

NP Completeness (3) Dec 20th, 2018

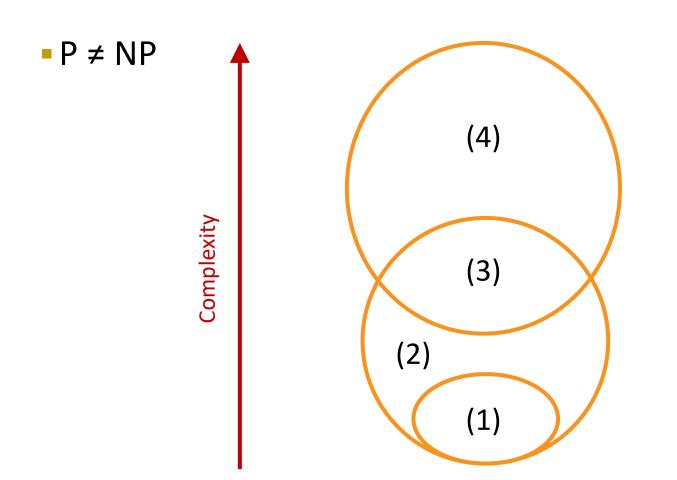
Algorithm Design and Analysis

YUN-NUNG (VIVIAN) CHEN HTTP://ADA.MIULAB.TW

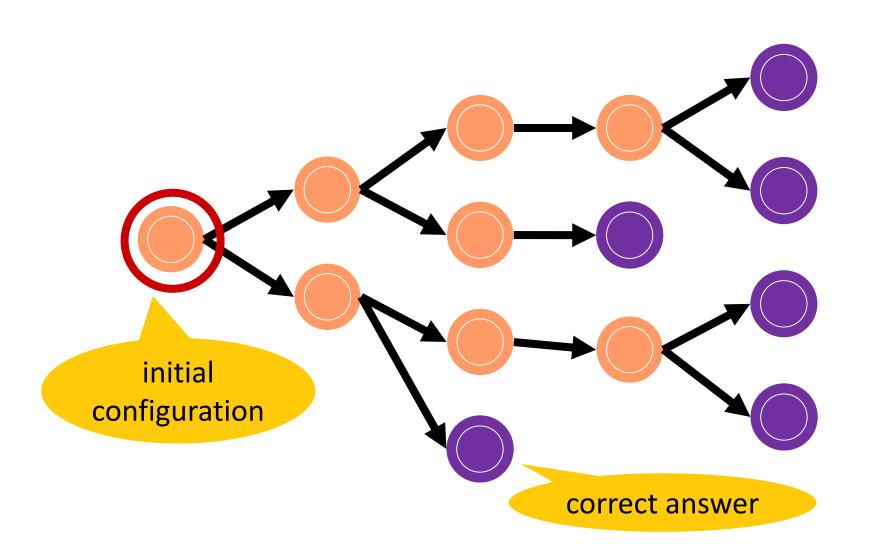
Outline

- Polynomial-Time Verification
- Proving NP-Completeness
 - 3-CNF-SAT
 - Clique
 - Vertex Cover
 - Independent Set
 - Traveling Salesman Problem

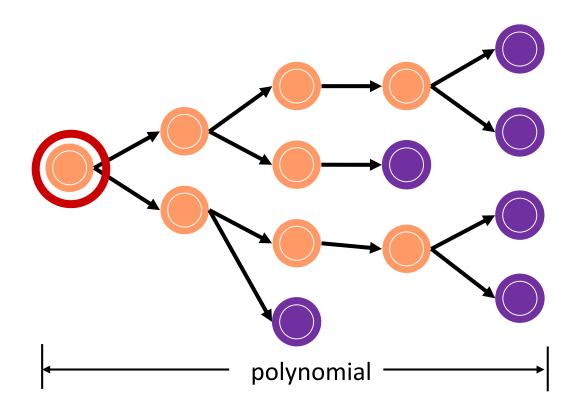
P, NP, NP-Complete, NP-Hard



Non-Deterministic Problem Solving



Non-Deterministic Polynomial



"solved" in non-deterministic polynomial time = "verified" in polynomial time

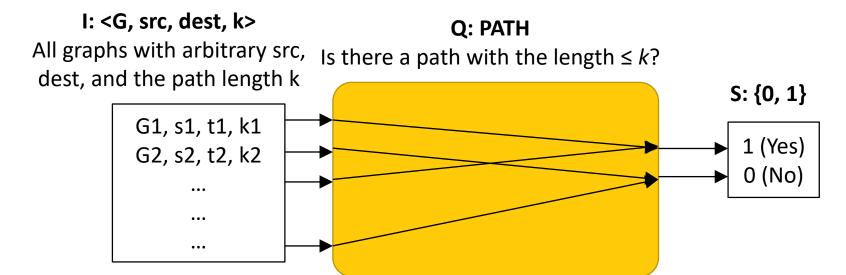
Polynomial-Time Verification

Chapter 34.1 – Polynomial-time

Chapter 34.2 – Polynomial-time verification

Abstract Problems

- Example of a decision problem, PATH
- I: a set of problem instances
- **S**: a set of problem solutions
- Q: abstract problem, defined as a binary relation on I and S

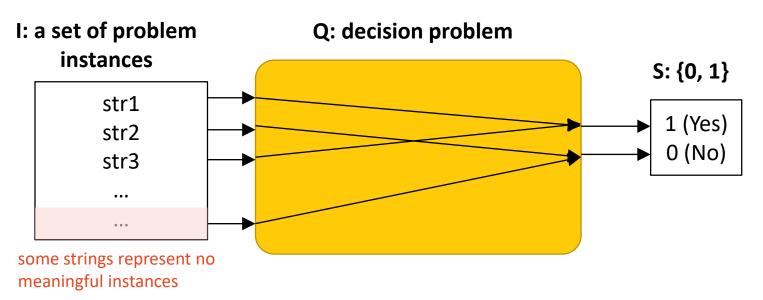


Problem Instance Encoding

 Convert an abstract problem instance into a binary string fed to a computer program

- A concrete problem is **polynomial-time solvable** if there exists an algorithm that solves any concrete instance of length n in time $O(n^k)$ for some constant k
 - Solvable = can produce a solution

Decision Problem Representation



- I: a set of problem instances $\sum^* = \{\epsilon; 0; 1; 10; 11; 101; 111; \cdots \}$
- Q: a decision problem $= \text{a language L over } \sum = \{0,1\} \text{ s.t. } L = \{x \in \{0,1\}^* : Q(x) = 1\}$

以答案為1的instances定義decision problem Q (L = {str1, str3} in this example)

P in Formal Language Framework

A **decision problem** Q can be defined as a **language** L over $\sum = \{0,1\}$ s.t.

$$L = \{x \in \{0, 1\}^* : Q(x) = 1\}$$

- An algorithm A *accepts* a string $x \in \{0,1\}^*$ if A(x) = 1
- An algorithm A *rejects* a string $x \in \{0,1\}^*$ if A(x) = 0
- An algorithm A **accepts** a language L if A accepts every string $x \in L$
 - If the string is in *L*, A outputs yes.
 - If the string is not in L, A may output no or loop forever.
- An algorithm A **decides** a language L if A accepts L and A rejects every string $x \notin L$
 - For every string, A can output the correct answer.

P in Formal Language Framework

- Class P: a class of decision problems solvable in polynomial time
- Given an instance x of a decision problem Q, its solution Q(x) (i.e., YES or NO) can be found in polynomial time
- An alternative definition of P:

 $P = \{L \subseteq \{0,1\}^* \mid \text{there exists an algorithm that decides } L \text{ in polynomial time}\}$

P is the class of language that can be accepted in polynomial time

 $P = \{L \mid L \text{ is accepted by a polynomial algorithm}\}\$

Hamiltonian-Cycle Problem

- Problem: find a cycle that visits each vertex exactly once
- Formal language:

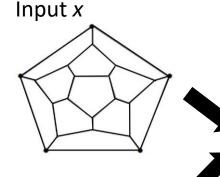
```
HAM-CYCLE = {<G> | G has a Hamiltonian cycle}
```

- Is this language decidable? Yes
- Is this language decidable in polynomial time? Probably not
- Given a certificate the vertices in order that form a Hamiltonian cycle in G, how much time does it take to verify that G indeed contains a Hamiltonian cycle?

Verification Algorithm

Verification algorithms verify memberships in language

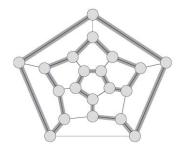
HAM-CYCLE = {<G> | G has a Hamiltonian cycle}



Verification Algorithm

Is y a Hamiltonian cycle in the graph (encoded in x)?

x is in HAM-CYCLE



Certificate *y*

There exists a certificate for each YES instance

Verification Algorithm

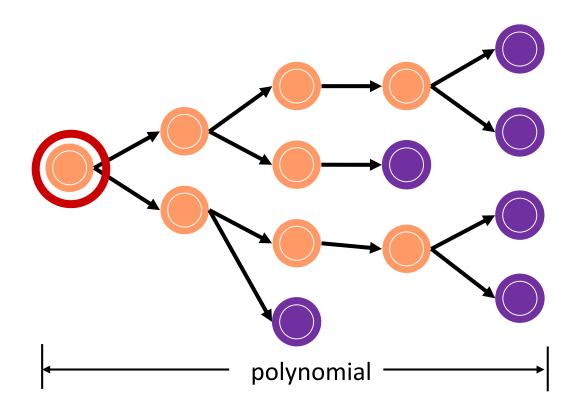
35

Verification algorithms verify memberships in language

HAM-CYCLE = {<G> | G has a Hamiltonian cycle}

There exists no certificate for NO instance

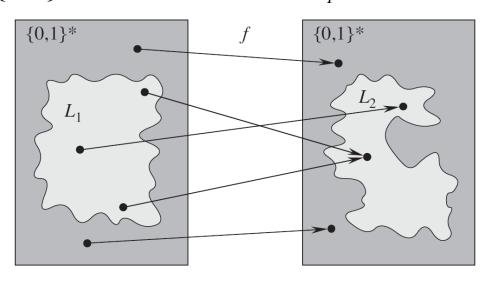
Non-Deterministic Polynomial

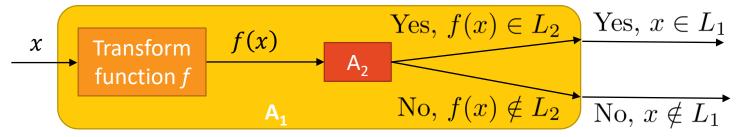


"solved" in non-deterministic polynomial time = "verified" in polynomial time

Polynomial-Time Reducible

• If $L_1, L_2 \subset \{0, 1\}^*$ are languages s.t. $L_1 \leq_p L_2$, then $L_2 \in P$ implies $L_1 \in P$.

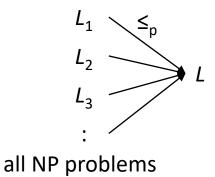


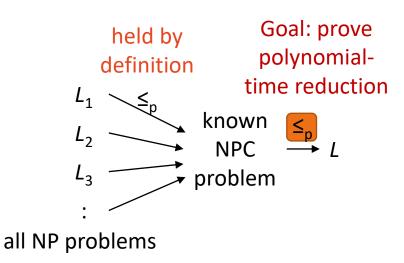


Proving NP-Completeness

- NP-Complete (NPC): class of decision problems in both NP and NP-hard
- In other words, a decision problem L is NP-complete if
 - 1. $L \in NP$
 - 2. $L \in NP$ -hard (that is, $L' \leq_p L$ for every $L' \in NP$)

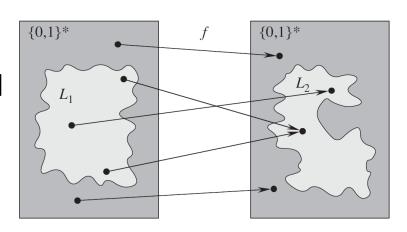
How to prove *L* is NP-hard?





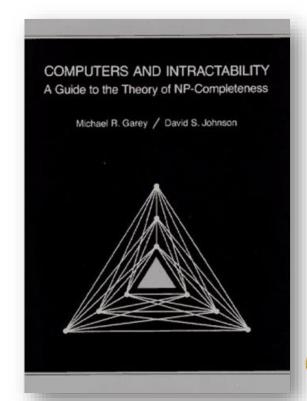
Proving NP-Completeness

- $L \in NPC$ iff $L \in NP$ and $L \in NP$ -hard
- Proof of L in NPC:
 - Prove L ∈ NP
 - Prove L ∈ NP-hard
 - 1) Select a known NPC problem C
 - 2) Construct a reduction f transforming every instance of C to an instance of L
 - 3) Prove that $x \in C \iff f(x) \in L, \forall x \in \{0,1\}^*$
 - 4) Prove that f is a polynomial time transformation



More NP-Complete Problems

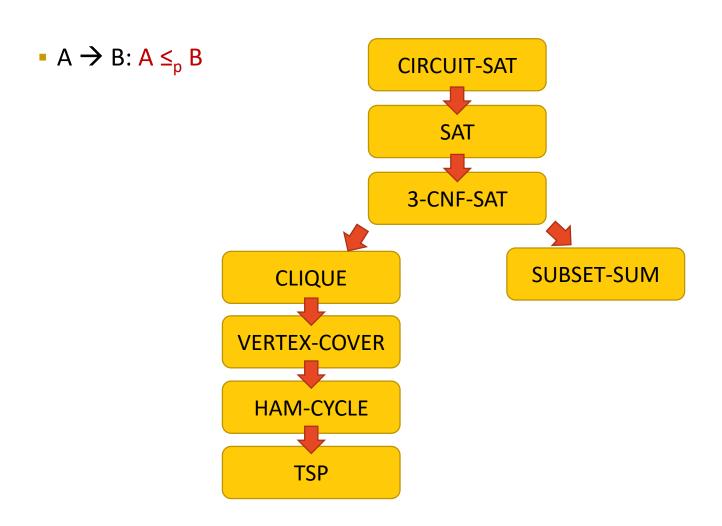
- "Computers and Intractability" by Garey and Johnson includes more than 300 NP-complete problems
 - All except SAT are proved by Karp's polynomial-time reduction



Proving NP-Completeness

Chapter 34.5 – NP-complete problems

Roadmap for NP-Completeness



3-CNF-SAT Problem

 3-CNF-SAT: Satisfiability of Boolean formulas in 3-conjunctive normal form (3-CNF)

$$(x_1 \vee \neg x_1 \vee \neg x_2) \wedge (x_3 \vee x_2 \vee x_4) \wedge (\neg x_1 \vee \neg x_3 \vee \neg x_4)$$

- 3-CNF = AND of clauses, each of which is the OR of exactly 3 distinct literals
- A literal is an occurrence of a variable or its negation, e.g., x_1 or $\neg x_1$

$$x_1 = 0, x_2 = 0, x_3 = 1, x_4 = 1 \rightarrow \text{satisfiable}$$

3-CNF-SAT

3-CNF-SAT = $\{\Phi \mid \Phi \text{ is a Boolean formula in 3-conjunctive normal form (3-CNF) with a satisfying assignment }$

- Is 3-CNF-SAT ∈ NP-Complete?
- To prove that 3-CNF-SAT is NP-Complete, we show that
 - 3-CNF-SAT ∈ NP
 - 3-CNF-SAT ∈ NP-hard (SAT ≤_p 3-CNF-SAT)
 - 1) SAT is a known NPC problem
 - 2) Construct a reduction *f* transforming every SAT instance to an 3-CNF-SAT instance
 - 3) Prove that $x \in SAT$ iff $f(x) \in 3$ -CNF-SAT
 - 4) Prove that f is a polynomial time transformation

We focus on the reduction construction from now on, but remember that a full proof requires showing that all other conditions are true as well

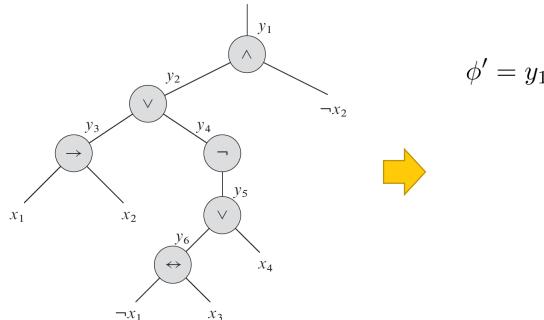
$SAT \leq_p 3-CNF-SAT$

a) Construct a binary parser tree for an input formula Φ and introduce a variable y_i for the output of each internal node



$SAT \leq_p 3-CNF-SAT$

b) Rewrite Φ as the AND of the root variable and clauses describing the operation of each node



$$\phi' = y_1 \wedge (y_1 \leftrightarrow (y_2 \wedge \neg x_2))$$

$$\wedge (y_2 \leftrightarrow (y_3 \vee y_4))$$

$$\wedge (y_3 \leftrightarrow (x_1 \rightarrow x_2))$$

$$\wedge (y_4 \leftrightarrow \neg y_5)$$

$$\wedge (y_5 \leftrightarrow (y_6 \vee x_4))$$

$$\wedge (y_6 \leftrightarrow (\neg x_1 \leftrightarrow x_3))$$

$SAT \leq_{D} 3-CNF-SAT$

$$\phi' = y_1 \land \underbrace{(y_1 \leftrightarrow (y_2 \land \neg x_2))}$$

$$\wedge (y_2 \leftrightarrow (y_3 \lor y_4))$$

$$\land (y_3 \leftrightarrow (x_1 \rightarrow x_2))$$

$$\wedge (y_4 \leftrightarrow \neg y_5)$$

$$\land (y_5 \leftrightarrow (y_6 \lor x_4))$$

$$\wedge (y_5 \leftrightarrow (y_6 \lor x_4))$$

$$\wedge (y_5 \leftrightarrow (y_6 \lor x_4))$$
$$\wedge (y_6 \leftrightarrow (\neg x_1 \leftrightarrow x_3))$$

c) Convert each clause
$$\Phi_i$$
 to CNF

y_1	y_2	x ₂	Φ,'	¬Ф₁′
1	1	1	0	1
1	1	0	1	0
1	0	1	0	1
1	0	0	0	1
0	1	1	1	0
0	1	0	0	1
0	0	1	1	0
0	0	0	1	0

$$\neg \phi_1' = (y_1 \land y_2 \land x_2) \lor (y_1 \land \neg y_2 \land x_2)$$

$$\lor (y_1 \land \neg y_2 \land \neg x_2) \lor (\neg y_1 \land y_2 \land \neg x_2)$$

$$\phi_1' = (\neg y_1 \lor \neg y_2 \lor \neg x_2) \land (\neg y_1 \lor y_2 \lor \neg x_2)$$

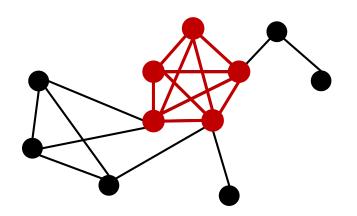
 $\wedge (\neg y_1 \vee y_2 \vee x_2) \wedge (y_1 \vee \neg y_2 \vee x_2)$

$SAT \leq_p 3-CNF-SAT$

- d) Construct Φ''' in which each clause C_i exactly 3 distinct literals
 - 3 distinct literals: $C_i = l_1 \vee l_2 \vee l_3$
 - 2 distinct literals: $C_i=l_1\vee l_2$ $C_i=l_1\vee l_2=(l_1\vee l_2\vee p)\wedge (l_1\vee l_2\vee \neg p)$
 - 1 literal only: $C_i = l$ $C_i = l = (l \lor p \lor q) \land (l \lor \neg p \lor q) \land (l \lor p \lor \neg q) \land (l \lor \neg p \lor \neg q)$
- Φ''' is satisfiable iff Φ is satisfiable
- All transformation can be done in polynomial time
- → 3-CNF-SAT is NP-Complete

Clique Problem

- A clique in G = (V, E) is a complete subgraph of G
 - Each pair of vertices in a clique is connected by an edge in E
 - Size of a clique = # of vertices it contains
- Optimization problem: find a max clique in G
- Decision problem: is there a clique with size larger than k



Does G contain a clique of size 4? Yes

Does G contain a clique of size 5? Yes

Does G contain a clique of size 6? No

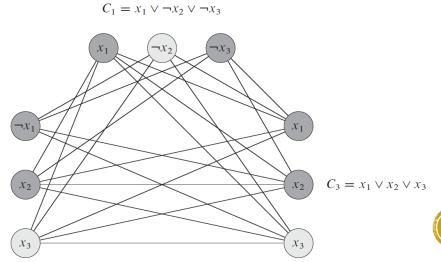
CLIQUE ∈ NP-Complete

CLIQUE = $\{\langle G, k \rangle : G \text{ is a graph containing a clique of size } k\}$

- Is CLIQUE \in NP-Complete? 3-CNF-SAT \leq_p CLIQUE
- Construct a reduction f transforming every 3-CNF-SAT instance to a CLIQUE instance
- a graph G s.t. Φ with k clauses is satisfiable \Leftrightarrow G has a clique of size k

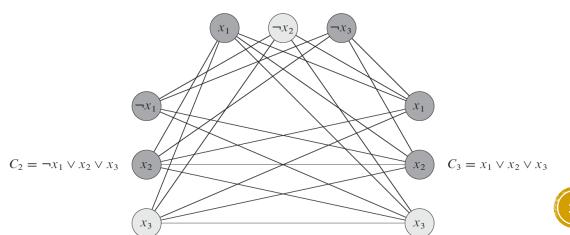
CLIQUE ∈ NP-Complete

- Polynomial-time reduction:
- Let $\phi = C_1 \wedge C_2 \wedge \cdots \wedge C_k$ be a Boolean formula in 3-CNF with k clauses, and each C_r has exactly 3 distinct literals l_1^r , l_2^r , l_3^r
- For each $C_r=(l_1^r \lor l_3^r \lor l_3^r)$, introduce a triple of vertices v_1^r , v_2^r , v_3^r in V
- Build an edge between v_i^r , v_j^s if both of the following hold:
 - v_i^r and v_i^s are in different triples
 - l_i^r is not the negation of l_i^s



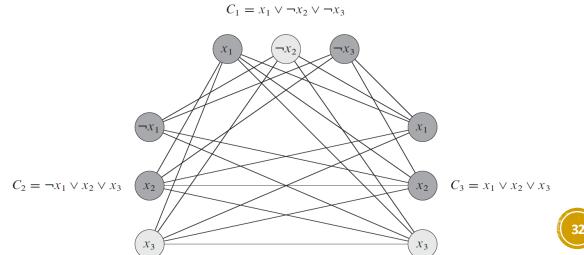
3-CNF-SAT ≤_p CLIQUE

- Correctness proof: Φ is satisfiable \rightarrow G has a clique of size k
- If Φ is satisfiable
- lacktriangle Each C_r contains at least one $l_i^r=1$ and such literal corresponds to v_i^r
- \rightarrow Pick a TRUE literal from each C_r forms a set of V' of k vertices
- For any two vertices v_i^r , $v_j^s \in V'(r \neq s)$, edge $(v_i^r, v_j^s) \in E$, because $l_i^r = l_j^s = 1$ and they cannot be complements $c_1 = x_1 \vee \neg x_2 \vee \neg x_3$

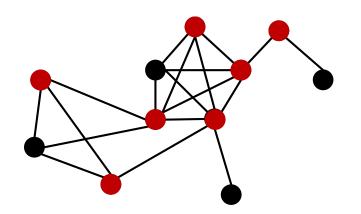


3-CNF-SAT ≤_p CLIQUE

- Correctness proof: G has a clique of size $k \rightarrow \Phi$ is satisfiable
- G has a clique V' of size k
- \rightarrow V' contains exactly one vertex per triple since no edges connect vertices in the same triple
- Assign 1 to each l_i^r where $v_i^r \in V'$ s.t. each C_r is satisfiable, and so is Φ



- A vertex cover of G = (V, E) is a subset V' ⊆ V s.t. if (w, v) ∈ E, then w ∈ V' or v ∈ V'
 - A vertex cover "covers" every edge in G
- Optimization problem: find a minimum size vertex cover in G
- Decision problem: is there a vertex cover with size smaller than k



Does G have a vertex cover of size 11? Yes

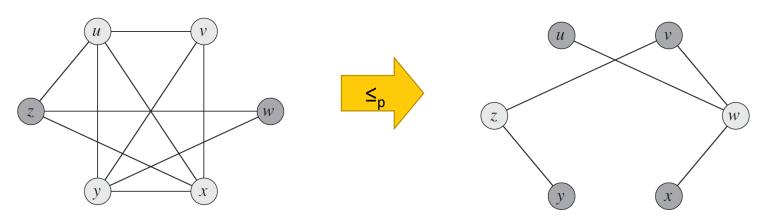
Does G have a vertex cover of size 7? Yes

Does G have a vertex cover of size 6? No

VERTEX-COVER ∈ NP-Complete

VERTEX-COVER = $\{ \langle G, k \rangle : G \text{ is a graph containing a vertex cover of size } k \}$

- Is VERTEX-COVER ∈ NP-Complete? CLIQUE ≤ VERTEX-COVER
- Construct a reduction f transforming every CLIQUE instance to a VERTEX-COVER instance (polynomial-time reduction)
 - Compute the complement of G
 - Given G = <V, E>, Gc is defined as <V, Ec> s.t. Ec = {(u,v) | (u,v) ∉ E}
- a graph G has a clique of size $k \Leftrightarrow G_c$ has a vertex cover of size |V| k

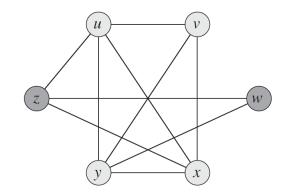


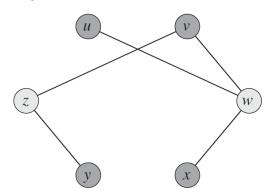
CLIQUE ≤_p VERTEX-COVER

Correctness proof:

a graph G has a clique of size $k \rightarrow G_c$ has a vertex cover of size |V| - k

- If G has a clique $V' \subseteq V$ with |V'| = k
- \rightarrow for all $(w, v) \in E_c$, at least one of w or $v \notin V'$
- $\rightarrow w \in V V'$ or $v \in V V'$ (or both)
- \rightarrow edge (w, v) is covered by V V'
- $\rightarrow V V'$ forms a vertex cover of G_c , and |V V'| = |V| k



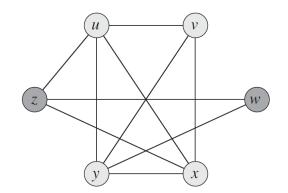


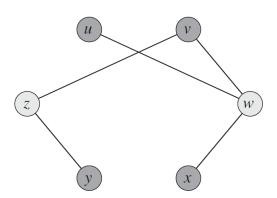
CLIQUE ≤_p VERTEX-COVER

Correctness proof:

 G_c has a vertex cover of size $|V| - k \rightarrow a$ graph G has a clique of size k

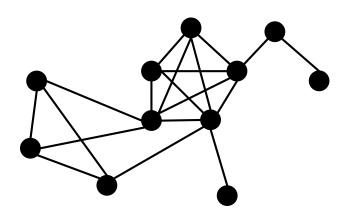
- If G_c has a vertex cover $V' \subseteq V$ with |V'| = |V| k
- \rightarrow for all $w, v \in V$, if $(w, v) \in E_c$, then $w \in V'$ or $v \in V'$ or both
- \rightarrow for all $w, v \in V$, if $w \notin V'$ and $v \notin V'$, $(w, v) \in E$
- $\rightarrow V V'$ is a clique where |V V'| = k





Independent-Set Problem

- An independent set of G = (V, E) is a subset $V' \subseteq V$ such that G has no edge between any pair of vertices in V'
 - A vertex cover "covers" every edge in G
- Optimization problem: find a maximum size independent set
- Decision problem: is there an independent set with size larger than k



Does G have an independent set of size 1?

Does G have an independent set of size 4?

Does G have an independent set of size 5?

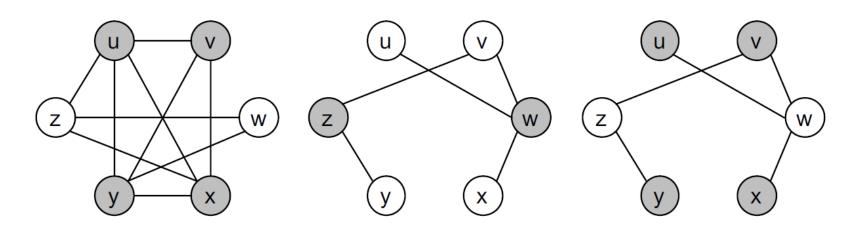
IND-SET ∈ NP-Complete

IND-SET = $\{\langle G, k \rangle : G \text{ is a graph containing an independent set of size } k\}$

- Is IND-SET ∈ NP-Complete?
- Practice by yourself (textbook problem 34-1)

CLIQUE, VERTEX-COVER, IND-SET

- The following are equivalent for G = (V, E) and a subset V' of V:
 - 1) V' is a clique of G
 - 2) V-V' is a vertex cover of G_c
 - 3) V' is an independent set of G_c



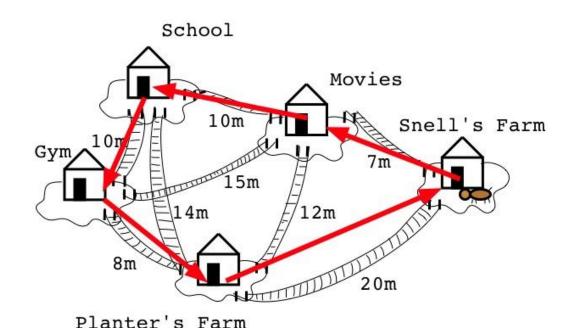
Clique

Vertex cover

Independent set $V' = \{u, v, x, y\}$ in G $V - V' = \{z, w\}$ in G_c $V' = \{u, v, x, y\}$ in G_c

Traveling Salesman Problem (TSP)

- Optimization problem: Given a set of cities and their pairwise distances, find a tour of lowest cost that visits each city exactly once.
- Decision problem: is there a traveling salesman tour with cost at most k



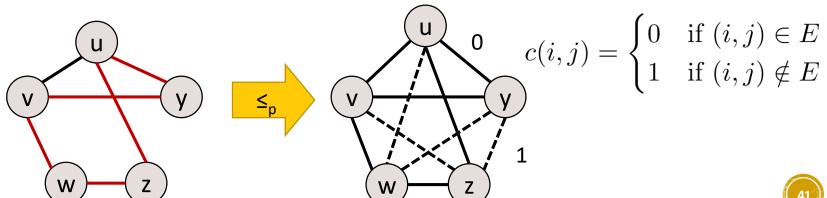
TSP ∈ NP-Complete

 $TSP = \{ \langle G, c, k \rangle : G = (V,E) \text{ is a complete graph, } c \text{ is a cost function for edges, } G \}$ has a traveling-salesman tour with cost at most k

Is TSP ∈ NP-Complete?

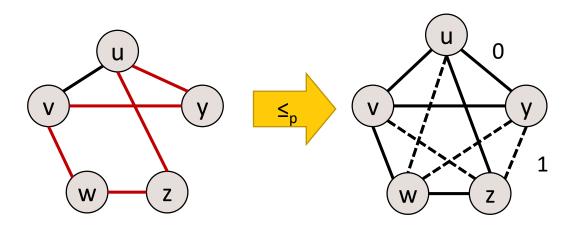
HAM-CYCLE ≤_D TSP

- Construct a reduction f transforming every HAM-CYCLE instance to a TSP instance (polynomial-time reduction)
- G contains a Hamiltonian cycle $h = \langle v_1, v_2, ..., v_n, v_1 \rangle \Leftrightarrow \langle v_1, v_2, ..., v_n \rangle$ v_1 > is a traveling-salesman tour with cost 0



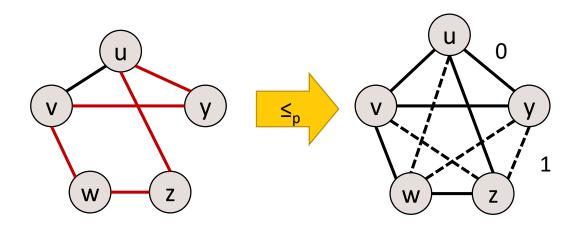
$HAM-CYCLE \leq_p TSP$

- Correctness proof: $x \in HAM$ -CYCLE $\rightarrow f(x) \in TSP$
- If Hamiltonian cycle is $h = \langle v_1, v_2, ..., v_n, v_1 \rangle$
- $\rightarrow h$ is also a tour in the transformed TSP instance
- The distance of the tour h is 0 since there are n consecutive edges in E, and so has distance 0 in f(x)
- \rightarrow f(x) ∈ TSP (f(x) has a TSP tour with cost \leq 0)



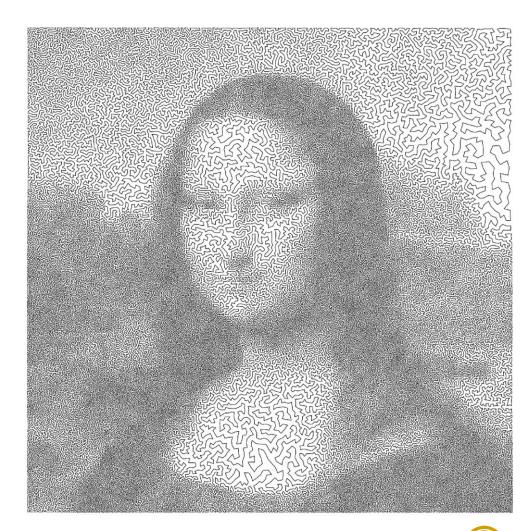
$HAM-CYCLE \leq_p TSP$

- Correctness proof: $f(x) \in TSP \rightarrow x \in HAM$ -CYCLE
- After reduction, if a TSP tour with cost ≤ 0 as $\langle v_1, v_2, ..., v_n, v_1 \rangle$
- → The tour contains only edges in E
- \rightarrow Thus, $\langle v_1, v_2, ..., v_n, v_1 \rangle$ is a Hamiltonian cycle



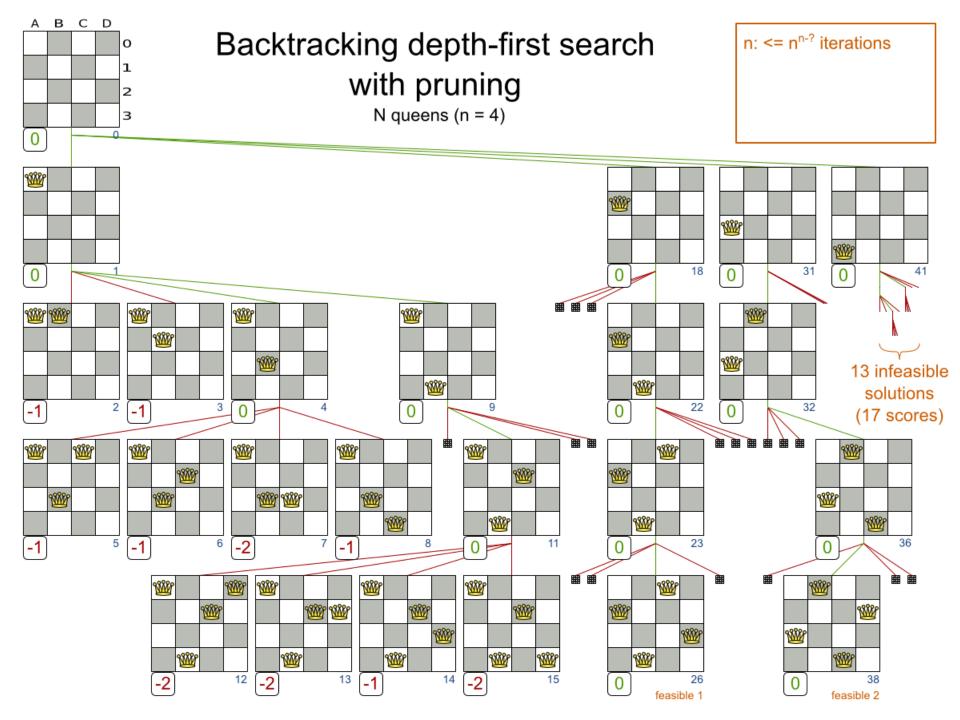
TSP Challenges

Mona Lisa TSP: \$1,000 Prize for 100,000-city



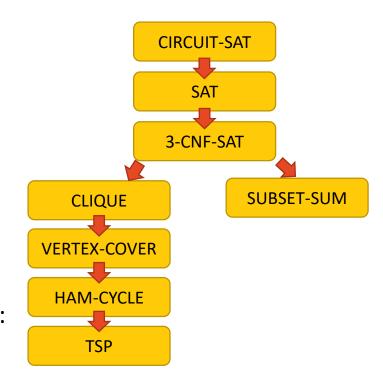
Strategies for NP-Complete/NP-Hard Problems

- NP-complete/NP-hard problems are unlikely to have polynomial-time solutions (unless P = NP), we must sacrifice either optimality, efficiency, or generality
 - Approximation algorithms: guarantee to be a fixed percentage away from the optimum
 - Local search: simulated annealing (hill climbing), genetic algorithms, etc.
 - Heuristics: no formal guarantee of performance
 - Randomized algorithms: use a randomizer (random number generator) for operation
 - Pseudo-polynomial time algorithms: e.g., DP for 0-1 knapsack
 - Exponential algorithms/Branch and Bound/Exhaustive search: feasible only when the problem size is small
 - Restriction: work on some special cases of the original problem. e.g., the maximum independent set problem in circle graphs



Concluding Remarks

- Polynomial-time verification
- $L \in NPC$ iff $L \in NP$ and $L \in NP$ -hard
- Step-by-step approach for proving L in NPC:
 - Prove *L* ∈ NP
 - Prove L ∈ NP-hard
 - 1) Select a known NPC problem C
 - 2) Construct a reduction f transforming every instance of C to an instance of L
 - 3) Prove that $x \in C \iff f(x) \in L, \forall x \in \{0,1\}^*$
 - 4) Prove that *f* is a polynomial time transformation
- Strategies for NP-complete/NP-hard problems



Question?

Important announcement will be sent to @ntu.edu.tw mailbox & post to the course website

Course Website: http://ada.miulab.tw

Email: ada-ta@csie.ntu.edu.tw