

Algorithm Design and Analysis Divide and Conquer (1)

http://ada.miulab.tw

Yun-Nung (Vivian) Chen

Algorithm Design Strategy

- Do not focus on "specific algorithms"
- But "some strategies" to "design" algorithms
- First Skill: Divide-and-Conquer (各個擊破/分治)

Outline

- Recurrence (遞迴)
- Divide-and-Conquer
- D&C #1: Tower of Hanoi (河内塔)
- D&C #2: Merge Sort
- D&C #3: Bitonic Champion
- D&C #4: Maximum Subarray
- Solving Recurrences
 - Substitution Method
 - Recursion-Tree Method
 - Master Method
- D&C #5: Matrix Multiplication
- D&C #6: Selection Problem
- D&C #7: Closest Pair of Points Problem

Divide-and-Conquer 首部曲

Divide-and-Conquer 之神乎奇技

What is Divide-and-Conquer?

- Solve a problem <u>recursively</u>
- Apply three steps at each level of the recursion
 - 1. Divide the problem into a number of subproblems that are smaller instances of the same problem (比較小的同樣問題)
 - 2. Conquer the subproblems by solving them recursively If the subproblem sizes are *small enough*
 - then solve the subproblems base case
 - else recursively solve itself
 recursive case
 - 3. Combine the solutions to the subproblems into the solution for the original problem

Divide-and-Conquer Benefits

- Easy to solve difficult problems
 - Thinking: solve easiest case + combine smaller solutions into the original solution
- Easy to find an efficient algorithm
 - Better time complexity
- Suitable for parallel computing (multi-core systems)
- More efficient memory access
 - Subprograms and their data can be put in cache in stead of accessing main memory

Recurrence (遞迴)

Recurrence Relation

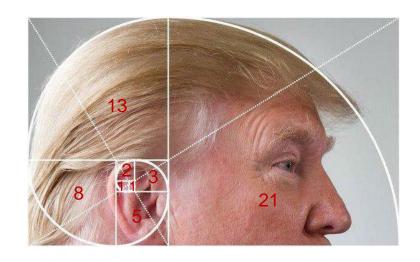
Definition

A *recurrence* is an equation or inequality that describes <u>a function in terms</u> of its value on smaller inputs.

Example

Fibonacci sequence (費波那契數列)

- Base case: F(0) = F(1) = 1
- Recursive case: F(n) = F(n-1) + F(n-2)

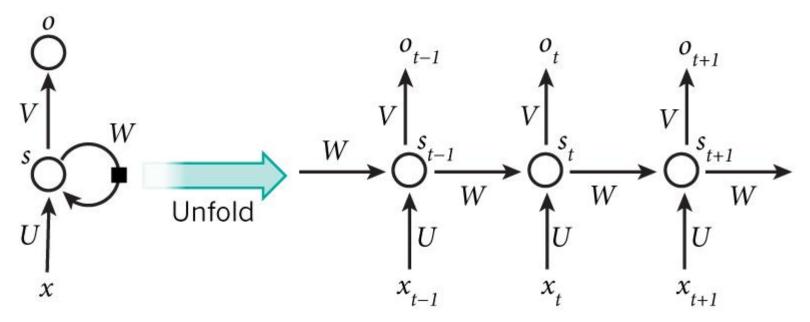


n	0	1	2	3	4	5	6	7	8	
F(n)	1	1	2	3	5	8	13	21	34	

Recurrent Neural Network (RNN)

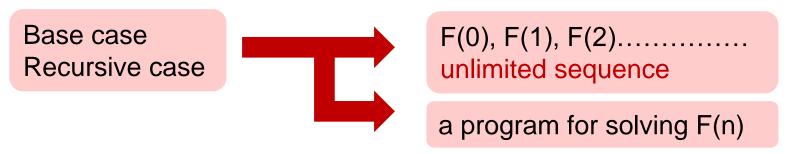
$$s_t = \sigma(Ws_{t-1} + Ux_t)$$

$$o_t = \operatorname{softmax}(Vs_t)$$



Recurrence Benefits

- Easy & Clear
- Define base case and recursive case
 - Define a long sequence



```
Fibonacci(n) // recursive function:程式中會呼叫自己的函數
if n < 2 // base case: termination condition
  return 1 important otherwise the program cannot stop

// recursive case: call itself for solving subproblems
  return Fibonacci(n-1) + Fibonacci(n-2)
```

Recurrence v.s. Non-Recurrence

```
Fibonacci(n)
   if n < 2 // base case
       return 1
   // recursive case
   return Fibonacci(n-1) + Fibonacci(n-2)
```

Recursive function

- Clear structure

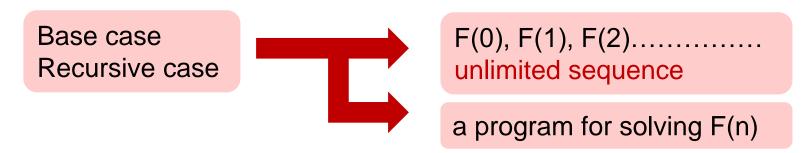

```
Fibonacci(n)
   if n < 2
      return 1
   a[0] < -1
   a[1] < -1
   for i = 2 \dots n
       a[i] = a[i-1] + a[i-2]
   return a[n]
```

Non-recursive function

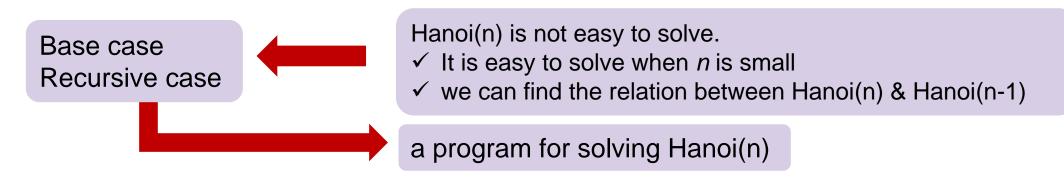
- Better efficiency
 - Unclear structure [7]

Recurrence Benefits

- Easy & Clear
- Define base case and recursive case
 - Define a long sequence



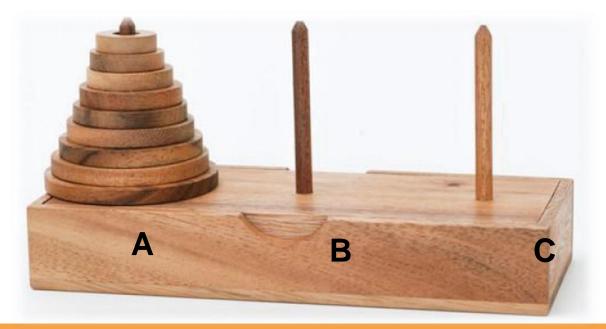
If a problem can be simplified into a **base case** and a **recursive case**, then we can find an algorithm that solves this problem.



D&C #1: Tower of Hanoi

Tower of Hanoi (河內塔)

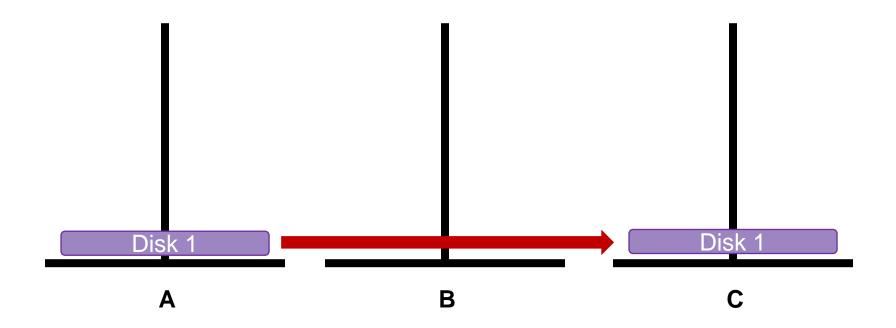
- Problem: move n disks from A to C
- Rules
 - Move one disk at a time
 - Cannot place a larger disk onto a smaller disk



Hanoi(1)

Move 1 from A to C

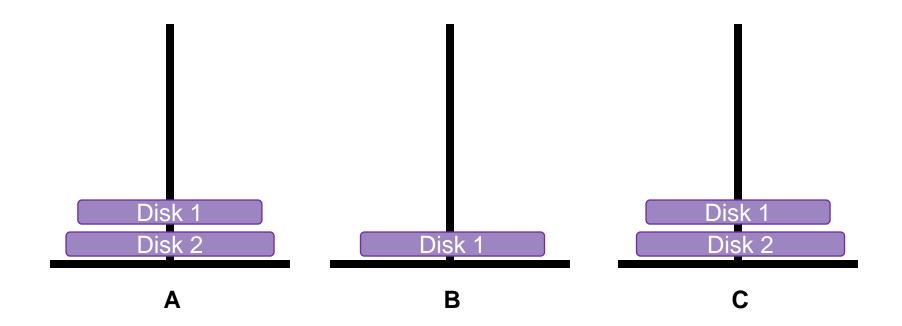
→ 1 move in total
Base case



Hanoi(2)

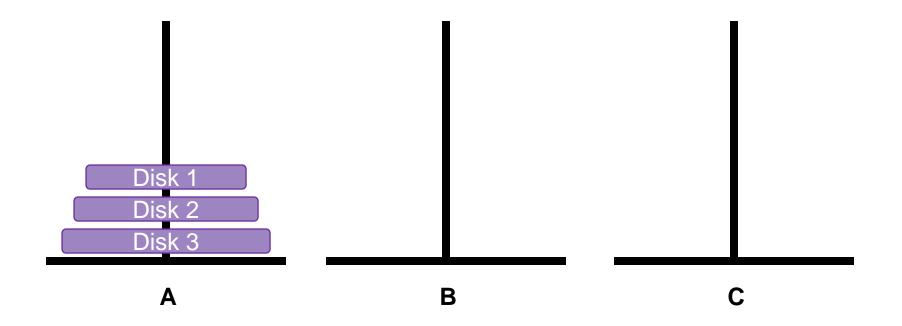
- Move 1 from A to B
- Move 2 from A to C
- Move 1 from B to C

→ 3 moves in total

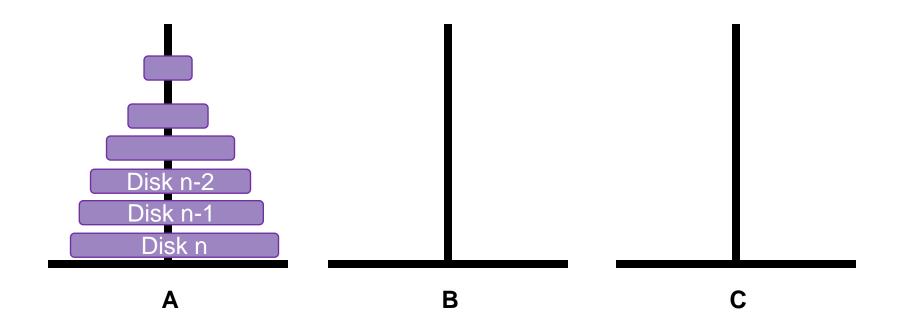


Hanoi(3)

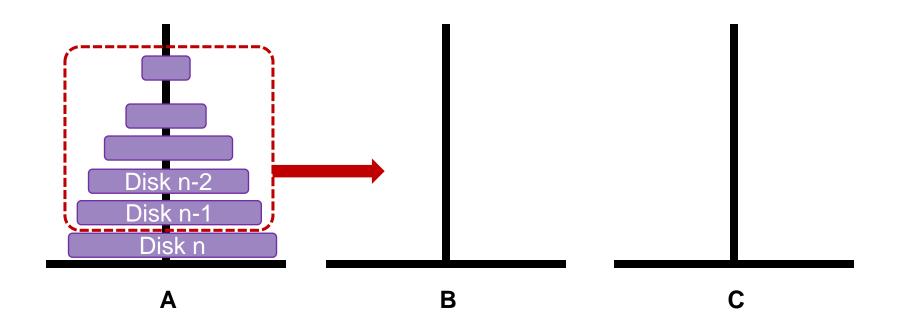
- How to move 3 disks?
- How many moves in total?



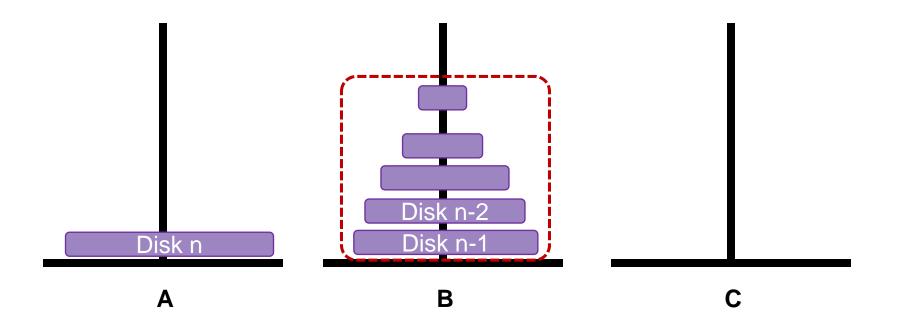
- How to move n disks?
- How many moves in total?



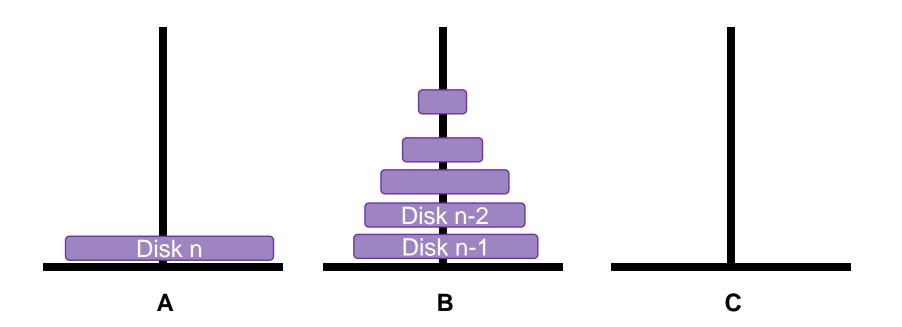
- To move n disks from A to C (for n > 1):
 - 1. Move Disk 1~n-1 from A to B



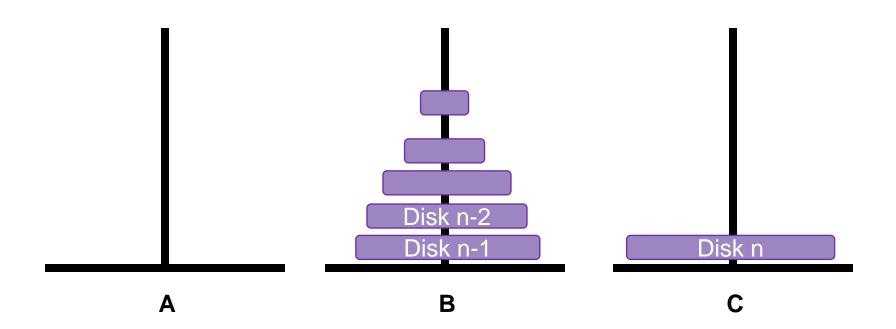
- To move n disks from A to C (for n > 1):
 - 1. Move Disk 1~n-1 from A to B



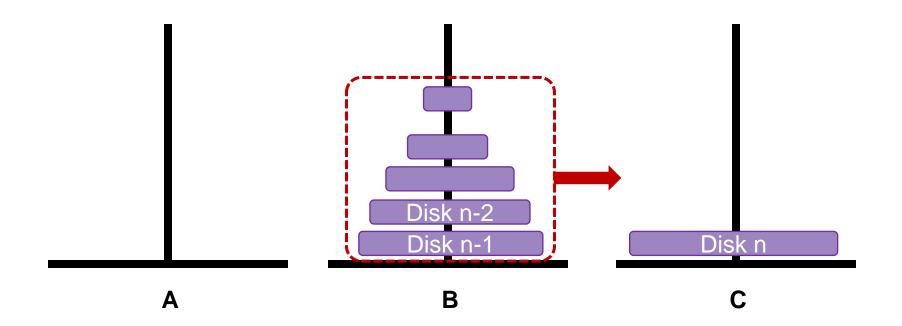
- To move n disks from A to C (for n > 1):
 - 1. Move Disk 1~n-1 from A to B
 - 2. Move Disk n from A to C



- To move n disks from A to C (for n > 1):
 - 1. Move Disk 1~n-1 from A to B
 - 2. Move Disk n from A to C

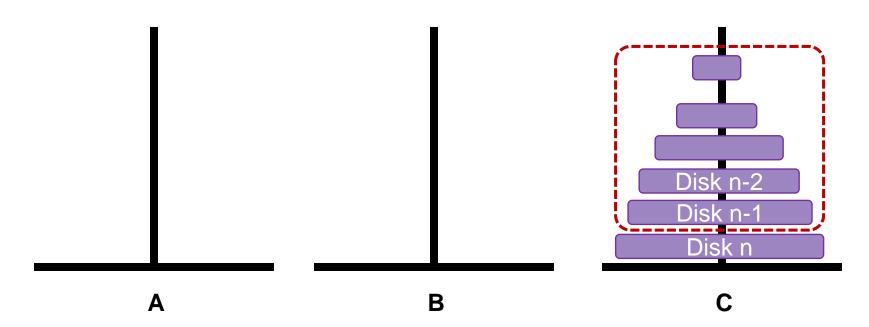


- To move n disks from A to C (for n > 1):
 - 1. Move Disk 1~n-1 from A to B
 - 2. Move Disk n from A to C
 - 3. Move Disk 1~n-1 from B to C



- To move n disks from A to C (for n > 1):
 - 1. Move Disk 1~n-1 from A to B
 - 2. Move Disk n from A to C
 - 3. Move Disk 1~n-1 from B to C

→ 2Hanoi(n-1) + 1 moves in total recursive case

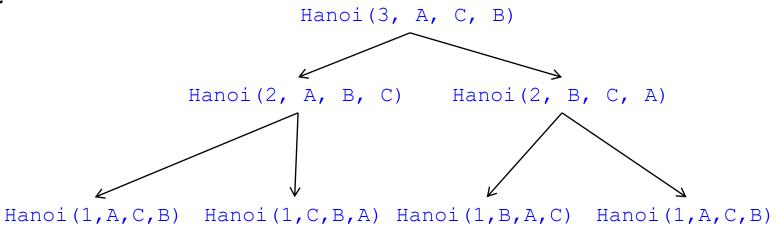


Pseudocode for Hanoi

```
Hanoi(n, src, dest, spare)
  if n==1 // base case
    Move disk from src to dest
  else // recursive case
    Hanoi(n-1, src, spare, dest)
    Move disk from src to dest
    Hanoi(n-1, spare, dest, src)
```

No need to combine the results in this case

Call tree



Algorithm Time Complexity

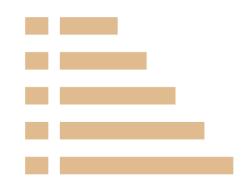
- T(n) = #moves with n disks
 - Base case: T(1) = 1
 - Recursive case (n > 1): T(n) = 2T(n 1) + 1
- We will learn how to derive T(n) later

```
Hanoi(n, src, dest, spare)
  if n==1 // base case
    Move disk from src to dest
  else // recursive case
    Hanoi(n-1, src, spare, dest)
    Move disk from src to dest
    Hanoi(n-1, spare, dest, src)
```

$$T(n) = 2^n - 1 = O(2^n)$$

Further Questions

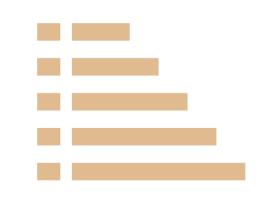
- Q1: Is $O(2^n)$ tight for Hanoi? Can $T(n) < 2^n 1$?
- Q2: What about more than 3 pegs?
- Q3: Double-color Hanoi problem
 - Input: 2 interleaved-color towers
 - Output: 2 same-color towers



D&C #2: Merge Sort

Textbook Chapter 2.3.1 – The divide-and-conquer approach

Sorting Problem



Input: unsorted list of size *n*

What are the base case and recursive case?

Output: sorted list of size *n*

Divide-and-Conquer

- Base case (n = 1)
 - Directly output the list
- Recursive case (n > 1)
 - Divide the list into two sub-lists
 - Sort each sub-list recursively
 - Merge the two sorted lists

How?

2 sublists of size *n*/2

of comparisons = $\Theta(n)$

Illustration for n = 10

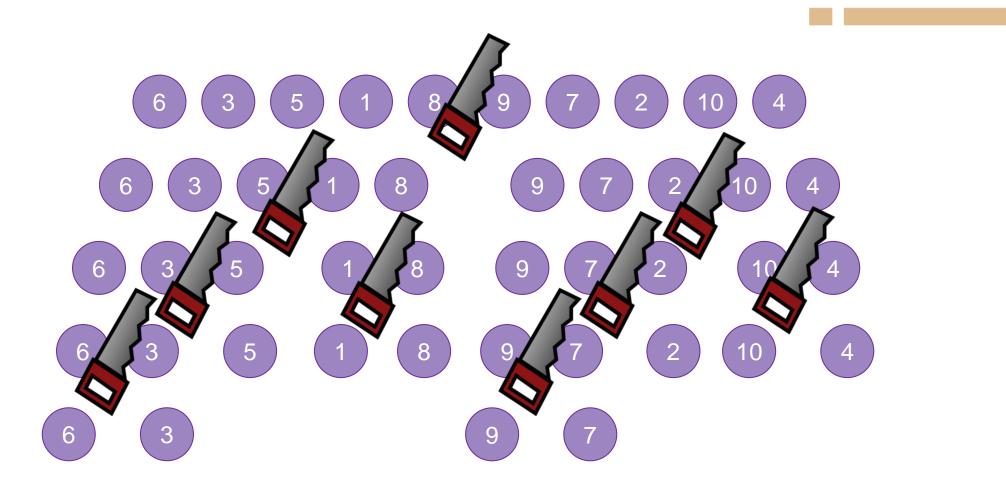
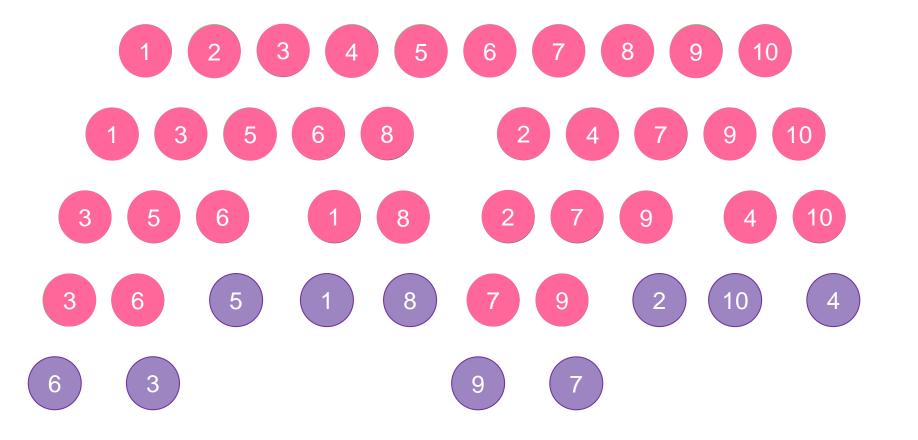


Illustration for n = 10



Pseudocode for Merge Sort

```
MergeSort(A, p, r)
  // base case
  if p == r
   return
  // recursive case
  // divide
  q = [(p+r-1)/2]
  // conquer
  MergeSort(A, p, q)
  MergeSort(A, q+1, r)
  // combine
  Merge(A, p, q, r)
```

1. Divide

2. Conquer

3. Combine

- Divide a list of size n into 2 sublists of size n/2
- Recursive case (n > 1)
 - Sort 2 sublists recursively using merge sort
- Base case (n = 1)
 - Return itself
- Merge 2 sorted sublists into one sorted list in linear time

Time Complexity for Merge Sort

```
MergeSort(A, p, r)
  // base case
  if p == r
   return
  // recursive case
  // divide
  q = [(p+r-1)/2]
  // conquer
  MergeSort(A, p, q)
  MergeSort(A, q+1, r)
  // combine
  Merge(A, p, q, r)
```

1. Divide

2. Conquer

3. Combine

- Divide a list of size n into 2 sublists of size n/2
- Recursive case (n > 1)
 - Sort 2 sublists recursively using merge sort
- Base case (n = 1) $T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor)$
 - Return itself
- Merge 2 sorted sublists into one sorted list in linear time

 $T(n) = \text{time for running } \underbrace{\mathsf{MergeSort}\,(\mathtt{A}, \ \mathtt{p}, \ \mathtt{r})}_{\text{with } r-p+1=n} \quad T(n) = \left\{ \begin{array}{ll} O(1) & \text{if } n=1 \\ T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor) + O(n) & \text{if } n \geq 2 \end{array} \right.$

Time Complexity for Merge Sort

- Simplify recurrences
- Ignore floors and ceilings (boundary conditions)
- Assume base cases are constant (for small n)

$$\begin{split} T(n) &= \left\{ \begin{array}{l} O(1) & \text{if } n=1 \\ 2T(n/2) + O(n) & \text{if } n \geq 2 \end{array} \right. \\ T(n) &\leq 2T(\frac{n}{2}) + cn \\ &\leq 2[2T(\frac{n}{4}) + c\frac{n}{2}] + cn = 4T(\frac{n}{4}) + 2cn \\ &\leq 4[2T(\frac{n}{8}) + c\frac{n}{4}] + 2cn = 8T(\frac{n}{8}) + 3cn \\ &\vdots \\ &\leq 2^k T(\frac{n}{2^k}) + kcn \text{ kth expansion} \\ &\text{T}(n) &\leq nT(1) + cn \log_2 n \\ &\leq 2^k T(\frac{n}{2^k}) + kcn \text{ kth expansion} \\ &\text{The expansion stops when } 2^k = n \\ &= O(n \log n) \end{split}$$

Theorem 1

Theorem

$$T(n) = \begin{cases} O(1) & \text{if } n = 1 \\ T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor) + O(n) & \text{if } n \ge 2 \end{cases} \rightarrow T(n) = O(n \log n)$$

- Proof
 - There exists positive constant a, b s.t. $T(n) \leq \left\{ \begin{array}{ll} a & \text{if } n=1 \\ T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor) + b \cdot n & \text{if } n \geq 2 \end{array} \right.$
 - Use induction to prove $T(n) \leq 2b \cdot n \log_2 n + a \cdot n$
 - n = 1, trivial
 - n > 1, $\left\lceil \frac{n}{2} \right\rceil \leq \frac{n}{\sqrt{2}}$

$$T(n) \leq T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor) + b \cdot n$$

$$| \text{Inductive hypothesis} | \leq 2b \cdot (\lceil n/2 \rceil \log_2 \lceil n/2 \rceil) + a \cdot \lceil n/2 \rceil + 2b \cdot (\lfloor n/2 \rfloor \log_2 \lfloor n/2 \rfloor) + a \cdot \lfloor n/2 \rfloor + b \cdot n$$

$$\leq 2b \cdot (\lceil n/2 \rceil \log_2 \frac{n}{\sqrt{2}} \rceil) + a \cdot \lceil n/2 \rceil + 2b \cdot (\lfloor n/2 \rfloor \log_2 \frac{n}{\sqrt{2}}) + a \cdot \lfloor n/2 \rfloor + b \cdot n$$

$$= 2b \cdot n(\log n - \log_2 \sqrt{2}) + a \cdot n + b \cdot n = 2b \cdot n \log_2 n + a \cdot n$$

How to Solve Recurrence Relations?

- 1. Substitution Method (取代法)
 - Guess a bound and then prove by induction
- 2. Recursion-Tree Method (遞迴樹法)
 - Expand the recurrence into a tree and sum up the cost
- 3. Master Method (套公式大法/大師法)
 - Apply Master Theorem to a specific form of recurrences

Let's see more examples first and come back to this later

D&C #3: Bitonic Champion Problem

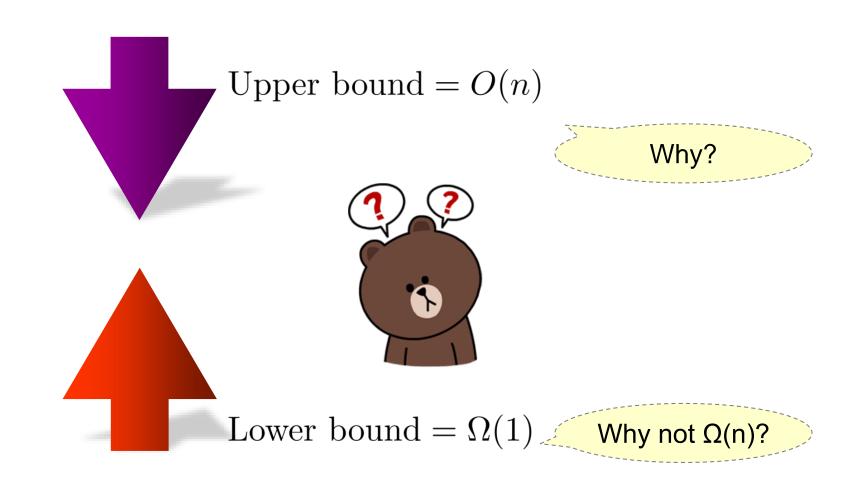
Bitonic Champion Problem

The bitonic champion problem

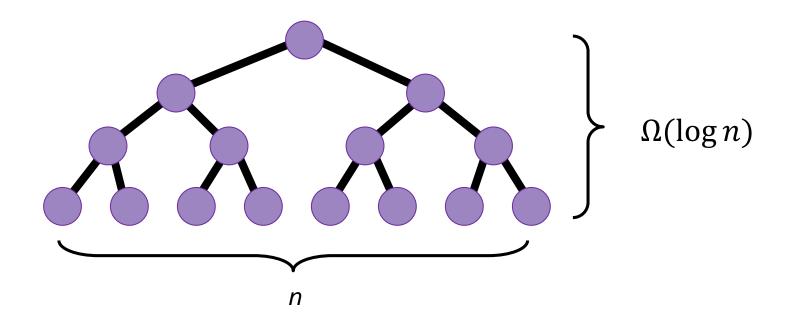
- Input: A bitonic sequence $A[1], A[2], \ldots, A[n]$ of distinct positive integers.
- Output: the index i with $1 \le i \le n$ such that

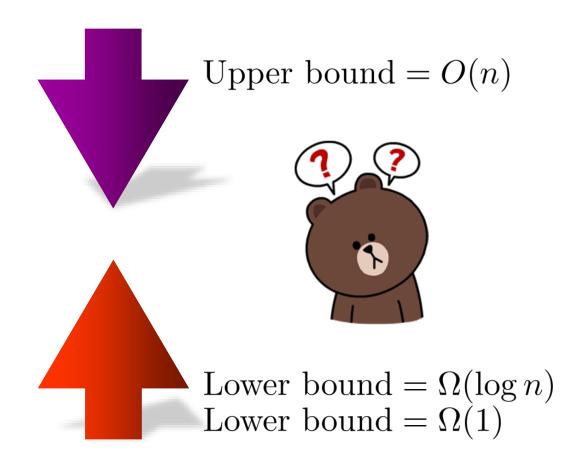
$$A[i] = \max_{1 < j < n} A[j].$$

The bitonic sequence means "increasing before the champion and decreasing after the champion" (冠軍之前遞增、冠軍之後遞減)



- When there are *n* inputs, any solution has *n* different outputs
- Any comparison-based algorithm needs $\Omega(\log n)$ time in the worst case





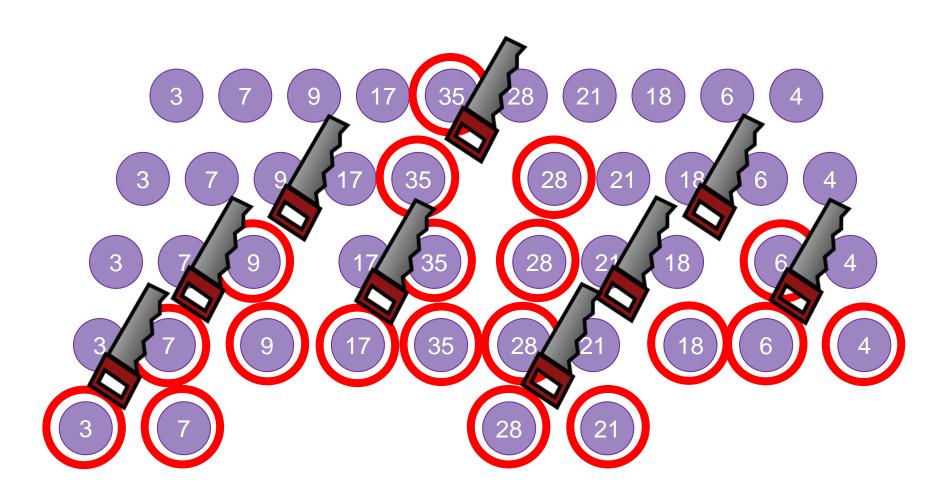
Divide-and-Conquer

 Idea: divide A into two subproblems and then find the final champion based on the champions from two subproblems

```
Output = Champion(1, n)
```

```
Champion(i, j)
  if i==j // base case
    return i
  else // recursive case
    k = floor((i+j)/2)
    l = Champion(i, k)
    r = Champion(k+1, j)
    if A[l] > A[r]
       return l
    if A[l] < A[r]
       return r</pre>
```

Illustration for n = 10



Proof of Correctness

Practice by yourself!

```
Output = Chamption(1, n)
```

```
Champion(i, j)
  if i==j // base case
    return i
  else // recursive case
    k = floor((i+j)/2)
    l = Champion(i, k)
    r = Champion(k+1, j)
    if A[l] > A[r]
        return l
    if A[l] < A[r]
        return r</pre>
```

Hint: use induction on (j - i) to prove Champion (i, j) can return the champion from A[i ... j]

Algorithm Time Complexity

• T(n) = time for running Champion (i, j) with j - i + 1 = n

```
Champion(i, j)
  if i==j // base case
    return i
  else // recursive case
    k = floor((i+j)/2)
    l = Champion(i, k)
    r = Champion(k+1, j)
    if A[l] > A[r]
      return l
    if A[l] < A[r]
      return r
```

1. Divide

2. Conquer

3. Combine

- Divide a list of size n into 2 sublists of size n/2
- Recursive case $T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor)$
 - Find champions from 2 sublists *recursively*
- Base case $\Theta(1)$ Return itself

- Choose the final champion by a single comparison $\Theta(1)$

$$T(n) = \begin{cases} O(1) & \text{if } n = 1\\ T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor) + O(1) & \text{if } n \ge 2 \end{cases}$$

Theorem 2

Theorem

$$T(n) = \begin{cases} O(1) & \text{if } n = 1 \\ T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor) + O(1) & \text{if } n \ge 2 \end{cases} \implies T(n) = O(n)$$

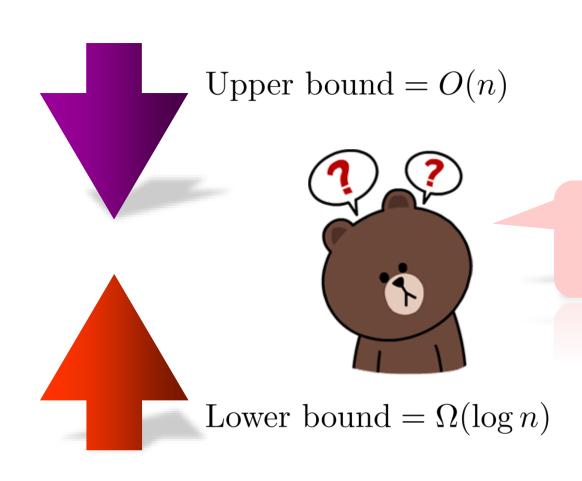
- Proof
 - There exists positive constant a, b s.t. $T(n) \leq \begin{cases} a & \text{if } n = 1 \\ T(\lceil n/2 \rceil) + T(\lceil n/2 \rceil) + b & \text{if } n > 2 \end{cases}$
 - Use induction to prove $T(n) \le a \cdot n + b \cdot (n-1)$
 - n = 1, trivial
 - n > 1,

$$T(n) \leq T(\lceil n/2 \rceil) + T(\lceil n/2 \rceil) + b$$

$$\leq$$

$$\begin{array}{l} \text{Inductive} \\ \text{hypothesis} \end{array} & \leq \quad a \cdot \lceil n/2 \rceil + b \cdot (\lceil n/2 \rceil - 1) + a \cdot \lfloor n/2 \rfloor + b \cdot (\lfloor n/2 \rfloor - 1) + b \\ & \leq \quad a \cdot n + b \cdot (n-1) \\ \end{array}$$

$$\leq a \cdot n + b \cdot (n-1)$$



bitonic sequence property?

pitonic seduence broberty?

pitonic seduence broberty.

Can we have a petter

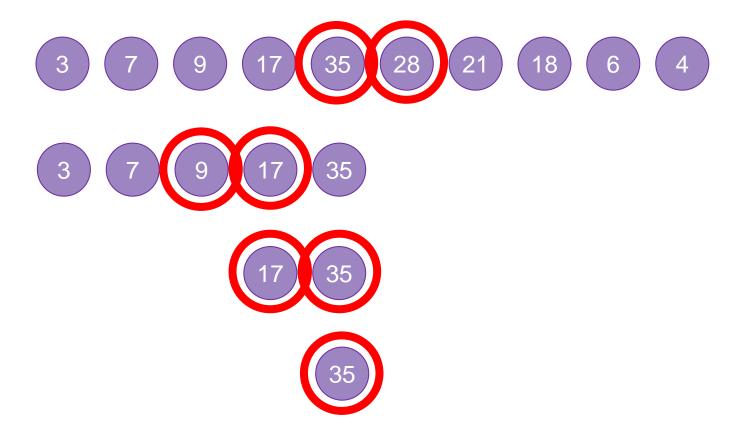
Improved Algorithm


```
Champion(i, j)
  if i==j // base case
    return i
  else // recursive case
    k = floor((i+j)/2)
    l = Champion(i, k)
    r = Champion(k+1, j)
    if A[l] > A[r]
      return l
    if A[l] < A[r]
    return r</pre>
```



```
Champion-2(i, j)
  if i==j // base case
    return i
  else // recursive case
    k = floor((i+j)/2)
    if A[k] > A[k+1]
       return Champion(i, k)
    if A[k] < A[k+1]
    return Champion(k+1, j)</pre>
```

Illustration for n = 10



Correctness Proof

Practice by yourself!

```
Output = Champion-2(1, n)
```

```
Champion-2(i, j)
  if i==j // base case
    return i
  else // recursive case
    k = floor((i+j)/2)
    if A[k] > A[k+1]
      return Champion(i, k)
    if A[k] < A[k+1]
    return Champion(k+1, j)</pre>
```

Two crucial observations:

- If A[1 ... n] is bitonic, then so is A[i, j] for any indices i and j with $1 \le i \le j \le n$.
- For any indices i, j, and k with $1 \le i \le j \le n$, we know that A[k] > A[k+1] if and only if the maximum of A[i...j] lies in A[i...k].

Algorithm Time Complexity

• T(n) = time for running Champion-2(i, j) with j - i + 1 = n

```
Champion-2(i, j)
  if i==j // base case
    return i
  else // recursive case
    k = floor((i+j)/2)
    if A[k] > A[k+1]
      return Champion(i, k)
    if A[k] < A[k+1]
    return Champion(k+1, j)</pre>
```

1. Divide

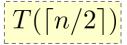
 Divide a list of size n into 2 sublists of size n/2

Find champions from 1 sublists

 $\Theta(1)$

1

Recursive case



2. Conquer

recursivelyBase case

Base case
 Return itself

3. Combine - Return the champion

 $\Theta(1)$

$$T(n) = \begin{cases} O(1) & \text{if } n = 1\\ T(\lceil n/2 \rceil) + O(1) & \text{if } n \ge 2 \end{cases}$$

Algorithm Time Complexity

• T(n) = time for running Champion-2(i, j) with j - i + 1 = n

```
Champion-2(i, j)
  if i==j // base case
    return i
  else // recursive case
    k = floor((i+j)/2)
    if A[k] > A[k+1]
       return Champion(i, k)
    if A[k] < A[k+1]
       return Champion(k+1, j)</pre>
```

The algorithm time complexity is $O(\log n)$

- each recursive call reduces the size of (j
 i) into half
- there are $O(\log n)$ levels
- each level takes O(1)

$$T(n) = \begin{cases} O(1) & \text{if } n = 1\\ T(\lceil n/2 \rceil) + O(1) & \text{if } n \ge 2 \end{cases}$$

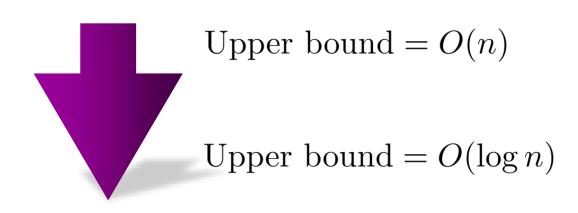
Theorem 3

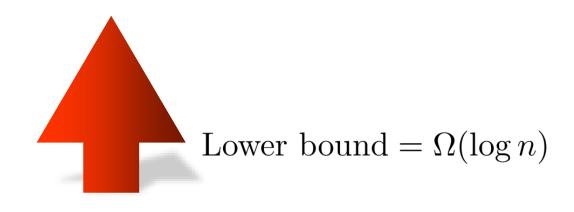
• Theorem

$$T(n) \le \begin{cases} O(1) & \text{if } n = 1 \\ T(\lceil n/2 \rceil) + O(1) & \text{if } n \ge 2 \end{cases} \implies T(n) = O(\log n)$$

Proof

Practice to prove by induction



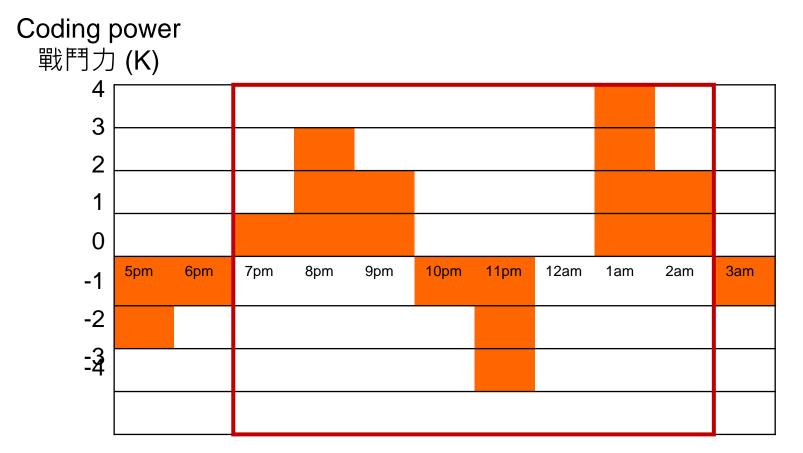


D&C #4: Maximum Subarray

Textbook Chapter 4.1 – The maximum-subarray problem

Coding Efficiency

How can we find the most efficient time interval for continuous

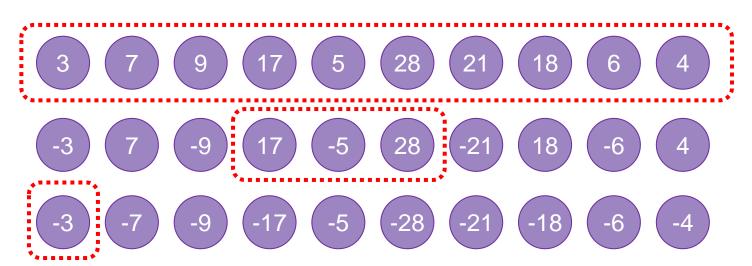


7pm-2:59am Coding power= 8k

Maximum Subarray Problem

- Input: A sequence $A[1], A[2], \ldots, A[n]$ of integers.
- Output: Two indicex i and j with $1 \le i \le j \le n$ that maximize

$$A[i] + A[i+1] + \cdots + A[j].$$



O(n³) Brute Force Algorithm

```
MaxSubarray-1(i, j)
for i = 1,...,n
for j = 1,...,n
S[i][j] = -\infty

for i = 1,...,n
for j = i,i+1,...,n
S[i][j] = A[i] + A[i+1] + ... + A[j]

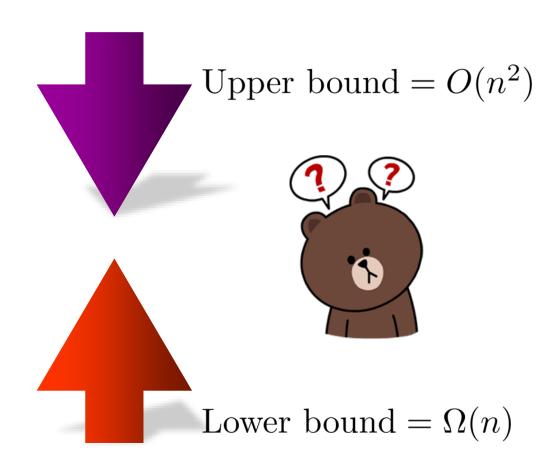
return Champion(S)

O(n^2)
```

O(n²) Brute Force Algorithm

```
MaxSubarray-2(i, j)
  for i = 1, ..., n
    for j = 1, ..., n
                                             O(n^2)
       S[i][j] = -\infty
  R[0] = 0 R[n] is the sum over A[1...n]
  for i = 1, ..., n
    R[i] = R[i-1] + A[i]
  for i = 1, ..., n
    for j = i+1, i+2, ..., n
       S[i][j] = R[j] - R[i-1]
                                             O(n^2)
  return Champion(S)
```

Max Subarray Problem Complexity



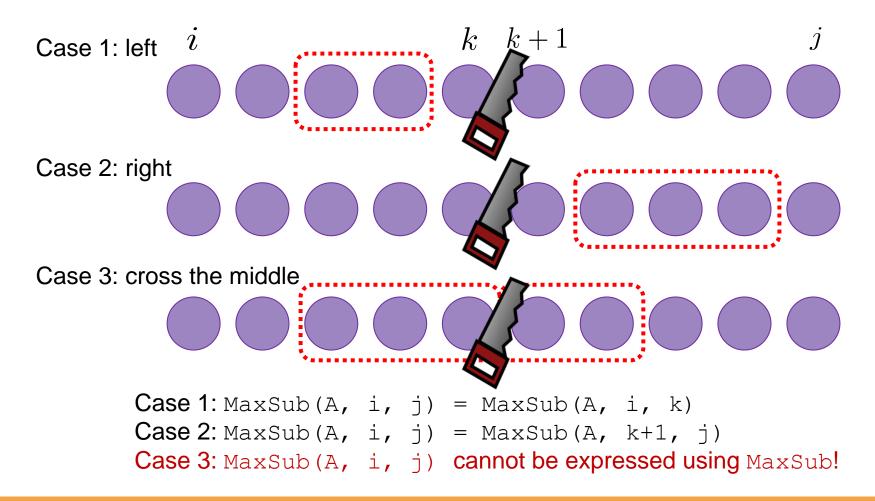
Divide-and-Conquer

- Base case (n = 1)
 - Return itself (maximum subarray)
- Recursive case (n > 1)
 - Divide the array into two sub-arrays
 - Find the maximum sub-array recursively
 - Merge the results

How?

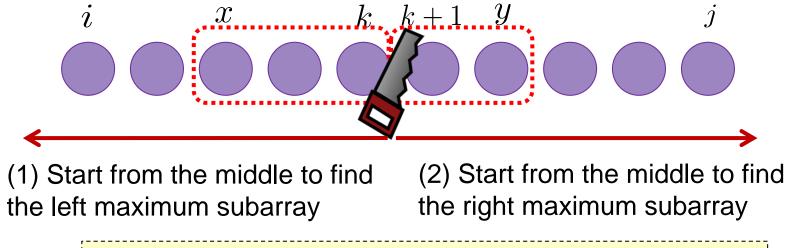
Where is the Solution?

The maximum subarray for any input must be in one of following cases:



Case 3: Cross the Middle

Goal: find the maximum subarray that crosses the middle



The solution of Case 3 is the combination of (1) and (2)

- Observation
 - The sum of A[x ... k] must be the maximum among A[i ... k] (left: $i \le k$)
 - The sum of A[k+1...y] must be the maximum among A[k+1...j] (right: j > k)
 - Solvable in linear time $\rightarrow \Theta(n)$

Divide-and-Conquer Algorithm

```
MaxCrossSubarray(A, i, k, j)
  left sum = -\infty
  sum=0
                          O(k-i+1)
  for p = k downto i
   sum = sum + A[p]
   if sum > left sum
     left sum = sum
                                             - = O(j - i + 1)
     max left = p
  right sum = -\infty
  sum=0
                          O(j-k)
  for q = k+1 to j
   sum = sum + A[q]
   if sum > right sum
     right sum = sum
     max right = q
  return (max left, max right, left sum + right sum)
```

Divide-and-Conquer Algorithm

```
MaxSubarray(A, i, j)
   if i == j // base case
     return (i, j, A[i])
   else // recursive case
     k = floor((i + j) / 2)
     (1 low, 1 high, 1 sum) = MaxSubarray(A, i, k)
                                                             Conquer
Divide (r low, r high, r sum) = MaxSubarray(A, k+1, j)
     (c low, c high, c sum) = MaxCrossSubarray(A, i, k, j)
   if 1 sum >= r sum and 1 sum >= c_sum // case 1
     return (1 low, 1 high, 1 sum)
   else if r sum >= l sum and r sum >= c sum // case 2
                                                          Combine
     return (r low, r high, r sum)
   else // case 3
     return (c low, c high, c sum)
```

Divide-and-Conquer Algorithm

```
MaxSubarray(A, i, j)
  if i == j // base case
                                                        O(1)
    return (i, j, A[i])
  else // recursive case
   k = floor((i + j) / 2)
                                                       T(k-i+1)
   (l low, l high, l_sum) = MaxSubarray(A, i, k)
   (r_low, r_high, r_sum) = MaxSubarray(A, k+1, j) T(j-k)
    (c_low, c_high, c_sum) = MaxCrossSubarray(A, i, k, j) O(j-i+1)
                                                         O(1)
  if 1 sum >= r sum and 1 sum >= c sum // case 1
    return (1 low, 1 high, 1 sum)
                                                        O(1)
  else if r sum >= l sum and r sum >= c sum // case 2
    return (r low, r high, r sum)
                                                         O(1)
  else // case 3
    return (c low, c high, c sum)
```

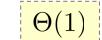
Algorithm Time Complexity

1. Divide

Divide a list of size n into 2 subarrays of size n/2

 $\Theta(1)$

- Recursive case (n > 1) $T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor)$
 - find MaxSub for each subarrays
- Base case (n = 1)



Return itself

• Find **MaxCrossSub** for the original list $\Theta(n)$

3. Combine

Pick the subarray with the maximum sum among 3 subarrays

■ T(n) = time for running MaxSubarray (A, i, j) with j - i + 1 = n

$$T(n) = \begin{cases} O(1) & \text{if } n = 1\\ T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor) + O(n) & \text{if } n \ge 2 \end{cases}$$

Theorem 1

Theorem

$$T(n) = \begin{cases} O(1) & \text{if } n = 1 \\ T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor) + O(n) & \text{if } n \ge 2 \end{cases} \rightarrow T(n) = O(n \log n)$$

- Proof
 - There exists positive constant a, b s.t. $T(n) \leq \left\{ \begin{array}{ll} a & \text{if } n=1 \\ T(\lceil n/2 \rceil) + T(\lceil n/2 \rceil) + b \cdot n & \text{if } n \geq 2 \end{array} \right.$
 - Use induction to prove $T(n) \leq 2b \cdot n \log_2 n + a \cdot n$
 - n = 1, trivial

• n > 1,
$$\frac{n+1}{2} \le \frac{n}{\sqrt{2}}$$

$$T(n) \le T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor) + b \cdot n$$

$$\begin{array}{ll} \text{Inductive} \\ \text{hypothesis} \\ & \leq & 2b \cdot (\lceil n/2 \rceil \log_2 \lceil n/2 \rceil + a \cdot \lceil n/2 \rceil) + 2b \cdot (\lfloor n/2 \rfloor \log_2 \lfloor n/2 \rfloor + a \cdot \lfloor n/2 \rfloor) + b \cdot n \\ & \leq & 2b \cdot (\lceil n/2 \rceil \log_2 \frac{n}{\sqrt{2}} \rceil + a \cdot \lceil n/2 \rceil) + 2b \cdot (\lfloor n/2 \rfloor \log_2 \frac{n}{\sqrt{2}} + a \cdot \lfloor n/2 \rfloor) + b \cdot n \end{array}$$

$$= 2b \cdot n(\log n - \log_2 \sqrt{2}) + a \cdot n + b \cdot n = 2b \cdot n \log_2 n + a \cdot n$$

Theorem 1 (Simplified)

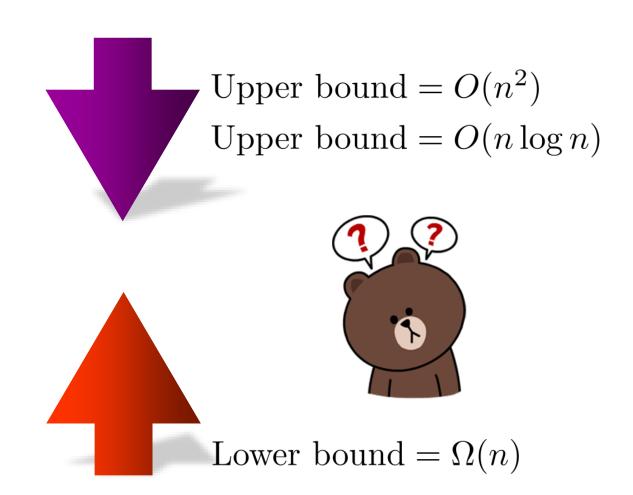
Theorem

$$T(n) = \begin{cases} O(1) & \text{if } n = 1 \\ 2T(n/2) + O(n) & \text{if } n \ge 2 \end{cases} \implies T(n) = O(n \log n)$$

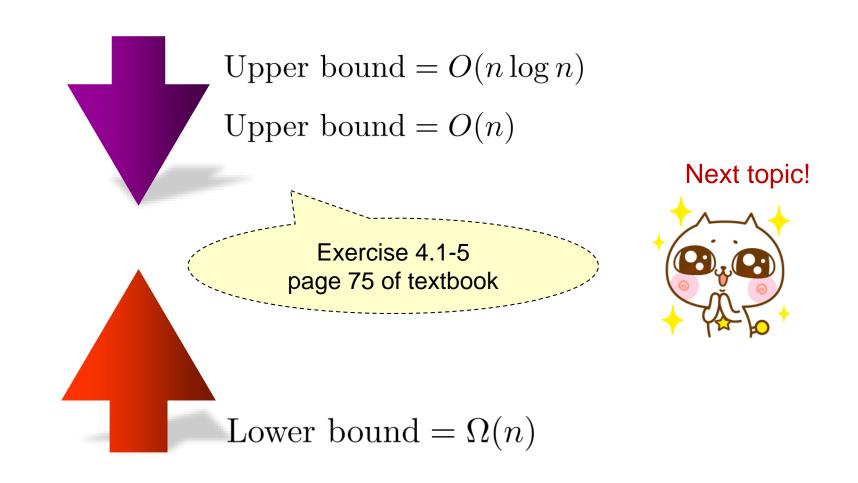
- Proof
 - There exists positive constant a, b s.t. $T(n) \leq \left\{ \begin{array}{ll} a & \text{if } n=1 \\ 2T(n/2) + bn & \text{if } n \geq 2 \end{array} \right.$
 - Use induction to prove $T(n) \le b \cdot n \log n + a \cdot n$
 - n = 1, trivial
 - n > 1,

$$\begin{array}{ll} T(n) & \leq & 2T(n/2) + bn \\ \text{Inductive} \\ \text{hypothesis} & \leq & 2[b \cdot \frac{n}{2}\log\frac{n}{2} + a \cdot \frac{n}{2}] + b \cdot n \\ & = & b \cdot n\log n - b \cdot n + a \cdot n + b \cdot n \\ & = & b \cdot n\log n + a \cdot n \end{array}$$

Max Subarray Problem Complexity



Max Subarray Problem Complexity



Solving Recurrences

Textbook Chapter 4.3 – The substitution method for solving recurrences

Textbook Chapter 4.4 – The recursion-tree method for solving recurrences

Textbook Chapter 4.5 – The master method for solving recurrences

D&C Algorithm Time Complexity

- T(n): running time for input size n
- D(n): time of **Divide** for input size n
- C(n): time of Combine for input size n
- *a*: number of subproblems
- n/b: size of each subproblem

$$T(n) = \begin{cases} O(1) & \text{if } n \leq c \\ aT(n/b) + D(n) + C(n) & \text{otherwise} \end{cases}$$

Solving Recurrences

- 1. Substitution Method (取代法)
 - Guess a bound and then prove by induction
- 2. Recursion-Tree Method (遞迴樹法)
 - Expand the recurrence into a tree and sum up the cost
- 3. Master Method (套公式大法/大師法)
 - Apply Master Theorem to a specific form of recurrences
- Useful simplification tricks
 - Ignore floors, ceilings, boundary conditions (proof in Ch. 4.6)
 - Assume base cases are constant (for small n)

Substitution Method

Textbook Chapter 4.3 – The substitution method for solving recurrences

Review

- Time Complexity for Merge Sort
- Theorem

$$T(n) = \begin{cases} O(1) & \text{if } n = 1\\ 2T(n/2) + O(n) & \text{if } n \ge 2 \end{cases} \implies T(n) = O(n \log n)$$

- Proof
 - There exists positive constant a,b s.t. $T(n) \leq \left\{ \begin{array}{ll} a & \text{if } n=1 \\ 2T(n/2)+bn & \text{if } n\geq 2 \end{array} \right.$
 - Use induction to prove $T(n) \le b \cdot n \log n + a \cdot n$
 - n = 1, trivial

• n > 1,
$$T(n) \le 2T(n/2) + bn$$

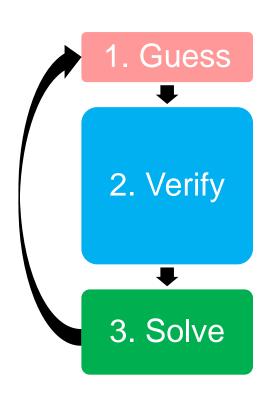
$$\le 2[b \cdot \frac{n}{2} \log \frac{n}{2} + a \cdot \frac{n}{2}] + b \cdot n$$

$$= b \cdot n \log n - b \cdot n + a \cdot n + b \cdot n$$

$$= b \cdot n \log n + a \cdot n$$

Substitution Method (取代法) guess a bound and then prove by induction

Substitution Method (取代法)



- Guess the form of the solution
- Verify by mathematical induction (數學歸納法)
 - Prove it works for n=1
 - Prove that if it works for n=m, then it works for n=m+1
 - \rightarrow It can work for all positive integer n
- Solve constants to show that the solution works
- Prove O and Ω separately

Substitution Method Example

$$T(n) = \begin{cases} O(1) & \text{if } n = 1\\ 4T(n/2) + O(n) & \text{if } n \ge 2 \end{cases}$$

- Proof
 - $T(n) = O(n^3)$ There exists positive constants n_0 , c s.t. for all $n \ge n_0$, $T(n) \le cn^3$

Guess

- Use induction to find the constants n_0 , c
 - n = 1, trivial

• n > 1,
$$T(n) \leq 4T(n/2) + bn$$
 Inductive hypothesis
$$\leq 4c(n/2)^3 + bn$$

$$= cn^3/2 + bn$$

$$= cn^3 - (cn^3/2 - bn)$$

$$\leq cn^3$$

$$cn^3/2 - bn \geq 0$$
 e.g. $c \geq 2b, n \geq 1$

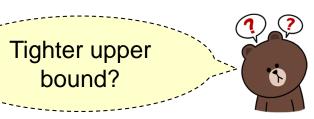
Verify

• $T(n) \le cn^3$ holds when $c = 2b, n_0 = 1$

Solve

Substitution Method Example

$$T(n) = \begin{cases} O(1) & \text{if } n = 1\\ 4T(n/2) + O(n) & \text{if } n \ge 2 \end{cases}$$



- Proof
 - $T(n) = O(n^2)$ There exists positive constants n_0 , c s.t. for all $n \ge n_0$, $T(n) \le cn^2$
 - Use induction to find the constants n_0 , c
 - n = 1, trivial

•
$$n > 1$$
, $T(n) \le 4T(n/2) + bn$

Inductive hypothesis
$$\leq 4c(n/2)^2 + bn$$

$$= cn^2 + bn$$

証不出來... 猜錯了?還是推導錯了?

沒猜錯 推導也沒錯 這是取代法的小盲點

Substitution Method Example

$$T(n) = \begin{cases} O(1) & \text{if } n = 1\\ 4T(n/2) + O(n) & \text{if } n \ge 2 \end{cases}$$

Strengthen the inductive hypothesis by subtracting a low-order term

- Proof
 - $T(n)=O(n^2)$ There exists positive constants n_0 , c_1 , c_2 s.t. for all $n\geq n_0$, $T(n)\leq c_1n^2$

Guess

Verify

• Use induction to find the constants n_0, c_1, c_2

• n = 1,
$$T(1) \le c_1 - c_2$$
 holds for $c_1 \ge c_2 + 1$

•
$$n > 1$$
, $T(n) \le 4T(n/2) + bn$

Inductive hypothesis
$$\leq 4[c_1(n/2)^2-c_2(n/2)]+bn$$

$$= c_1n^2-2c_2n+bn$$

$$= c_1n^2-c_2n-(c_2n-bn)$$

$$\leq c_1n^2-c_2n$$

$$\leq c_1n^2-c_2n$$
e.g. $c_2 \geq b, n \geq 0$

•
$$T(n) \le c_1 n^2 - c_2 n$$
 holds when $c_1 = b + 1, c_2 = b, n_0 = 0$

Solve

Useful Tricks

- Guess based on seen recurrences
- Use the recursion-tree method
- From loose bound to tight bound
- Strengthen the inductive hypothesis by subtracting a low-order term
- Change variables
 - E.g., $T(n) = 2T(\sqrt{n}) + \log n$
 - 1. Change variable: $k = \log n, n = 2^k \to T(2^k) = 2T(2^{k/2}) + k$
 - 2. Change variable again: $S(k) = T(2^k) \rightarrow S(k) = 2S(k/2) + k$
 - 3. Solve recurrence $S(k) = \Theta(k \log k) \to T(2^k) = \Theta(k \log k) \to T(n) = \Theta(\log n \log \log n)$

Recursion-Tree Method

Textbook Chapter 4.4 – The recursion-tree method for solving recurrences

Review

- Time Complexity for Merge Sort
- Theorem

$$T(n) = \begin{cases} O(1) & \text{if } n = 1\\ 2T(n/2) + O(n) & \text{if } n \ge 2 \end{cases} \implies T(n) = O(n \log n)$$

Proof

 $T(n) \leq 2T(\frac{n}{2}) + cn$ Recursion-Tree Method (遞廻樹法) Expand the recurrence into a tree and sum up the cost

$$\leq 2[2T(\frac{n}{4}) + c\frac{n}{2}] + cn = 4T(\frac{n}{4}) + 2cn$$
 1st expansion $\leq 4[2T(\frac{n}{8}) + c\frac{n}{4}] + 2cn = 8T(\frac{n}{8}) + 3cn$ 2nd expansion

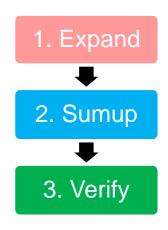
$$\vdots \\ \leq \ 2^k T(\frac{n}{2^k}) + kcn \quad \mathbf{k^{th} \ expansion}$$

The expansion stops when $2^k = n$

$$T(n) \le nT(1) + cn \log_2 n$$

= $O(n) + O(n \log n)$
= $O(n \log n)$

Recursion-Tree Method (遞迴樹法)



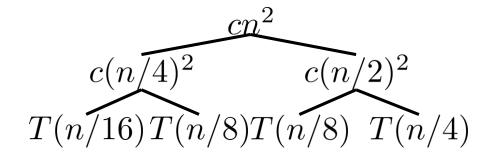
- Expand a recurrence into a tree
- Sum up the cost of all nodes as a good guess
- Verify the guess as in the substitution method
- Advantages
 - Promote intuition
 - Generate good guesses for the substitution method

$$T(n) = T(n/4) + T(n/2) + cn^{2}$$
$$T(n)$$

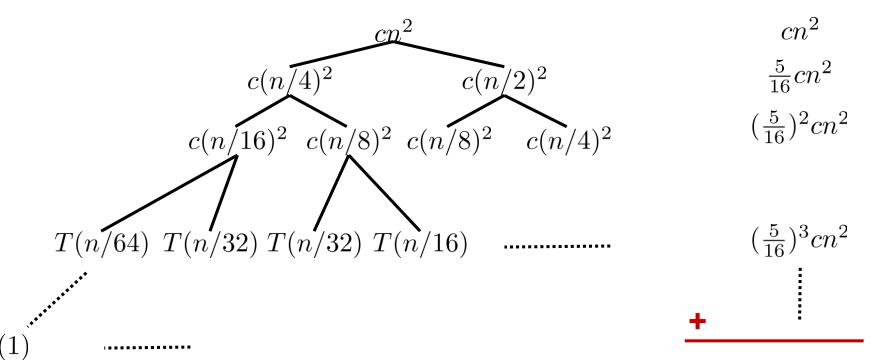
$$T(n) = T(n/4) + T(n/2) + cn^2$$

$$T(n/4)$$
 $T(n/2)$

$$T(n) = T(n/4) + T(n/2) + cn^2$$



$$T(n) = T(n/4) + T(n/2) + cn^2$$



$$T(n) \le (1 + \frac{5}{16} + (\frac{5}{16})^2 + (\frac{5}{16})^3 + \cdots)cn^2 = \frac{1}{1 - \frac{5}{16}}cn^2 = \frac{16}{11}cn^2 = O(n^2)$$

Master Theorem

Textbook Chapter 4.4 – The recursion-tree method for solving recurrences

Master Theorem

The proof is in Ch. 4.6

divide a problem of size n into a subproblems, each of size $\frac{n}{n}$ is solved in time $T\left(\frac{n}{n}\right)$ recursively

Let T(n) be a positive function satisfying the following recurrence relation

$$T(n) = \left\{ \begin{array}{ll} O(1) & \text{if } n \leq 1 \\ a \cdot T(\frac{n}{b}) + f(n) & \text{if } n > 1, \end{array} \right\} \begin{array}{l} \text{Should follow} \\ \text{this format} \end{array}$$

where $a \ge 1$ and b > 1 are constants.

- Case 1: If $f(n) = O(n^{\log_b a \epsilon})$ for some constant $\epsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$.
- Case 2: If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \cdot \log n)$.
- Case 3: If
 - $-f(n) = \Omega(n^{\log_b a + \epsilon})$ for some constant $\epsilon > 0$, and
 - $-a \cdot f(\frac{n}{b}) \le c \cdot f(n)$ for some constant c < 1 and all sufficiently large n,

then $T(n) = \Theta(f(n))$.

Recursion-Tree for Master Theorem

$$T(n) = aT(\frac{n}{b}) + f(n)$$

$$f(\frac{n}{b}) f(\frac{n}{b}) f(\frac{n}{b}) \dots f(\frac{n}{b})$$

$$f(\frac{n}{b^2}) f(\frac{n}{b^2}) \dots f(\frac{n}{b^2}) \dots f(\frac{n}{b^2})$$

$$f(\frac{n}{b^3}) f(\frac{n}{b^3}) \dots f(\frac{n}{b^3}) \dots f(\frac{n}{b^3})$$

$$f(\frac{n}{b^3}) f(\frac{n}{b^3}) \dots f(\frac{n}{b^3}) \dots f(\frac{n}{b^3})$$

$$f(\frac{n}{b^2}) f(\frac{n}{b^2}) f(\frac{n}{b^2}) \dots f(\frac{n}{b^2})$$

$$f(\frac{n}{b^2}) f(\frac{n}{b^2}) f(\frac{n}{b^2}) f(\frac{n}{b^2}) \dots f(\frac{n}{b^2})$$

$$f(\frac{n}{b^2}) f(\frac{n}{b^2}) f(\frac{n}{b^2}) f(\frac{n}{b^2}) \dots f(\frac{n}{b^2})$$

$$f(\frac{n}{b^2}) f(\frac{n}{b^2}) f(\frac{n}{b^2}) f(\frac{n}{b^2}) f(\frac{n}{b^2}) f(\frac{n}{b^2}) f(\frac{n}{b^2})$$

$$f(\frac{n}{b^2}) f(\frac{n}{b^2}) f$$

Three Cases

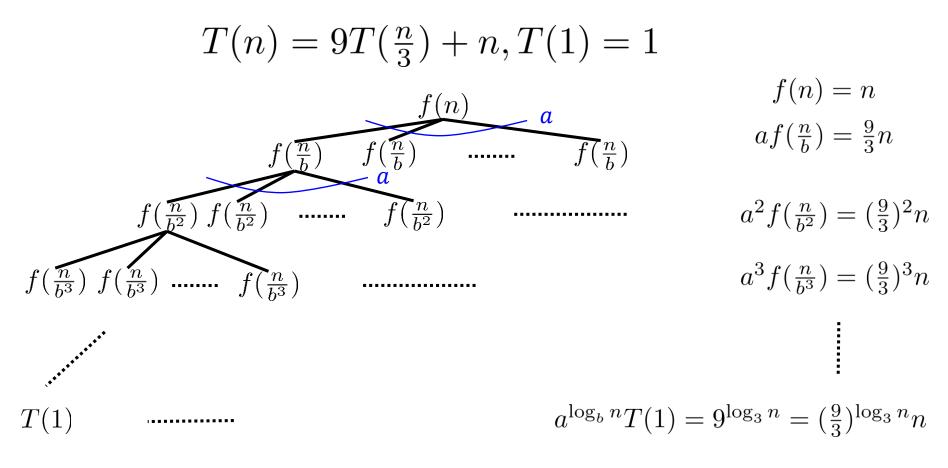
- $T(n) = aT(\frac{n}{b}) + f(n)$
 - $a \ge 1$, the number of subproblems
 - b > 1, the factor by which the subproblem size decreases
 - f(n) = work to divide/combine subproblems

$$T(n) = f(n) + af(\frac{n}{b}) + a^2f(\frac{n}{b^2}) + a^3f(\frac{n}{b^3}) + \dots + n^{\log_b a}T(1)$$

- Compare f(n) with $n^{\log_b a}$
 - 1. Case 1: f(n) grows polynomially slower than $n^{\log_b a}$
 - 2. Case 2: f(n) and $n^{\log_b a}$ grow at similar rates
 - 3. Case 3: f(n) grows polynomially faster than $n^{\log_b a}$

Case 1:

Total cost dominated by the leaves



f(n) grows polynomially slower than $n^{\log_b a}$

Case 1: Total cost dominated by the leaves

$$T(n) = 9T(\frac{n}{3}) + n, T(1) = 1$$

$$T(n) = (1 + \frac{9}{3} + (\frac{9}{3})^2 + \dots + (\frac{9}{3})^{\log_3 n})n$$

$$= \frac{(\frac{9}{3})^{1 + \log_3 n} - 1}{3 - 1}n$$

$$= \frac{3n}{2} \cdot \frac{9^{\log_3 n}}{3^{\log_3 n}} - \frac{1}{2}n$$

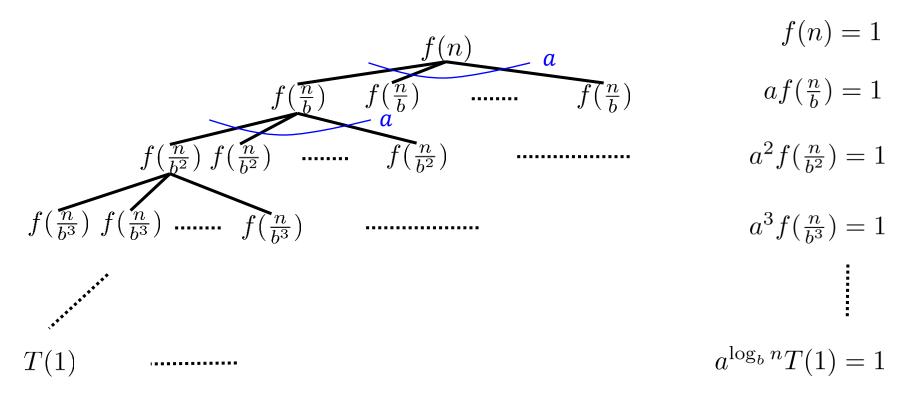
$$= \frac{3n}{2} \cdot \frac{n^{\log_3 9}}{n} - \frac{1}{2}n$$

$$= \Theta(n^{\log_3 9}) = \Theta(n^2)$$

• Case 1: If $f(n) = O(n^{\log_b a - \epsilon})$ for some constant $\epsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$.

Case 2: Total cost evenly distributed among levels

$$T(n) = T(\frac{2n}{3}) + 1, T(1) = 1$$



f(n) and $n^{\log_b a}$ grow at similar rates

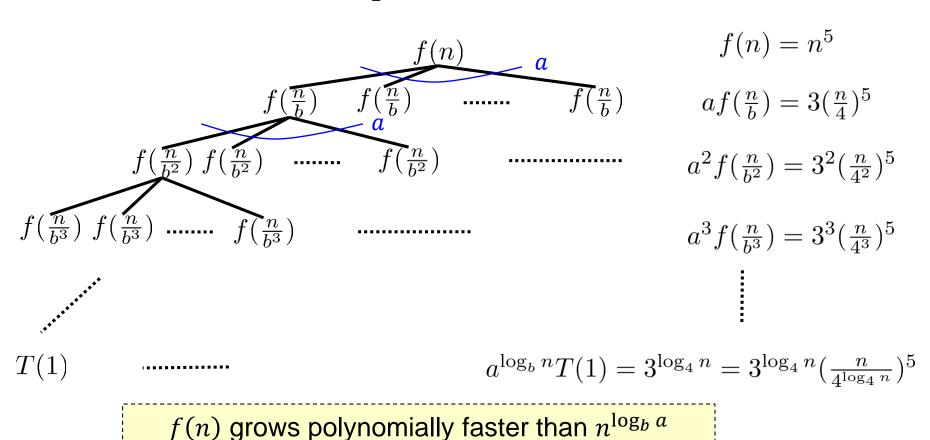
Case 2: Total cost evenly distributed among levels

$$T(n) = T(\frac{2n}{3}) + 1, T(1) = 1$$
 $T(n) = 1 + 1 + 1 + \dots + 1$
 $= \log_{\frac{3}{2}} n + 1$
 $= \Theta(\log n)$

• Case 2: If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \cdot \log n)$.

Case 3: Total cost dominated by root cost

$$T(n) = 3T(\frac{n}{4}) + n^5, T(1) = 1$$



Case 3: Total cost dominated by root cost

$$T(n) = 3T(\frac{n}{4}) + n^5, T(1) = 1$$

$$T(n) = (1 + \frac{3}{4^5} + (\frac{3}{4^5})^2 + \dots + (\frac{3}{4^5})^{\log_4 n})n^5$$

$$T(n) > n^5$$

$$T(n) \le \frac{1}{1 - \frac{3}{4^5}}n^5$$

$$T(n) = \Theta(n^5)$$

• Case 3: If

 $-f(n) = \Omega(n^{\log_b a + \epsilon})$ for some constant $\epsilon > 0$, and $-a \cdot f(\frac{n}{b}) \le c \cdot f(n)$ for some constant c < 1 and all sufficiently large n, then $T(n) = \Theta(f(n))$.

Master Theorem

The proof is in Ch. 4.6

divide a problem of size n into a subproblems, each of size $\frac{n}{b}$ is solved in time $T\left(\frac{n}{b}\right)$ recursively

Let T(n) be a positive function satisfying the following recurrence relation

$$T(n) = \begin{cases} O(1) & \text{if } n \le 1\\ a \cdot T(\frac{n}{b}) + f(n) & \text{if } n > 1, \end{cases}$$

where $a \ge 1$ and b > 1 are constants.

- Case 1: If $f(n) = O(n^{\log_b a \epsilon})$ for some constant $\epsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$.
- Case 2: If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \cdot \log n)$.
- Case 3: If
 - $-f(n) = \Omega(n^{\log_b a + \epsilon})$ for some constant $\epsilon > 0$, and
 - $-a \cdot f(\frac{n}{b}) \le c \cdot f(n)$ for some constant c < 1 and all sufficiently large n,

then $T(n) = \Theta(f(n))$.

Examples

compare f(n) with $n^{\log_b a}$

- Case 1: If $T(n) = 9 \cdot T(n/3) + n$, then $T(n) = \Theta(n^2)$. Observe that $n = O(n^2) = O(n^{\log_3 9})$.
- Case 2: If T(n) = T(2n/3) + 1, then $T(n) = \Theta(\log n)$. Observe that $1 = \Theta(n^0) = \Theta(n^{\log_{3/2} 1})$.
- Case 3: If $T(n) = 3 \cdot T(n/4) + n^5$, then $T(n) = \Theta(n^5)$. $- n^5 = \Omega(n^{\log_4 3 + \epsilon}) \text{ with } \epsilon = 0.00001.$ $- 3(\frac{n}{4})^5 \le cn^5 \text{ with } c = 0.99999.$

Floors and Ceilings

- Master theorem can be extended to recurrences with floors and ceilings
- The proof is in the Ch. 4.6

$$T(n) = aT(\lceil \frac{n}{b} \rceil) + f(n)$$

$$T(n) = aT(\lfloor \frac{n}{b} \rfloor) + f(n)$$

Theorem 1

- Case 1: If $f(n) = O(n^{\log_b a \epsilon})$ for some constant $\epsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$.
- Case 2: If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \cdot \log n)$.
- Case 3: If
 - $-f(n) = \Omega(n^{\log_b a + \epsilon})$ for some constant $\epsilon > 0$, and $-a \cdot f(\frac{n}{b}) \le c \cdot f(n)$ for some constant c < 1 and all sufficiently large n, then $T(n) = \Theta(f(n))$.

$$T(n) = \begin{cases} O(1) & \text{if } n = 1\\ 2T(n/2) + O(n) & \text{if } n \ge 2 \end{cases} \implies T(n) = O(n \log n)$$

Case 2

$$f(n) = \Theta(n) = \Theta(n^1) = \Theta(n^{\log_2 2}) = \Theta(n^{\log_b a})$$
$$T(n) = \Theta(f(n) \log n) = O(n \log n)$$

Theorem 2

- Case 1: If $f(n) = O(n^{\log_b a \epsilon})$ for some constant $\epsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$.
- Case 2: If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \cdot \log n)$.
- Case 3: If
 - $-f(n) = \Omega(n^{\log_b a + \epsilon})$ for some constant $\epsilon > 0$, and $-a \cdot f(\frac{n}{b}) \le c \cdot f(n)$ for some constant c < 1 and all sufficiently large n, then $T(n) = \Theta(f(n))$.

$$T(n) = \begin{cases} O(1) & \text{if } n = 1 \\ 2T(n/2) + O(1) & \text{if } n \ge 2 \end{cases} \implies T(n) = O(n)$$

Case 1

$$f(n) = O(1) = O(n) = O(n^{\log_2 2}) = O(n^{\log_b a})$$

 $T(n) = \Theta(n^{\log_2 2}) = \Theta(n)$

Theorem 3

- Case 1: If $f(n) = O(n^{\log_b a \epsilon})$ for some constant $\epsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$.
- Case 2: If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \cdot \log n)$.
- Case 3: If
 - $-f(n) = \Omega(n^{\log_b a + \epsilon})$ for some constant $\epsilon > 0$, and $-a \cdot f(\frac{n}{b}) \le c \cdot f(n)$ for some constant c < 1 and all sufficiently large n, then $T(n) = \Theta(f(n))$.

$$T(n) = \begin{cases} O(1) & \text{if } n = 1 \\ T(n/2) + O(1) & \text{if } n \ge 2 \end{cases} \longrightarrow T(n) = O(\log n)$$

Case 2

$$f(n) = \Theta(1) = \Theta(n^0) = \Theta(n^{\log_2 1}) = \Theta(n^{\log_b a})$$
$$T(n) = \Theta(f(n) \log n) = O(\log n)$$

To Be Continue...

Question?

Important announcement will be sent to @ntu.edu.tw mailbox & post to the course website

Course Website: http://ada.miulab.tw

Email: ada-ta@csie.ntu.edu.tw