

Outline

= Approximation Algorithms

= Examples
= Vertex Cover
= Traveling Salesman Problem
= Set Cover
= 3-CNF-SAT

Approximation

= “A value or quantity that is nearly but not exactly correct”

= Approximation algorithms for optimization problems: the approximate
solution is guaranteed to be close to the exact solution (i.e., the optimal
value)

= Cf. heuristics search: no guarantee
= Note: we cannot approximate decision problems

The exact answer

r bound

An approximate

Why Approximation?

= Most practical optimization problems are NP-hard
= |t is widely believed that P # NP

= Thus, polynomial-time algorithms are unlikely, and we must sacrifice either
optimality, efficiency, or generality

= Approximation algorithms sacrifice optimality, return near-optimal
answers

= How “near” is near-optimal?

P

Approximation Algorithms

= p(n)-approximation algorithm
= Approximation ratio p(n)
= n:input size
= C": cost of an optimal solution
= C: cost of the solution produced by the approximation algorithm

¢ C"
—)<

4

Maximization problem: C™/C' < p(n)
Minimization problem: C/C* < p(n)

Approximation Ratio p(n)

C C* n: input size
max(:) S p(n) C": cost of an optimgl solution |
CO*x" C C: cost of an approximate solution

= p(n) 21
= Smaller is better (p(n) = 1indicates an exact algorithm)

= Challenge: prove that Cis close to C* without knowing C°

Vertex Cover

Textbook 35.1 — The vertex-cover problem

Vertex Cover Problem

= A vertex cover of G = (V, E) is a subset V' € V s.t. if (w, v) EE, thenw €
VorveV

= A vertex cover “covers” every edge in G

= Optimization problem: find a minimum size vertex cover in G = NP-complete

= Decision problem: is there a vertex cover with size smaller than k

Greedy Heuristic Algorithm

= |dea: cover as many edges as possible (vertex with the maximum
degree) at each stage and then delete the covered edges

-}G)

{b, d, e} is the optimal solution!

Greedy Heuristic Algorithm

= |dea: cover as many edges as possible (vertex with the maximum
degree) at each stage and then delete the covered edges

= The greedy heuristic cannot always find optimal solution (otherwise
P=NP is proven)

00— O0—0—0 O—0—0
O—0—0 O—O0—0 O—0—0
O—0—0 O—0—0 O—0—0

= There is no guarantee that Cis always close to C” either

(e)

Approximate Algorithm

APPROX-VERTEX-COVER (G)
C =20
E’ = G.E
while E' # ¢
let (u, v) be an arbitrary edge of E’
cC =CU {u, v}
remove from E’ every edge incident on either u or v
return C

= APPROX-VERTEX-COVER
= Randomly select one edge at a time
= Remove all incident edges

= Running time = O(|V| + |E|)

Approximate Algorithm

= APPROX-VERTEX-COVER
= Randomly select one edge at a time

= Remove all incident edges

(& GG ' O
t

‘ {b,c, d,f}isa vertex cover of size 4
@ e e e ‘;‘;g:‘i;txi’r;:i;’:\pprommatlon algorithm

Approximate Algorithm

Theorem. APPROX-VERTEX-COVER is a 2-approximation for the vertex
cover problem.

= 3 things to check

= Q1: Does it give a feasible solution?
= A feasible solution for vertex cover is a node set that covers all the edges
= Finding an optimal solution is hard, but finding a feasible one could be easy

= Q2: Does it run in polynomial time?
= An exponential-time algorithm is not qualified to be an approximation algorithm

= Q3: Does it give an approximate solution with approximation ratio < 2?
= Other names: 2-approximate solution, factor-2 approximation

(s)

2-Approximation Solution

Prove that p(n) = 2. Thatis |C| < 2|C*| .

= Suppose that the algorithm runs for k iterations. Let C be the output of
APPROX-VERTEX-COVER. Let OPT be any optimal vertex cover of G.

= If k=0, then |C| =|C*| =0

= If k>0, then |C| = 2k . It suffices to ensure that |C*| > k

= Observe that all those k edges (u, v) chosen by APPROX-VERTEX-COVER in
those k iterations form a matching of G. Just for OPT (or any feasible solution)
to cover this matching requires at least k nodes.

__

Approximation Analysis

= Tight analysis: check whether we underestimate the quality of the
approximate solution obtained by APPROX-VERTEX-COVER

o—O
Q Q Yes, it is tight!
o—O
o—O

= This factor-2 approximation is still the best known approximation algorithm
= Reducing to 1.99 is a significant result

Vertex Cover v.s. Independent Set

= Cis a vertex cover of graph G=(V, E) iff V- Cis an independent set of G

= Q: Does a 2-approximation algorithm for vertex cover imply a 2-
approximation for maximum independent set?

Optimal vertex Optimal independent
cover: 49 nodes Set: 51 nodes

A 2-approximate
vertex cover: 98 nodes

Traveling Salesman
Problem

Textbook 35.2 — The traveling-salesman problem

Traveling Salesman Problem (TSP)

= Optimization problem: Given a set of cities and their pairwise distances,
find a tour of lowest cost that visits each city exactly once.

= Inter-city distances satisfy triangle inequality if for all vertices

d(u,w) < d(u,v) + d(v,w),Vu,v,w € V

w/ triangle inequality w/o triangle inequality

Approximate Algorithm

APPROX-TSP-TOUR (G)
select a vertex r from G.V as a “root” vertex
grow a minimum spanning tree T for G from root r using
MST-PRIM (G, d, r)
H = the list of vertices visited in a preorder tree walk of T
return C

= APPROX-TSP-TOUR
= Grow an MST from a random root

= MST-PRIM

= For (n - 1) iterations, add the least-weighted edge incident to the current
subtree that does not incur a cycle

= Running time = O(|E| + |V |log |V]) = O(|]V]?)

Approximate Algorithm

@

é\ RN chz\ d
/ 5 % S -
b f J x\g / g}*jl!} g}
b e - g
_d\ H=a,b,c,h,d, e f,g,a
i ? XN
b (1 g)
vadil;
J\\@{ H*=a, b,c,h,f,g,ed,a

Approximate Algorithm

Theorem. APPROX-TSP-TOUR is a 2-approximation for the TSP problem.

= 3 things to check

= Q1: Does it give a feasible solution?
= A feasible solution is a path of G visiting each cities exactly once
= The property of a complete graph is needed

= Q2: Does it run in polynomial time?

= Q3: Does it give an approximate solution with approximation ratio <27

2-Approximation Solution

Prove that p(n) = 2. Thatis cost(H) < 2 X cost(H™).

= With triangle inequality: cost(H) < 2 x cost(MST) (@ e

= Let H* denote an optimal tour formed by some tree plus an edge:
cost(MST) < cost(H™)

= Hence, cost(H) < 2 x cost(MST) < 2 x cost(H™)

General TSP

Theorem 35.3. If P # NP, there is no polynomial-time approximation
algorithm with a constant ratio bound p for the general TSP

= Proof by contradiction

= Suppose there is such an algorithm A with a constant ratio p. We will use A
to solve HAM-CYCLE in polynomial time.

= Algorithm for HAM-CYCLE
= Convert G = (V, E) into an instance / of TSP with cities V (resulting in a complete

graph G' = (V, E')):
1 if E
o) = sy ©
p|lV|+1 otherwise.

= RunAonl

= If the reported cost < p| V], then return “Yes” (i.e., G contains a tour that is an
HC), else return “No.”

-4

©

General TSP

Theorem 35.3. If P # NP, there is no polynomial-time approximation
algorithm with a constant ratio bound p for the general TSP

= Analysis
= If G has an HC: G’ contains a tour of cost | V| by picking edges in E, each has 1 cost
= |f G does not have an HC: any tour of G’ must use some edge not in E, which has a
total cost > (p|V |+ 1)+ (|V] = 1) > p|V|
= Algorithm A guarantees to return a tour of cost < p X cost(H™)

= HAM-CYCLE can be solved in polynomial time, contradiction
= Areturns a cost< p|V|if G contains an HC; A returns a cost > p|V

u, vy, v, w, X, uis a traveling-
salesman tour with cost |V]|

, otherwise

uy, v,w, X, uisa
Hamiltonian Cycle

4"

©

Exercise 35.2-2

Show how in polynomial time we can transform one instance of the traveling-
salesman problem into another instance whose cost function satisfies the triangle
inequality. The two instances must have the same set of optimal tours. Explain
why such a polynomial-time transformation does not contradict Theorem 35.3,
assuming that P # NP.

TSP w/o triangle inequality TSP w/ triangle inequality

©

Exercise 35.2-2

= For example, we can add d__, (the largest cost) to each edge

= G contains a tour of minimum cost k <& G’ contains a tour of minimum
cost k + dmax X |V|

= G’s satisfies triangle inequality because for all vertices u,v,w € V

d'(u,w) = d(u,w) + dmax < 2 X dmax < d'(u,v) + d' (v, w)

TSP w/o triangle inequality TSP w/ triangle inequality =\

Exercise 35.2-2

TSP w/o triangle inequality TSP w/ triangle inequality

max

cost(H) = 12 @ approximate

cost(H™) =4 cost(H) = 32
COSt(Hj > 9 cost(H™*) = 24
cost(H*) cost(H)
<2
cost(H*) —

Set Cover

Textbook 35.3 — The set-covering problem

Set Cover

= Optimization problem: Given k subsets {S,, S,, ..., S,} of 1, 2, ..., n, find
an index subset Cof {1, 2, ..., k} with minimum |C]| s.t.

UiEIS'i — {1727 ,TL}

Set cover is NP-complete.
1) Itisin NP
2) Itis NP-hard

Approximate Algorithm

GREEDY-SET-COVER (S)

I =0

C =¢

while C # {1, 2, .., n}
select 1 be an 1ndex maximizing |S; - C|
I =1 U {i}
C =CUSs;

return I

= GREEDY-SET-COVER

= At each stage, picking the set S that covers the greatest number of remaining
elements that are uncovered

= Running time =7

o,

20

Q

<~/

C

o '
4

(O

-

fd

(V)]
=
&
-
pd
—

Approximate Algorithm

Theorem. GREEDY-SET-COVER is a O(log n)-approximation for the set
cover problem.

= 3 things to check

= Q1: Does it give a feasible solution?

= A feasible solution output is a collection of subsets whose union is the ground
set{1, 2, ..., n}.

= Q2: Does it run in polynomial time?

= Q3: Does it give an approximate solution with p(n) = O(logn)?

O(logn)-Approximation Solution

Prove that p(n) = O(logn). That is, |I| < O(logn) x |I*].
= Let /* denote an optimal set cover. We plan to prove that

1 1 1
I < || =+ + -+ 1
n n-—1 n—2

Total Price

For brevity, we re-index those subsets s.t. for each /, S; is the i-th set
selected by GREEDY-SET-COVER

Let C; be the Cright before the elements of §; is inserted into C
1
If an element j is inserted into Cin the i-th iteration, the price of j is [5; —C;]

The sum of price of all n integers is exactly | /|

ithm Illustration

2B

Bound

= For brevity, we re-index the integers s.t. they are inserted into C according
to the increasing order of these integers

= Whenj is about to be put into C, there are at least n-j+1 uncovered
numbers. [* is a collection of sets that can cover these n-j+1 numbers.

There is an index t € [* s.t. S, can cover at least ”rﬂTl uncovered numbers
= We have |S; — C;| > ”u{Tl where j is inserted into C in the i-th iteration.
1 I
= The price of jis (5—¢7 < 7577

©

O(logn)-Approximation Solution

= The sum of price of all n integers is exactly ||
11"

n—j+1

= Therefore, we can prove that

\I|<Z]+1|[*‘:Hn.|f*|:O(logn).|I*|

= The price of j is at most

3-CNF-SAT

Textbook 35.4 — Randomization and linear programming

Randomized Approximate Algo

= Randomized algorithm’s behavior is determined not only by its input
but also by values produced by a random-number generator

Deterministic MST APPROX-TSP-TOUR
Randomized Quick Sort MAX-3-CNF-SAT

(e)

3-CNF-SAT Problem

= Decision problem: Satisfiability of Boolean formulas in 3-conjunctive
normal form (3-CNF)

(CL’l vV X V _1.582) N (333 V i) V 334) A\ (_1213‘1 V X3 V _l£C4)

= 3-CNF = AND of clauses, each of which is the OR of exactly 3 distinct literals
= A literal is an occurrence of a variable or its negation, e.g., x; or -x,

r1 =0,20 =0,2x3 = 1,24 = 1 > satisfiable

——

__

MAX-3-CNF-SAT

= Optimization problem: find an assignment of the variables that satisfies
as many clauses as possible

= Closeness to optimum is measured by the fraction of satisfied clauses

—(331 V I vV _1332) A (.583 V Lo V 213‘4) A\ (_1513‘1 V I3 V _|CL'4)

r1 =0,290 =0,x3 = 1,24 = 1 satisfies 3 clauses
r1 =1,29 =0,23 = 1,24 = 1 satisfies 2 clauses

Randomized Approximation Algo

= Randomly set each literal to be 0 or 1 (=& #%)
= Then...
= End

Theorem 35.6. Given an instance of MAX-3-CNF-SAT with n variables x,, x,, ..., X,
and m clauses, the randomized algorithm that independently sets each variable

to 1 with probability 1/2 and to 0 with probability 1/2 is a randomized 8/7-
approximation algorithm

Randomized Approximation Algo

Theorem 35.6. Given an instance of MAX-3-CNF-SAT with n variables x,, x,, ..., X,
and m clauses, the randomized algorithm that independently sets each variable
to 1 with probability 1/2 and to 0 with probability 1/2 is a randomized 8/7-
approximation algorithm (satisfying 8/7 of clauses in expectation)

= Proof
= Each clause is the OR of exactly 3 distinct literals

Prix; =0] = Pr[x; =1] =1/2
— V1 # 19 # x3, Pr{(x1 Vo Vag) =0 =1/8
— E[# of satisfied clauses| = m x E[clause j is satisfied]
>m x (1 —1/8)=17m/8
max # of satisfied clauses
E[# of satisfied clauses]

— p(n) = =8/7

Concluding Remarks

= Most practical optimization problems are NP-hard
= |t is widely believed that P # NP

= Thus, polynomial-time algorithms are unlikely, and we must sacrifice either
optimality, efficiency, or generality

= Approximation algorithms sacrifice optimality, return near-optimal answers

C C*
— 1 <
maX(C*, -) < p(n)

4

Maximization problem: C™/C < p(n)
Minimization problem: C/C* < p(n)

Question?

Important announcement will be sent to @ntu.edu.tw mailbox
& post to the course website

Course Website:

Email:

http://ada17.csie.org/
mailto:ada-ta@csie.ntu.edu.tw

