
Slides credited from Hsueh-I Lu & Hsu-Chun Hsiao

 Homework 4 released
 Due on 1/3 (Thur) 14:20 (three weeks later)

 Mini-HW 10 released
 Due on 12/20 (Thur) 14:20

 Next week
 Break

 Watch online videos

 Class 12/27
 A small test for Christmas (optional)

2

3

Complexity Classes
 P v.s. NP

NP, NP-Complete, NP-Hard

Polynomial-Time Reduction

4

 Input: a graph G

 Output: a smallest vertex subset of G that covers all edges of G.

 Known to be NP-complete

5

6

7

 Input: a Graph G and an integer k.

 Output: Does G contain a vertex cover of size no more than k?

 Original problem optimization problem
 原先的路燈問題是要算出放路燈的方法

 Yes/No decision problem
 問k盞路燈夠不夠照亮整個公園

8

Non-Deterministic-Vertex-Cover(G, k)

set S = {}

for each vertex x of G

non-deterministically insert x to S

if |S| > k

output no

if S is not a vertex cover

output no

output yes

9

 If the correct answer is yes, then there is a computation path of the
algorithm that leads to yes.
 至少有一條路是對的

 If the correct answer is no, then all computation paths of the algorithm
lead to no.
 每一條路都是對的

Non-Deterministic-Vertex-Cover(G, k)

set S = {}

for each vertex x of G

non-deterministically insert x to S

if |S| > k

output no

if S is not a vertex cover

output no

output yes

10

initial
configuration

correct answer

11

polynomial

“solved” in non-deterministic polynomial time
= “verified” in polynomial time

 P ⊆ NP
 A problem solvable in polynomial time is verifiable in

polynomial time as well

 Any NP problem can be solved in (deterministically)
exponential time?
 Yes

 Any NP problem can be solved in (deterministically)
polynomial time?
 Open problem

12

Why?

 http://www.claymath.org/millennium-problems

13

 Yang–Mills and Mass Gap

 Riemann Hypothesis

 P vs NP Problem

 Navier–Stokes Equation

 Hodge Conjecture

 Poincaré Conjecture (solved by Grigori Perelman)

 Birch and Swinnerton-Dyer Conjecture

14

Grigori Perelman
Fields Medal (2006), declined
Millennium Prize (2010), declined

 Aug 2010 claimed a proof of P is
not equal to NP.

15

 problems that are
verifiable solvable

 public-key cryptography
will be broken

16

Widespread belief in P ≠ NP

“If P = NP, then the world would be a profoundly different place than we usually
assume it to be. There would be no special value in “creative leaps,” no fundamental
gap between solving a problem and recognizing the solution once it's found. Everyone
who could appreciate a symphony would be Mozart; everyone who could follow a
step-by-step argument would be Gauss...” – Scott Aaronson, MIT

17

Travelling Salesman (2012)
A movie about P = NP
Best Feature Film in Silicon Valley Film Festival 2012

18

19

 A problem is NP-hard if it is as least as hard as all NP problems.

 In other words, a problem X is NP-hard if the following condition holds:
 If X can be solved in (deterministic) polynomial time, then all NP problems

can be solved in (deterministic) polynomial time.

20

 A problem is NP-complete if
 it is NP-hard and

 it is in NP.

 In other words, an NP-complete problem is one of the “hardest”
problems in the class NP.

 In other words, an NP-complete problem is a hardness representative
problem of the class NP.

 Hardest in NP solving one NPC can solve all NP problems (“complete”)

 It is wildly believed that NPC problems have no polynomial-time solution
 good reference point to judge whether a problem is in P
 We can decide whether a problem is “too hard to solve” by showing it is as

hard as an NPC problem

 We then focus on designing approximate algorithms or solving special cases

 Class P: class of problems that can be solved in

 Class NP: class of problems that can be verified in

 Class NP-hard: class of problems that are “at least as hard as all NP problems”

 Class NP-complete: class of problems in both NP and NP-hard

21P ≠ NP P = NP

22

undecidable: no algorithm;
e.g. halting problem
https://www.youtube.com/watch?v=wGLQiHXHWNk

 Halting problem is to determine whether a program 𝑝 halts on input 𝑥

 Proof for undecidable via a counterexample
 Suppose ℎ can determine whether a program 𝑝 halts on input 𝑥

 ℎ(𝑝, 𝑥) = return (p halts on input x)

 Define g(p) = if h(p,p) is 0 then return 0 else HANG

 g(g) = if h(g,g) is 0 then return 0 else HANG

 Both cases contradict the assumption:
1. g halts on g: then h(g,g)=1, which would make g(g) hang

2. g does not halt on g: then h(g,g)=0, which would make g(g) halt

23

 Which one is in P?

24

Shortest Simple Path Longest Simple Path

Euler Tour Hamitonian Cycle

LCS with 2 Input
Sequences

LCS with Arbitrary
Input Sequences

Degree-Constrained
Spanning Tree

Minimal Spanning
Tree

25

Sudoku is NPC
26

27

 Minesweeper Consistency: Given a state of what purports to be a
Minesweeper games, is it logically consistent?

Textbook Chapter 34.3 – NP-completeness and reducibility

28

29

 Input: a Boolean formula with variables

 Output: whether there is a truth assignment for the variables that
satisfies the input Boolean formula

 Stephan A. Cook [FOCS 1971] proved that
 SAT can be solved in non-deterministic polynomial time
 SAT ∈ NP

 If SAT can be solved in deterministic polynomial time,
then so can any NP problems SAT ∈ NP-hard

30

 Problem A can be reduced (in polynomial time) to Problem B
= Problem B can be reduced (in polynomial time) from Problem A
 We can find an algorithm that solves Problem B to help solve Problem A

 If problem B has a polynomial-time algorithm, then so does problem A

 Practice: design a MULTIPLY() function by ADD(), DIVIDE(), and SQUARE()

Algorithm
for B

? ?
Instance 𝛽 of B Answer for 𝛽 Answer for 𝛼Instance 𝛼 of A

Algorithm for A

What is the complexity of Algorithm for A?

 A reduction is an algorithm for transforming a problem instance into another

 Definition
 Reduction from A to B implies A is not harder than B

 A ≤p B if A can be reduced to B in polynomial time

 Applications
 Designing algorithms: given algorithm for B, we can also solve A

 Classifying problems: establish relative difficulty between A and B

 Proving limits: if A is hard, then so is B

31

Algorithm to
decide B

Reduction
Algorithm

Instance 𝛽 of B Yes
Instance 𝛼 of A

Algorithm to decide A No

This is why we need it for proving NP-completeness!

 If A is an NP-hard problem and B can be reduced from A, then B is an
NP-hard problem?

 If A is an NP-complete problem and B can be reduced from A, then B is
an NP-complete problem?

 If A is an NP-complete problem and B can be reduced from A, then B is
an NP-hard problem?

32

 Q: Which one is harder?

 A: They have equal difficulty.

 Proof:
 PARTITION ≤p KNAPSACK
 KNAPSACK ≤p PARTITION

33

KNAPSACK: Given a set
𝑎1, … , 𝑎𝑛 of non-negative

integers, and an integer 𝐾,
decide if there is a subset 𝑃 ⊆
1, 𝑛 such that σ𝑖∈𝑃 𝑎𝑖 = 𝐾.

PARTITION: Given a set of 𝑛
non-negative integers
𝑎1, … , 𝑎𝑛 , decide if there is

a subset 𝑃 ⊆ 1, 𝑛 such that
σ𝑖∈𝑃 𝑎𝑖 = σ𝑖∉𝑃 𝑎𝑖.

Polynomial-time reducible?

Polynomial-time reducible?

 PARTITION ≤p KNAPSACK
 If we can solve KNAPSACK, how can we use that to solve PARTITION?

 KNAPSACK ≤p PARTITION
 If we can solve PARTITION, how can we use that to solve KNAPSACK?

34

KNAPSACK: Given a set
𝑎1, … , 𝑎𝑛 of non-negative

integers, and an integer 𝐾,
decide if there is a subset 𝑃 ⊆
1, 𝑛 such that σ𝑖∈𝑃 𝑎𝑖 = 𝐾.

PARTITION: Given a set of 𝑛
non-negative integers
𝑎1, … , 𝑎𝑛 , decide if there is

a subset 𝑃 ⊆ 1, 𝑛 such that
σ𝑖∈𝑃 𝑎𝑖 = σ𝑖∉𝑃 𝑎𝑖.

Polynomial-time reducible?

Polynomial-time reducible?

 If we can solve KNAPSACK, how can we use that to solve PARTITION?

 Polynomial-time reduction
 Set

35

KNAPSACK: Given a set 𝑎1, … , 𝑎𝑛 of
non-negative integers, and an integer
𝐾, decide if there is a subset 𝑃 ⊆ 1, 𝑛
such that σ𝑖∈𝑃 𝑎𝑖 = 𝐾.

PARTITION: Given a set of 𝑛 non-
negative integers 𝑎1, … , 𝑎𝑛 , decide
if there is a subset 𝑃 ⊆ 1, 𝑛 such
that σ𝑖∈𝑃 𝑎𝑖 = σ𝑖∉𝑃 𝑎𝑖.

5 6 7 8 5 6 7 8

p-time reduction

PARTITION instance KNAPSACK instance with

 If we can solve KNAPSACK, how can we use that to solve PARTITION?

 Polynomial-time reduction
 Set

 Correctness proof: KNAPSACK returns yes if and only if an equal-size
partition exists 36

Algorithm to decide
KNAPSACK

P-time
Reduction

Instance 𝛽 of
KNAPSACK

Yes
Instance 𝛼 of
PARTITION

Algorithm to decide PARTITION
No

5 6 7 8 5 6 7 8

p-time reduction

PARTITION instance KNAPSACK instance with

 If we can solve PARTITION, how can we use that to solve KNAPSACK?

 Polynomial-time reduction
 Set

 Add ,

37

KNAPSACK: Given a set 𝑎1, … , 𝑎𝑛 of
non-negative integers, and an integer
𝐾, decide if there is a subset 𝑃 ⊆ 1, 𝑛
such that σ𝑖∈𝑃 𝑎𝑖 = 𝐾.

PARTITION: Given a set of 𝑛 non-
negative integers 𝑎1, … , 𝑎𝑛 , decide
if there is a subset 𝑃 ⊆ 1, 𝑛 such
that σ𝑖∈𝑃 𝑎𝑖 = σ𝑖∉𝑃 𝑎𝑖.

5 6 7 8 5 6 7 8

p-time reduction

PARTITION instance

48 52

KNAPSACK instance with

 If we can solve PARTITION, how can we use that to solve KNAPSACK?

 Polynomial-time reduction
 Set

 Add ,

 Correctness proof: PARTITION returns yes if and only if there is a
subset 𝑃 ⊆ 1, 𝑛 such that σ𝑖∈𝑃 𝑎𝑖 = 𝐾 38

5 6 7 8 5 6 7 8

p-time reduction

KNAPSACK instance with PARTITION instance

48 52

Algorithm to decide
PARTITION

P-time
Reduction

Instance 𝛽 of
PARTITION

Yes
Instance 𝛼 of
KNAPSACK

Algorithm to decide KNAPSACK
No

 Polynomial-time reduction
 Set

 Add ,

 Correctness proof: PARTITION returns yes if and only if there is a subset
𝑃 ⊆ 1, 𝑛 such that σ𝑖∈𝑃 𝑎𝑖 = 𝐾
 “if” direction

39

𝑎1 𝑎2 𝑎3 𝑎4 𝑎6𝑎1 𝑎4 𝑎3𝑎5 𝑎2

PARTITION returns yes!

 Polynomial-time reduction
 Set

 Add ,

 Correctness proof: PARTITION returns yes if and only if there is a subset
𝑃 ⊆ 1, 𝑛 such that σ𝑖∈𝑃 𝑎𝑖 = 𝐾
 “only if” direction

 Because , if PARTITION returns yes, each set has 4𝐻 + 𝐾

 𝑎1, … , 𝑎𝑛 must be divided into 2𝐻 − 𝐾 and 𝐾

40

𝑎6𝑎2 𝑎3 𝑎4𝑎5 𝑎1 𝑎1 𝑎2 𝑎3 𝑎4

a subset 𝑃 s.t. σ𝑖∈𝑃 𝑎𝑖 = 𝐾

 Definition
 Reduction from A to B implies A is not harder than B

 A ≤p B if A can be reduced to B in polynomial time

 NP-completeness proofs
 Goal: prove that B is NP-hard

 Known: A is NP-complete/NP-hard

 Approach: construct a polynomial-time reduction algorithm to convert 𝛼 to 𝛽

 Correctness: if we can solve B, then A can be solved A ≤p B

 B is no easier than A A is NP-hard, so B is NP-hard

41

Algorithm to
decide B

Reduction
Algorithm

Instance 𝛽 of B Yes
Instance 𝛼 of A

Algorithm to decide A No

If the reduction is not p-time, does this argument hold?

42

 Focus on decision problems

 A language L over σ is any set of strings made up of symbols from σ

 Every language L over σ is a subset of σ∗

 An algorithm A accepts a string if

 The language accepted by an algorithm A is the set of strings

 An algorithm A rejects a string x if
43

The formal-language framework allows us to express concisely the relation
between decision problems and algorithms that solve them.

 NP-Complete (NPC): class of decision problems in both NP and NP-hard

 In other words, a decision problem L is NP-complete if

1. L ∈ NP

2. L ∈ NP-hard (that is, L’ ≤p L for every L’ ∈ NP)

44

L1

L2

L3

:

L

≤p

all NP problems

How to prove L is NP-hard ?

L1

L2

L3

:

≤p

all NP problems

L
known

NPC
problem

≤p

held by
definition

Goal: prove
polynomial-

time reduction

 If are languages s.t. , then L2 ∈ P implies L1 ∈ P.

45

A2

Transform
function f

𝑓 𝑥𝑥

A1

46

 Given a Boolean combinational circuit composed of AND, OR, and NOT
gates, is it satisfiable?
 Satisfiable: there exists an assignment s.t. outputs = 1

Satisfiable Unsatisfiable

 CIRCUIT-SAT can be solved in non-deterministic polynomial time

 ∈ NP

 If CIRCUIT-SAT can be solved in deterministic polynomial time, then so
can any NP problems

 ∈ NP-hard

 (proof in textbook 34.3)

 CIRCUIT-SAT is NP-complete

47

CIRCUIT-SAT = {<C>: C is a satisfiable Boolean combinational circuit}

48

 If one proves that SAT can be solved by a polynomial-time
algorithm, then NP = P.

 If somebody proves that SAT cannot be solved by any
polynomial-time algorithm, then NP ≠ P.

1. CNF-SAT

2. 0-1 INTEGER PROGRAMMING

3. CLIQUE

4. SET PACKING

5. VERTEX COVER

6. SET COVERING

7. FEEDBACK ARC SET

8. FEEDBACK NODE SET

9. DIRECTED HAMILTONIAN CIRCUIT

10. UNDIRECTED HAMILTONIAN CIRCUIT

11. 3-SAT

12. CHROMATIC NUMBER

13. CLIQUE COVER

14. EXACT COVER

15. 3-dimensional MATCHING

16. STEINER TREE

17. HITTING SET

18. KNAPSACK

19. JOB SEQUENCING

20. PARTITION

21. MAX-CUT

49

50

51

 Given a Boolean formula Φ with variables, is there a variable
assignment satisfying Φ

 ∧ (AND), ∨ (OR), ¬ (NOT), → (implication), ↔ (if and only if)

 Satisfiable: Φ is evaluated to 1

 Is SAT ∈ NP-Complete?

 To prove that SAT is NP-Complete, we show that

 SAT ∈ NP

 SAT ∈ NP-hard (CIRCUIT-SAT ≤p SAT)

1) CIRCUIT-SAT is a known NPC problem

2) Construct a reduction f transforming every CIRCUIT-SAT instance to an SAT
instance

3) Prove that x ∈ CIRCUIT-SAT iff f(x) ∈ SAT

4) Prove that f is a polynomial time transformation

52

SAT = {Φ | Φ is a Boolean formula with a satisfying assignment }

 Polynomial-time verification: replaces each variable in the formula
with the corresponding value in the certificate and then evaluates the
expression

53

initial
configuration

polynomial

1) CIRCUIT-SAT is a known NPC problem

2) Construct a reduction f transforming every CIRCUIT-SAT instance to an
SAT instance
 Assign a variable to each wire in circuit C

 Represent the operation of each gate using a formula, e.g.

 Φ = AND the output variable and the operations of all gates

54

3. Prove that x ∈ CIRCUIT-SAT ↔ f(x) ∈ SAT
 x ∈ CIRCUIT-SAT → f(x) ∈ SAT

 f(x) ∈ SAT → x ∈ CIRCUIT-SAT

4. f is a polynomial time transformation

55

CIRCUIT-SAT ≤p SAT SAT ∈ NP-hard

 3-CNF-SAT: Satisfiability of Boolean formulas in 3-conjunctive normal
form (3-CNF)

 3-CNF = AND of clauses, each of which is the OR of exactly 3 distinct literals

 A literal is an occurrence of a variable or its negation, e.g., x1 or ¬x1

56

 satisfiable

 Is 3-CNF-SAT ∈ NP-Complete?

 To prove that SAT is NP-Complete, we show that

 3-CNF-SAT ∈ NP

 3-CNF-SAT ∈ NP-hard (SAT ≤p 3-CNF-SAT)

1) SAT is a known NPC problem

2) Construct a reduction f transforming every SAT instance to an 3-CNF-SAT
instance

3) Prove that x ∈ SAT iff f(x) ∈ 3-CNF-SAT

4) Prove that f is a polynomial time transformation

57

3-CNF-SAT = {Φ | Φ is a Boolean formula in 3-conjunctive normal form
(3-CNF) with a satisfying assignment }

We focus on the reduction construction from now on, but remember that a full
proof requires showing that all other conditions are true as well

a) Construct a binary parser tree for an input formula Φ and introduce a
variable yi for the output of each internal node

58

b) Rewrite Φ as the AND of the root variable and clauses describing the
operation of each node

59

c) Convert each clause Φi’ to CNF
 Construct a truth table for each clause Φi’

 Construct the disjunctive normal form for ¬Φi’

 Apply DeMorgan’s Law to get the CNF formula Φi’’

60

𝒚𝟏 𝒚𝟐 𝒚𝟐 Φ1’ ¬Φ1’

1 1 1 0 1

1 1 0 1 0

1 0 1 0 1

1 0 0 0 1

0 1 1 1 0

0 1 0 0 1

0 0 1 1 0

0 0 0 1 0

𝒚𝟏 𝒚𝟐 𝒚𝟐 Φ1’

1 1 1 0

1 1 0 1

1 0 1 0

1 0 0 0

0 1 1 1

0 1 0 0

0 0 1 1

0 0 0 1

d) Construct Φ’’’ in which each clause Ci exactly 3 distinct literals
 3 distinct literals:

 2 distinct literals:

 1 literal only:

 Φ’’’ is satisfiable iff Φ is satisfiable

 All transformation can be done in polynomial time

 3-CNF-SAT is NP-Complete

61

 Proving NP-Completeness: L ∈ NPC iff L ∈ NP and L ∈ NP-hard

 Step-by-step approach for proving L in NPC:

 Prove L ∈ NP

 Prove L ∈ NP-hard

1) Select a known NPC problem C

2) Construct a reduction f transforming every instance of C to an instance of L

3) Prove that

4) Prove that f is a polynomial time transformation L ∈ NP

62

P ≠ NP

P = NP

Course Website: http://ada.miulab.tw

Email: ada-ta@csie.ntu.edu.tw

63

Important announcement will be sent to @ntu.edu.tw mailbox
& post to the course website

http://ada17.csie.org/
mailto:ada-ta@csie.ntu.edu.tw

