

O e

Polynomial-Time Verification

Outline

Proving NP-Completeness
3-CNF-SAT
Clique
Vertex Cover
Independent Set
Traveling Salesman Problem

P, NP, NP-Complete, NP-Hard

P#NP A
(4)

(3)

Complexity

(2)
(1)

Non-Deterministic Problem Sclving

initial
configuration

correct answer

Non-Deterministic Polynomial

h polynomial =‘

' “solved” in non-deterministic polynomial time
. = “verified” in polynomial time

Polynomial-Time
Verification

Chapter 34.1 — Polynomial-time
Chapter 34.2 — Polynomial-time verification

Abstract Problems

Example of a decision problem, PATH
I: a set of problem instances
S: a set of problem solutions

Q: abstract problem, defined as a binary relation on 1 and S

I: <G, src, dest, k> Q: PATH
All graphs with arbitrary src, |g there a path with the length < k?
dest, and the path length k s: {0, 1}

G1, s1,t1, k1
G2,s2,t2, k2 —» 1 (Yes)

Problem Instance Encoding

Convert an abstract problem instance into a binary string fed to a
computer program

Binary Strings

Abstract Problem Instance (Concrete Problem Instance)
> >

A concrete problem is polynomial-time solvable if there exists an
algorithm that solves any concrete instance of length n in time O(nk)
for some constant k

Solvable = can produce a solution

Decision Problem Representation

I: a set of problem Q: decision problem
instances s: {0, 1}
strl
str2 —> 1 (Yes)
str3 —> —>» 0(No)

some strings represent no
meaningful instances

|: a set of problem instances >~° = {¢;0;1;10;11;101;111;-- -}

ZEZFE A1 instancesE s decision problem Q (L = {str1, str3} in this example)

P in Formal Language Framework

A decision problem Q can be defined as a language L over Y . = {0, 1} s.t.

L={xe{0,1}*:Q(x) =1}

An algorithm A accepts a string z € {0,1}*if A(x) =1
An algorithm A rejects a string z € {0, 1}* if A(z) =0

An algorithm A accepts a language L if A accepts every string * € L
If the string is in L, A outputs yes.

If the string is not in L, A may output no or loop forever.

An algorithm A decides a language L if A accepts L and A rejects every

stringx ¢ L
For every string, A can output the correct answer. :«;

P in Formal Language Framework

Class P: a class of decision problems solvable in polynomial time

Given an instance x of a decision problem Q, its solution Q(x) (i.e., YES
or NO) can be found in polynomial time

An alternative definition of P:

P ={L < {0,1}* | there exists an algorithm that decides L in polynomial time}

P is the class of language that can be accepted in polynomial time

P ={L | L is accepted by a polynomial algorithm}

Hamiltonian-Cycle Problem

Problem: find a cycle that visits each vertex exactly once

Formal language:

HAM-CYCLE = {<G> | G has a Hamiltonian cycle}

Is this language decidable? Yes
s this language decidable in polynomial time? Probably not

Given a certificate — the vertices in order that form a Hamiltonian cycle
in G, how much time does it take to verify that G indeed contains a
Hamiltonian cycle?

Verification Algorithm

= Verification algorithms verify memberships in language

HAM-CYCLE = {<G> | G has a Hamiltonian cycle}

Input x
\ Verification Algorithm
Y v Is y a Hamiltonian cycle in the
graph (encoded in x)?
Certificate y

mm) VYES

x is in HAM-CYCLE

Verification Algorithm

= Verification algorithms verify memberships in language

HAM-CYCLE = {<G> | G has a Hamiltonian cycle}

Verification Algorithm
Is y a Hamiltonian cycle in the
graph (encoded in x)?

mmp NO

No conclusion

??

Non-Deterministic Polynomial

h polynomial =‘

' “solved” in non-deterministic polynomial time
. = “verified” in polynomial time

Polynomial-Time Reducible

“If Ly, Ly C {0,1}*arelanguages s.t. L; <,, Lo, then L, € Pimplies L, € P.

Yes, x € Ly
X Transform >

function f

No,z & Ly

Proving NP-Completeness

NP-Complete (NPC): class of decision problems in both NP and NP-hard

In other words, a decision problem L is NP-complete if

L € NP
L € NP-hard (that is, L’

How to prove L is NP-hard ?

all NP problems

<, L forevery L’ € NP)

held by Goal: prove
definition polynomial-
< time reduction
known <
NPC —> L

Ly / problem

all NP problems

Proving NP-Completeness

{0.13* / {01}
*——

L € NPCiff L € NP and L € NP-hard

Proof of L in NPC:
Prove L € NP

Prove L € NP-hard

Select a known NPC problem C

Construct a reduction f transforming every instance of C to an
instance of L

Prove that x € C <— f(z) € L,Vx € {0,1}*
Prove that f is a polynomial time transformation

More NP-Complete Problems

“Computers and Intractability” by Garey and Johnson includes more
than 300 NP-complete problems

All except SAT are proved by Karp’s polynomial-time reduction

COMPUTERS AND INTRACTABILITY
A Guide to the Theory of NP-Completeness

Michael R. Garey / David S. Johnson

Proving NP-
Completeness

Chapter 34.5 — NP-complete problems

Roadmap for NP-Completeness

“A2>B:A< B CIRCUIT-SAT
SAT
3-CNE-SAT
Y >
CLIQUE [SUBSET-SUM]
VERTEX-COVER
HAM-CYCLE
TSP

3-CNF-SAT Problem

3-CNF-SAT: Satisfiability of Boolean formulas in 3-conjunctive normal
form (3-CNF)

(CL‘l vV X V _1.582) N (33‘3 V i) V 213‘4) A (_133‘1 V I3 V _|CU4)

3-CNF = AND of clauses, each of which is the OR of exactly 3 distinct literals
A literal is an occurrence of a variable or its negation, e.g., x; or -x;

r1 =0,20 =0,2x3 = 1,24 = 1 > satisfiable

3-CNF-SAT

3-CNF-SAT = {® | ® is a Boolean formula in 3-conjunctive normal form
(3-CNF) with a satisfying assignment }

Is 3-CNF-SAT € NP-Complete?

To prove that 3-CNF-SAT is NP-Complete, we show that
3-CNF-SAT € NP

3-CNF-SAT € NP-hard (SAT < 3-CNF-SAT)
SAT is a known NPC problem

Construct a reduction f transforming every SAT instance to an 3-CNF-SAT
instance

Prove that x € SAT iff f(x) € 3-CNF-SAT
Prove that fis a polynomial time transformation

We focus on the reduction construction from now on, but remember that a full
proof requires showing that all other conditions are true as well

SAT < 3-CNF-SAT

Construct a binary parser tree for an input formula ® and introduce a
variable y, for the output of each internal node

¢) = ((391 — 213‘2) V _l((_l.iUl <> 393) V 2134)) /\ X9

SAT < 3-CNF-SAT

Rewrite @ as the AND of the root variable and clauses describing the
operation of each node

SAT Sp 3-CNF-SAT y1 N(y1 < (y2 A ~z2))

(11
A (Y2 <> (Y3 V ya))
c) Convert each clause @, to CNF A(ys < (21— 12))
A (Y4 < —ys)
A (Ys
A

= Construct a truth table for each clause i’
ys < (Y6 V x4))

ys <> (01 > x3))

= Construct the disjunctive normal form for -@i’
= Apply DeMorgan’s Law to get the CNF formula ©i”

Y1 Y2 Xy o, -0/ ,
. 1 1 o | 1 | = AyAr2)V(y1r Ay2 Axe)
1 1 0 1 0 V (y1 A —y2 A —z2) V (—y1 Ays A —x2)
1 0 1 0 1 @
. 0 0 0 . Cb,1 = (—y1 VY2 Vxe) A (—yr Vya V xa)
° : . ! 0 A(—y1 Vy2 Vo) Ay V-oyz V)
0 1 0 0 1
0 0 1 1 0 —(a A b) =—aV —b
o
0 0 0 1 0 ~(aVb) = —aA b @

SAT < 3-CNF-SAT

Construct @"” in which each clause C; exactly 3 distinct literals
3 distinct literals: C; = 11 V Iy V I3
2 distinct literals: C; = 11 V [
C; =1, Viy = (ll\/lg\/p)/\(ll\/lg\/_'p)
1 literal only: (; =1
Ci=l=(IUVpVg ANIV-pVgNIVpV-g) AV -pV-q)

@’ is satisfiable iff @ is satisfiable
All transformation can be done in polynomial time

— 3-CNF-SAT is NP-Complete

Cligue Problem

A cligue in G = (V, E) is a complete subgraph of G
Each pair of vertices in a clique is connected by an edge in E
Size of a clique = # of vertices it contains

Optimization problem: find a max clique in G

Decision problem: is there a clique with size larger than k

Does G contain a clique of size 4? Yes
Does G contain a clique of size 5? Yes

Does G contain a clique of size 6?7 No

CLIQUE € NP-Complete

CLIQUE = {<G, k>: G is a graph containing a clique of size k}

Is CLIQUE € NP-Complete?

Construct a reduction f transforming every 3-CNF-SAT instance to a
CLIQUE instance

a graph G s.t. ® with k clauses is satisfiable < G has a clique of size k

gb = (331 V —xo V _|.Cl?3)
A\ (_'331 V X9 V 333)
VAN (2131 V xo V 583) Sp

Cr ==X VX2V X3

CLIQUE € NP-Complete

Polynomial-time reduction:

Let = C1 ACy A--- A Ck be aBoolean formula in 3-CNF with k clauses,
and each C,. has exactly 3 distinct literals 1, 13, [}

Foreach C, = (I] V I5 V I3), introduce a triple of vertices v], v}, v} inV

Build an edge between v;, v’ if both of the following hold:
v; and v; are in different triples

[is not the negation of [}

Cr ==X VX2V X3

3-CNF-SAT < CLIQUE

Correctness proof: @ is satisfiable = G has a clique of size k
If @ is satisfiable

- Each C, contains at least one I! = 1 and such literal corresponds to v}
r l L

—> Pick a TRUE literal from each C. forms a set of V’ of k vertices

> For any two vertices v, v; € V'(r # s), edge (v;,v;) € E, because [; =
ljs = 1 and they cannot be complements ¢ - v-xv -

Cr ==X VX2V X3

3-CNF-SAT < CLIQUE

Correctness proof: G has a clique of size k 2 @ is satisfiable

G has a clique V’ of size k

- V'’ contains exactly one vertex per triple since no edges connect vertices in
the same triple

—> Assign 1 to each [} where v] € V's.t. each C, is satisfiable, and so is ®

Vertex Cover Problem

A vertex cover of G=(V, E) is a subset V' C V s.t. if (w, v) EE, thenw €
VorveV

A vertex cover “covers” every edge in G

Optimization problem: find a minimum size vertex cover in G

Decision problem: is there a vertex cover with size smaller than k

Does G have a vertex cover of size 11? Yes
Does G have a vertex cover of size 7? Yes

Does G have a vertex cover of size 6? No

VERTEX-COVER € NP-Complete

VERTEX-COVER = {<G, k>: G is a graph containing a vertex cover of size k}

s VERTEX-COVER € NP-Complete?

Construct a reduction f transforming every CLIQUE instance to a
VERTEX-COVER instance (polynomial-time reduction)

Compute the complement of G

Given G =<V, E>, Gcis defined as <V, Ec> s.t. Ec={(u,v) | (u,v) & E}

a graph G has a clique of size k <> G_ has a vertex cover of size |V| - k

CLIQUE <, VERTEX-COVER

Correctness proof:

a graph G has a clique of size k = G_ has a vertex cover of size |V| - k
If G has aclique V' €V with |V'| =k

- for all (w,v) € E_, at leastoneof worv & V'

>weV -V orveV -V (orboth)

- edge (w, v) is covered by V — V'

> V — V' forms a vertex cover of G_, and |V-V'| = |V| -k

CLIQUE <, VERTEX-COVER

Correctness proof:

G_ has a vertex cover of size |V| - k = a graph G has a clique of size k
If G_ has a vertex cover V' €V with |V’| = |V]| -k

> forallw,v € V,if (w,v) € E.,thenw € V' or v € V' or both

> forallw,veV,ifwegV andv &V, (w,v) EE

2>V —V'is aclique where |V-V'| =k

Independent-Set Problem

An independent set of G = (V, E) is a subset V' € V such that G has no
edge between any pair of vertices in V’

A vertex cover “covers” every edge in G

Optimization problem: find a maximum size independent set

Decision problem: is there an independent set with size larger than k

Does G have an independent set of size 1?
Does G have an independent set of size 4°?

Does G have an independent set of size 5?

IND-SET € NP-Complete

IND-SET = {<G, k>: G is a graph containing an independent set of size k}

Is IND-SET € NP-Complete?
Practice by yourself (textbook problem 34-1)

CLIQUE, VERTEX-COVER, IND-SET

The following are equivalent for G = (V, E) and a subset V’ of V:
V'is aclique of G

V-V'is a vertex cover of G_
V'is an independent set of G_

u—(v () (v (W) (V)

‘
z SORO D G O
Py > o

Clique Vertex cover Independent set
Vi={uvxvy}inG V-V ={z w}in G, V'={u, v, x,y}in G,

Traveling Salesman Problem (TSP)

Optimization problem: Given a set of cities and their pairwise distances,
find a tour of lowest cost that visits each city exactly once.

Decision problem: is there a traveling salesman tour with cost at most k

School

Planter's Farm

TSP € NP-Complete

TSP = {<G, ¢, k>: G = (V,E) is a complete graph, c is a cost function for edges, G
has a traveling-salesman tour with cost at most k}

Is TSP € NP-Complete? HAM-CYCLE < TSP

Construct a reduction f transforming every HAM-CYCLE instance to a
TSP instance (polynomial-time reduction)

G contains a Hamiltonian cycle h=<v,, v,, ..., v, v;> & <v, v,, .., V,,
v,> is a traveling-salesman tour with cost 0

HAM-CYCLE < TSP

Correctness proof: x € HAM-CYCLE - f(x) € TSP

If Hamiltonian cycleis h=<v,, v,, ..., v,, v;>

—> his also a tour in the transformed TSP instance

- The distance of the tour h is 0 since there are n consecutive edges in E,
and so has distance 0 in f(x)

- f(x) € TSP (f(x) has a TSP tour with cost < 0)

HAM-CYCLE < TSP

Correctness proof: f(x) € TSP 2 x € HAM-CYCLE

After reduction, if a TSP tour with cost<0as<v,, v,, ..., v

n’ V1>

— The tour contains only edges in E

- Thus, <v,, v,, ..., v, v;> is a Hamiltonian cycle

TSP Challenges

= Mona Lisa TSP: $1,000 Prize
for 100,000-city

7

ol

\"

&2

)
NI

Strategies for NP-Complete/NP-
Hard Problems

NP-complete/NP-hard problems are unlikely to have polynomial-time

solutions (unless P = NP), we must sacrifice either optimality, efficiency, or
generality

Approximation algorithms: guarantee to be a fixed percentage away
from the optimum

Local search: simulated annealing (hill climbing), genetic algorithms, etc
Heuristics: no formal guarantee of performance

Randomized algorithms: use a randomizer (random number generator)
for operation

Pseudo-polynomial time algorithms: e.g., DP for 0-1 knapsack

Exponential algorithms/Branch and Bound/Exhaustive search: feasible
only when the problem size is small

Restriction: work on some special cases of the original problem. e.g., the
maximum independent set problem in circle graphs

A B C D

0 Backtracking depth-first search <=0 terations
. with pruning
3 N queens (n = 4)
@ — —_—
: _ -
L
L
g
(0] N
N
§
13 in%(;z;sible
solutions
N (17 scores)
5
i
(@ o
L
g

CIRCUIT-SAT

4

. SAT

Concluding Remarks 0

3-CNF-SAT
w |
CLIQUE SUBSET-SUM
Polynomial-time verification ¥
VERTEX-COVER
L € NPCiff L € NP and L € NP-hard s
HAM-CYCLE

Step-by-step approach for proving L in NPC: :
Prove L € NP TSP

Prove L € NP-hard

Select a known NPC problem C
Construct a reduction f transforming every instance of C to an instance of L

Prove that x € C' <— f(x) € L,Vx € {0,1}*
Prove that f is a polynomial time transformation

Strategies for NP-complete/NP-hard problems

Question?

Important announcement will be sent to @ntu.edu.tw mailbox
& post to the course website

Course Website: http://ada.miulab.tw

Email: ada-ta@csie.ntu.edu.tw

http://ada17.csie.org/
mailto:ada-ta@csie.ntu.edu.tw

