def countdown(x):

Algorithm Design and Analysis
Introduction

http://ada.miulab.tw
Yun-Nung (Vivian) Chen

Outline

* Terminology
* Problem ([&]8)
e Problem instance ({&%l)
« Computation model (5t E1&E)
e Algorithm ((E&E)%)
e The hardness of a problem (£ E)
e Algorithm Design & Analysis Process

e Review: Asymptotic Analysis

* Algorithm Complexity
* Problem Complexity n n
@) —\/n\.,-&nzl

Efficiency Measurement = Speed

* Why we care?
 Computers may be fast, but they are not infinitely fast
 Memory may be inexpensive, but it is not free

Terminology

Textbook Ch. 1 — The Role of Algorithms in Computing

Problem ([E&E)

The champion problem
e Input: n distinct integers A[1], A[2],..., A[n].

e Output: the index ¢ with 1 <17 < n such that

Ali] = max Alj].

Problem Instance (&)

* An instance of the champion problem

5 distinct integers 7,4, 2,9, 8.

7 4.2 9 8

ALl Al2] A[3] A[4] A5

1)

Computation Model (5tE 152 EY)
* Each problem must have its rule (ZFE; 75 5l)

e Computation model (5T E1228Y) = rule (2FE4 77 Hl)
* The problems with different rules have different hardness levels

o

Hardness (2 512 /E)

« How difficult to solve a problem
« Example: how hard is the champion problem?
* Following the comparison-based rule

__

__

Problem Solving (f%=8)

 Definition of “solving” a problem

* Giving an algorithm (J&E5,%) that produces a correct output for any instance of the
problem.

Algorithm GEEZ)

» Algorithm: a detailed step-by-step instruction
* Must follow the game rules
* Like a step-by-step recipe
* Programming language doesn’t matter
— problem-solving recipe (technology)

* If an algorithm produces a correct output for any instance of the problem
- this algorithm “solves” the problem

Hardness (& &)

« Hardness of the problem
« How much effort the best algorithm needs to solve any problem instance

. B #)
« EERBEENERAZCZVUENTEHREF

Algorithm Design &
Analysis Process

Algorithm Design & Analysis Process

Formulate a problem

Design
Develop an algorithm Step
Prove the correctness Analysis
Analyze running time/space requirement Step

1. Problem Formulation

The champion problem
e Input: n distinct integers A[1], A[2],..., A[n].

e Output: the index ¢ with 1 <17 < n such that

Ali] = max Alj].

2. Algorithm Design

* Create a detailed recipe for solving the problem
 Follow the comparison-based rule
- NERMBEHNAS
A Al AZEIC T EER/

e Algorithm: #E& A

L inti, J; Q1: Is this a comparison-based algorithm?
o 2: lve the ch
for (i=2; i<=n; i++) Q2: Does it solve the champion

2

3.

4. If (A[|] > Alj])
S] =1,

6. return j;

3. Correctness of the Algorithm

* Prove by contradiction (278 %)

The algorithm solves the champion problem.

Proof Let 7* be the correct answer. That is, 1. inti,j;
Al7*| = max{A[l|,..., An|}. _
7] = max{A[Ll, ..., Afn]} , -1
e If y* =1, then Step 5 is never reached. There- : . :
: 3. for(i=2; i<=n; i++)
fore, 1 is correctly returned.
: TS Al
e If 7* > 1, then in the iteration of the for-loop 4 T(ALT > ALD
with ¢ = j*, j becomes j*. By definition of j*, 5. =1
Alj*] > Ali] holds for each i = 7* +1,...,n urn i
Therefore, in the remaining iterations of the 6. rewrnj,

for-loop, the value of 7 does not change. Hence,
at the end of the algorithm, j* is correctly re-
turned.

Hardness of The Champion Problem

* How much effort the best algorithm needs to solve any problem instance

 Follow the comparison-based rule
- NERBEHNAS
« BAIAEIT "EEXR/N

« Effort: we first use the times of comparison for measurement

inti, j; -

J=1;
for(i=2; i<=n;
I++) _) :
£ (AT > Al (n - 1) comparisons

=5
6. return j;

Hardness of The Champion Problem

* The hardness of the champion problem is (n - 1) comparisons
a) There is an algorithm that can solve the problem using at most (n — 1) comparisons
* This can be proved by &% ,%, which uses (n — 1) comparisons for any problem instance

b) For any algorithm, there exists a problem instance that requires (n - 1) comparisons
* Why?

Hardness of The Champion Problem

* Q: Is there an algorithm that only needs n — 2 comparisons?
* A: Impossible!
 Reason
« A single comparison only decides a loser
* If there are only n — 2 comparisons, the most number of losers is n — 2

* There exists a least 2 integers that did not lose
—> any algorithm cannot tell who the champion is

FInding Hardness

* Use the upper bound and the lower bound
 When they meet each other, we know the hardness of the problem

Hardness of The Champion Problem

 Lower bound

* how many comparisons in the worst
case are necessary to solve the
champion problem

, _ _ * Some arguments provide different
* The smarter algorithm provides tighter, lower bounds

lower, and better upper bound

* Upper bound

* how many comparisons are sufficient to
solve the champion problem

e Each algorithm provides an upper bound

* Higher lower bound is better

I—ERIEES : - :
o inti; - (2n - 2) comparisons Every integer needs to be in the

%
1
2. =1 comparison once
3
4
)
6

for (1=2; i<=n; i++) - (n/2) comparisons

=1

return : éWhen upper bound = lower bound, the problem is solved.
= We figure out the hardness of the problem

4. Algorithm Analysis

* The majority of researchers in algorithms studies the time and space
required for solving problems in two directions

* Upper bounds: designing and analyzing algorithms
* Lower bounds: providing arguments

* When the upper and lower bounds match, we have an optimal algorithm and
the problem is completely resolved

_ 8{

22

4
ﬂ?ﬁ?@

kﬁ?ﬁ%?!
O QO o w

Asymptotic Analysis

Edmund Landau Donald E. Knuth
(1877-1938) (1938-)

Motivation

* The hardness of the champion problem is exactly n — 1 comparisons
» Different problems may have different " #E =~ |
e cannot be interchangeable

* Focus on the standard growth of the function to ignore the unit and
coefficient effects

Goal: Finding Hardness

* For a problem P, we want to figure out
* The hardness (complexity) of this problem P is @(f(n))

* nis the instance size of this problem P
* f(n)isafunction

. G)(f(n)) means that “it exactly equals to the growth of the function”

* Then we can argue that under the comparison-based computation model
* The hardness of the champion problem is ©(n)
* The hardness of the sorting problem is @(nlogn)

Goal: Finding Hardness

e Use the upper bound and the lower bound
* When they match, we know the hardness of the problem

use 0(f(n)) and o(f(n))

“upper bound is 0(h(n)) & lower bound is Q(h(n))
- the problem complexity is exactly @(h(n))

use Q(g(n)) and a)(g(n))

Goal: Finding Hardness

* First learn how to analyze / measure the effort an algorithm needs
* Time complexity
* Space complexity

* Focus on worst-case complexity

» “average-case” analysis requires the assumption about the probability distribution of
problem instances

Worst Case Maximum running time for any instance of size n
Average Case Expected running time for a random instance of size n
Amortized Worse-case running time for a series of operations

Review of Asymptotic Notation
(Textbook Ch. 3.1)

 f(n) =time or space of an algorithm for an input of size n
* Asymptotic analysis: focus on the growth of f(n) asn — o

Review of Asymptotic Notation
(Textbook Ch. 3.1)

 f(n) =time or space of an algorithm for an input of size n

* Asymptotic analysis: focus on the growth of f(n) asn — o
* O, or Big-Oh: upper bounding function

* (), or Big-Omega: lower bounding function

* O, or Big-Theta: tightly bounding function

cg(n) c28(n)
fn)

£(n)
cglm) crg(n)

1
n : n : n

" fm) = 0Ggm) " fm) = (gm) ") = OGgm)

Formal Definition of Big-Oh
(Textbook Ch. 3.1)

* For any two functions f(n) and g(n),

f(n) =0(g(n))

if there exist positive constants ny and c s.t.

0< f(n) <c-g(n)

foralln = ny.

f(n) = 0(g(n))

* Intuitive interpretation
* f(n) does not grow faster than g(n)
* Comments
1) f(n) = O(g(n)) roughly means f(n) < g(n) in terms of rate of growth
2) “="is not “equality”, it is like “e (belong to)”
The equalityis {f(n)} S O(g(n))
3) We do not write O(g(n)) = f(n)

* Note

* f(n) and g(n) can be negative for some integers n

* |In order to compare using asymptotic notation O, both have to be non-negative for
sufficiently large n

* This requirement holds for other notations, i.e. , 0,0, w

Review of Asymptotic Notation
(Textbook Ch. 3.1)

* Benefit

* |gnore the low-order terms, units, and coefficients

* Simplify the analysis
 Example: f(n) = 5n3 + 7n? — 8

* Upper bound: f(n) = O(n3), f(n) = O(n*), f(n) = O(n*log,n)

* Lower bound: f(n) = Q(n3), f(n) = Q(n?), f(n) = Q(nlog,n)

* Tight bound: f(n) = ©(n3) “="” doesn’t mean “equal to”
* Q: f(n) = 0(n®) and f(n) = 0(n*), so 0(n3) = 0(n*)?

. 0(n3) represents a set of functions that are upper bounded by cn3 for some constant

¢ when n is large enough

“u_n

* In asymptotic analysis, “=” means “e (belong to)”

Exercise: 100n* = 0(n® — n?)?

e Draft.
100n* < 100(n* — n?)
«—200n2 < 100n°
+2<n

* Letnyg =2andc =100
100n? < 100(n* — n?)

holds forn = 2
100n* = O(n® — n?)

Exercise: n* = 0(n)?
* Disproof.

* Assume for a contradiction that there exist positive constants ¢ and ng s.t.

n? < cn

holds for any integer n with n = n,.

* Assume n = 14 [max(ng,c)]

and because 1 > ng,n > ¢ , it follows that
n* > cn

e Due to contradiction, we know that
n? # O(n)

Rules
(Textbook Ch. 3.1)

The following statements hold for any real-valued functions f(n)
and ¢g(n), where there is a constant ng such that f(n) and g(n)
are nonnegative for any integer n > ny.

e Rule 1: f(n) =0(f(n)).
e Rule 2: If cis a positive constant, then c:O(f(n)) = O(f(n)).
e Rule 3: If f(n) =0O(g(n)), then O(f(n)) = O(g(n)).

e Rule 4: O(f(n))- O(g(n)) = O(f(n) - g(n))
e Rule 5: O(f(n) - g(n)) = f(n) - O(g(n))

Other Notations

(Textbook Ch. 3.1)

e e B o
T T T R
s B B 2 B
c o O O O
= = =
20 o0 o0 w0 l
R TR U
o O O O O
) D)) Q D)
= 2 P e P
T & S & &
i
= 8 B 8 &5
SICICICES
S S S & O
VIEAL I VA
SICICICS
Yo S S S S

N TN TN TN N
AN TN N N N

N N N SN N

N N S SN N

Goal: Finding Hardness

* First learn how to analyze / measure the effort an algorithm needs
* Time complexity
* Space complexity

* Focus on worst-case complexity

* “average-case” analysis requires the assumption about the probability distribution of
problem instances

Algorithm Analysis

* The worst-case time complexity is

1. Intl,; 0(1) time
o j=1 0(1) time O(1)+0(1)+0(n)-(0(1)+0(1)) +0O(1)
3. for (i=2; i<=n; i++) 0(n) iterations
4. if (Ali] > Al 0(1) time 3:-0(1) + O(n) - (20(1))
5 =i 0(1) time =0(1) +O(n) - O(1)
6. return j; 0(1) time =0(1) + O(n)
=0(n) + O(n)

Addi thing togeth

S T =2-0(n)

worst-case time complexity =0(n)

Sorting Problem = —

N
B I
e Input: B

An array A of n distinct integers.

e Output:

Reorder A such that A[l1]<A[2]<--- <A[n].

Algorithm Analysis

N
* Bubble-Sort Algorithm

y 4 ’
1. inti, done; 0(1) time
2. do{ f(n) iterations N
3 done = 1; 0(1) time
4 for(i=1;i<n;i++){ O(n) iterations
5. if (A[i] > Ali + 1]) { 0(1) time O(1) + f(n) - (O(1) + O(n) - O(1))
6 exchange AJ[i] and A[i + 1]; 0(1) time =0(1) + f(n) - O(n)
7 done = 0; 0(1) time —f(n) - O(n)
8 } _
9. } - O(nQ) ‘pl)crc()f\l}e) by ingjg?())n
10. } while (done == 0)

Example lllustration

oooze O@ >

Goal: Finding Hardness

* First learn how to analyze / measure the effort an algorithm needs
* Time complexity
* Space complexity

* Focus on worst-case complexity

» “average-case” analysis requires the assumption about the probability distribution of
problem instances

Algorithm Analysis

IS PN
=z l-
1. Inti; Q(1) time
2. intm=A[1]; Q(1) time 3-Q(1) +Q(n) - (2-Q(1))
3. for(i=2;i<=n;i++){ Q(n) iterations =Q(1) + Q(n) - 2(1)
4. if (A[i] > m) Q(1) time _
5 m = AJi; Q(1) time Q(l) + Q(n)
6. } =Q(n)
7. returnm; Q(1) time

Adding everything together

—> a lower bound on the worst-case time complexity?

Algorithm Analysis

° E X/mﬂm] EEII:I/

1. Inti; Q(1) time

2. intm = A[L]: Q(1) time 3-Q(1) +Q(n) - (3-Q1) + 2(n))
3. for(i=2;i<=n;i++){ Q(n) iterations =Q(1) + Q(n) - Q(n)

4. if (A[i] > m) Q(1) time B 5

5. m = A[il; (1) time =Q(1) + Q(n7)

6. if (i == n) Q(1) time =Q(n?)

7. do i++ n times Q(n) time

8. }

9. return m; Q(1) time

Adding together may result in errors.
The safe way is to analyze using problem instances.

__

e.g. try Afi] =i or Afi]=2(n — i) to check the time complexity 2> Q(1)

Algorithm Analysis

* Bubble-Sort Algorithm

Int i, done;
do { f(n) iterations
done =1,
for(i=1;i<n;i++){ Q(n) time
if (Ai] > AJi + 1]) {

exchange A[i] and Afi + 1] ‘When A is decreasing, f(n) = Q(n). |
done = 0 Therefore, the worst-case time complexity
) | -of Bubble-Sort Is |

) f(n) - Q(n) = Q(n?)

10. } while (done == 0) L . |

© 0 N o O b~ wDh e

Example lllustration

T o
ooeoeeo—é&

= N |terations

Algorithm Complexity

In the worst case, what is the growth of function an
algorithm takes

Time Complexity of an Algorithm

* We say that the (worst-case) time complexity of Algorithm A is @(f(n)) if
1. Algorithm A runs in time O(f(n)) &
2. Algorithm A runs in time Q(f(n)) (in the worst case)

o An input instance I(n) s.t. Algorithm A runs in Q(f(n)) for eachn

Tightness of the Complexity

* If we say that the time complexity analysis about O(f(n)) is tight
= the algorithm runs in time Q(f(n)) in the worst case

» = (worst-case) time complexity of the algorithm is @(f(n))
* Not over-estimate the worst-case time complexity of the algorithm

* If we say that the time complexity analysis of Bubble-Sort algorithm about
0(n?) is tight

* = Time complexity of Bubble-Sort algorithm is Q(nz)

* = Time complexity of Bubble-Sort algorithm is @(nz)

Algorithm Analysis
- EREINIESS

non-tight analysis

Lot 0(1) time 3-0(1) +0(n) - (3-0(1) + O(n))

2. intm=A[] 0(1) time =0(1) + O(n) - O(n)

3 for. (i= 2 i<=n;i++){ 0(n) |Ferat|ons —0(1) + O(n?)

4. if (A[i] > m) 0(1) time _0(n?)

5. m = AJi]; 0(1) time

6 if (i == n) 0(1) time tight analysis

7. do i++ n times 0(n) time Step 3 takes 0(n) iterations for the for-loop,

3) where only last iteration takes 0(n) time and the
' , _ 01 1 rest take 0(1) time.

9. returnm; (1) time The steps 3-8 take time

On)-0O(1)+1-0(n) =0(n)

The same analysis holds for Q(n)

- The worst-case time complexity of
"BEREIESE L is 0(n).

Algorithm Comparison

* Q: can we say that Algorithm 1 is a better algorithm than Algorithm 2 if
 Algorithm 1 runsin O(n) time
* Algorithm 2 runs in 0(n?) time

* A: No! The algorithm with a lower upper bound on its worst-case time does

not necessarily have a lower time complexity. P

.po.D

a ?

Comparing A and B

* Algorithm A is no worse than Algorithm B in terms of worst-case time
complexity if there exists a positive function f(n) s.t.

* Algorithm A runs in time O(f(n)) &
 Algorithm B runs in time Q(f(n)) in the worst case

* Algorithm A is (strictly) better than Algorithm B in terms of worst-case time
complexity if there exists a positive function f(n) s.t.

* Algorithm A runs in time O(f(n)) &

 Algorithm B runs in time a)(f(n)) in the worst case
or

 Algorithm A runs in time o(f(n)) &
» Algorithm B runs in time Q(f (n)) in the worst case

Problem Complexity

In the worst case, what is the growth of the function the
optimal algorithm of the problem takes

Time Complexity of a Problem

* We say that the (worst-case) time complexity of Problem P is @(f(n)) if
1. The time complexity of Problem P is O(f(n)) &

o There exists an O(f(n))-time algorithm that solves Problem P

2. The time complexity of Problem P is Q(f(n))
o Any algorithm that solves Problem P requires Q(f(n)) time
* The time complexity of the champion problem is ®(n) because
1. The time complexity of the champion problem is O(n) &
o "HEEJA 1 is the 0(n)-time algorithm
2. The time complexity of the champion problem is Q(n)

o Any algorithm requires Q(n) time to make each integer in comparison at least
once

Optimal Algorithm

* If Algorithm A is an optimal algorithm for Problem P in terms of worst-case
time complexity

* Algorithm A runs in time O(f(n)) &
* The time complexity of Problem Pis Q(f(n)) in the worst case
e Examples (the champion problem)
« #8’A > optimal algorithm
* [trunsin O(n) time &
 Any algorithm solving the problem requires time Q(n) in the worst case
- AEEIIIES)E > optimal algorithm
* [trunsin O(n) time &
 Any algorithm solving the problem requires time Q(n) in the worst case

Comparing P and Q

* Problem P is no harder than Problem Q in terms of (worst-case) time
complexity if there exists a function f(n) s.t.

* The (worst-case) time complexity of Problem P is O(f(n)) &
* The (worst-case) time complexity of Problem Q is Q(f(n))

* Problem P is (strictly) easier than Problem Q in terms of (worst-case) time
complexity if there exists a function f(n) s.t.

e The (worst-case) time complexity of Problem P is O(f(n)) &

* The (worst-case) time complexity of Problem Q is a)(f(n))
or

* The (worst-case) time complexity of Problem P is o(f(n)) &

* The (worst-case) time complexity of Problem Q is Q(f(n))

Concluding Remarks

Algorithm Design and Analysis Process

1) Formulate a problem Design Step

2) Develop an algorithm

3) Prove the correctness (Analysis Step)
4) Analyze running time/space requirement - g

Usually brute force (& /1)%) is not very efficient

Analysis Skills
* Prove by contradiction
* Induction
e Asymptotic analysis
* Problem instance

Algorithm Complexity
* In the worst case, what is the growth of function an algorithm takes

Problem Complexity
* In the worst case, what is the growth of the function the optimal algorithm of the problem takes

Reading Assignment

e Textbook Ch. 3 — Growth of Function

Question?

Important announcement will be sent to
@ntu.edu.tw mailbox & post to the course website

Course Website: http://ada.miulab.tw
Email: ada-ta@csie.ntu.edu.tw

