k, j)

if l_sum >= r_sum and l_sum >= c_sum // case 1

return (l_low, l_high, l_sum)

else if r_sum >= l_sum and r_sum >= c_sum // case 2

return (r_low, r_high, r_sum)

else // case 3

return (c_low, c_high, c_sum)

Divide-and-Conquer Algorithm

66

Algorithm Time Complexity

• Divide a list of size n into 2 subarrays of size n/2

• Recursive case (𝑛 > 1)
• find MaxSub for each subarrays

• Base case (𝑛 = 1)
• Return itself

• Find MaxCrossSub for the original list

• Pick the subarray with the maximum sum among 3 subarrays

67

1. Divide

2. Conquer

3. Combine

▪ 𝑇 𝑛 = time for running MaxSubarray(A, i, j) with 𝑗 – 𝑖 + 1 = 𝑛

Theorem 1

• Theorem

• Proof
• There exists positive constant 𝑎, 𝑏 s.t.

• Use induction to prove
• n = 1, trivial

• n > 1,

68

Inductive

hypothesis

Theorem 1 (Simplified)

• Theorem

• Proof
• There exists positive constant 𝑎, 𝑏 s.t.

• Use induction to prove
• n = 1, trivial

• n > 1,

69

Inductive

hypothesis

Max Subarray Problem Complexity

70

Max Subarray Problem Complexity

71

Exercise 4.1-5

page 75 of textbook

Next topic!

Solving Recurrences

72

Textbook Chapter 4.3 – The substitution method for solving recurrences

Textbook Chapter 4.4 – The recursion-tree method for solving recurrences

Textbook Chapter 4.5 – The master method for solving recurrences

D&C Algorithm Time Complexity

• 𝑇 𝑛 : running time for input size 𝑛

• 𝐷 𝑛 : time of Divide for input size 𝑛

• 𝐶 𝑛 : time of Combine for input size 𝑛

• 𝑎: number of subproblems

• 𝑛/𝑏: size of each subproblem

73

Solving Recurrences

1. Substitution Method (取代法)
• Guess a bound and then prove by induction

2. Recursion-Tree Method (遞迴樹法)
• Expand the recurrence into a tree and sum up the cost

3. Master Method (套公式大法/大師法)
• Apply Master Theorem to a specific form of recurrences

• Useful simplification tricks
• Ignore floors, ceilings, boundary conditions (proof in Ch. 4.6)

• Assume base cases are constant (for small n)

74

Substitution Method

75

Textbook Chapter 4.3 – The substitution method for solving recurrences

Review

• Time Complexity for Merge Sort

• Theorem

• Proof
• There exists positive constant 𝑎, 𝑏 s.t.

• Use induction to prove
• n = 1, trivial

• n > 1,

76

Substitution Method (取代法)
guess a bound and then prove by induction

Substitution Method (取代法)

• Guess the form of the solution

• Verify by mathematical induction (數學歸納法)
• Prove it works for 𝑛 = 1

• Prove that if it works for 𝑛 = 𝑚, then it works for 𝑛 = 𝑚 + 1

→ It can work for all positive integer 𝑛

• Solve constants to show that the solution works

• Prove 𝑂 and Ω separately

77

1. Guess

2. Verify

3. Solve

Substitution Method Example

• Proof
•

There exists positive constants 𝑛0, 𝑐 s.t. for all 𝑛 ≥ 𝑛0,
• Use induction to find the constants 𝑛0, 𝑐

• n = 1, trivial

• n > 1,

• holds when

78

e.g.

Inductive hypothesis

Guess

Verify

Solve

Substitution Method Example

• Proof
•

There exists positive constants 𝑛0, 𝑐 s.t. for all 𝑛 ≥ 𝑛0,
• Use induction to find the constants 𝑛0, 𝑐

• n = 1, trivial

• n > 1,

79

Inductive hypothesis

Tighter upper

bound?

証不出來…

猜錯了？還是推導錯了？

沒猜錯推導也沒錯
這是取代法的小盲點

Substitution Method Example

• Proof
•

There exists positive constants 𝑛0, 𝑐1, 𝑐2 s.t. for all 𝑛 ≥ 𝑛0,
• Use induction to find the constants 𝑛0,𝑐1, 𝑐2

• n = 1, holds for

• n > 1,

• holds when

80

e.g.

Inductive hypothesis

Guess

Verify

Solve

Strengthen the inductive hypothesis

by subtracting a low-order term

Useful Tricks

• Guess based on seen recurrences

• Use the recursion-tree method

• From loose bound to tight bound

• Strengthen the inductive hypothesis by subtracting a low-order term

• Change variables
• E.g.,

1. Change variable:

2. Change variable again:

3. Solve recurrence

81

Recursion-Tree Method

82

Textbook Chapter 4.4 – The recursion-tree method for solving recurrences

Review

• Time Complexity for Merge Sort

• Theorem

• Proof

83

2nd expansion

1st expansion

kth expansion

The expansion stops when 2𝑘 = 𝑛

Recursion-Tree Method (遞迴樹法)
Expand the recurrence into a tree and sum up the cost

Recursion-Tree Method (遞迴樹法)

• Expand a recurrence into a tree

• Sum up the cost of all nodes as a good guess

• Verify the guess as in the substitution method

• Advantages
• Promote intuition

• Generate good guesses for the substitution method

84

1. Expand

2. Sumup

3. Verify

Recursion-Tree Example

85

Recursion-Tree Example

86

Recursion-Tree Example

87

Recursion-Tree Example

88

+

Master Theorem

89

Textbook Chapter 4.4 – The recursion-tree method for solving recurrences

Master Theorem

90

compare 𝑓 𝑛 with 𝑛log𝑏 𝑎

divide a problem of size 𝑛 into 𝑎 subproblems, each of size
𝑛

𝑏
is solved in time 𝑇

𝑛

𝑏
recursively

The proof is in Ch. 4.6

Should follow

this format

Recursion-Tree for Master Theorem

91

+

𝑎

𝑎

Three Cases

•

• 𝑎 ≥ 1, the number of subproblems

• 𝑏 > 1, the factor by which the subproblem size decreases

• 𝑓(𝑛) = work to divide/combine subproblems

• Compare 𝑓 𝑛 with 𝑛log𝑏 𝑎

1. Case 1: 𝑓 𝑛 grows polynomially slower than 𝑛log𝑏 𝑎

2. Case 2: 𝑓 𝑛 and 𝑛log𝑏 𝑎 grow at similar rates

3. Case 3: 𝑓 𝑛 grows polynomially faster than 𝑛log𝑏 𝑎

92

Case 1:
Total cost dominated by the leaves

93

𝑎

𝑎

𝑓 𝑛 grows polynomially slower than 𝑛log𝑏 𝑎

Case 1:
Total cost dominated by the leaves

94

95

𝑎

𝑎

𝑓 𝑛 and 𝑛log𝑏 𝑎 grow at similar rates

Case 2:
Total cost evenly distributed among levels

Case 2:
Total cost evenly distributed among levels

96

Case 3:
Total cost dominated by root cost

97

𝑎

𝑎

𝑓 𝑛 grows polynomially faster than 𝑛log𝑏 𝑎

Case 3:
Total cost dominated by root cost

98

Master Theorem

99

compare 𝑓 𝑛 with 𝑛log𝑏 𝑎

divide a problem of size 𝑛 into 𝑎 subproblems, each of size
𝑛

𝑏
is solved in time 𝑇

𝑛

𝑏
recursively

The proof is in Ch. 4.6

Examples

10

0

compare 𝑓 𝑛 with 𝑛log𝑏 𝑎

Floors and Ceilings

• Master theorem can be extended to recurrences with floors and ceilings

• The proof is in the Ch. 4.6

10

1

Theorem 1

• Case 2

10

2

Theorem 2

• Case 1

10

3

Theorem 3

• Case 2

10

4

To Be Continue…

10

5

Question?
Important announcement will be sent to
@ntu.edu.tw mailbox & post to the course website

Course Website: http://ada.miulab.tw

Email: ada-ta@csie.ntu.edu.tw

