P/NP, NP Complete,
NP Hard conecept

introduction

Announcement

Homework 4 released
= Due on 1/3 (Thur) 14:20 (three weeks later)

Mini-HW 10 released
= Due on 12/20 (Thur) 14:20

Next week
= Break

= Watch online videos

Class 12/27
= A small test for Christmas (optional)

Mini-HW 10

&% M7 5 is a game invented by nikoli in the 1990s.

The game is played on a rectangular grid with cells drawn on it. Some cells start out with (usually encircled)
numbers from 1 to 8 inclusive: these are the "islands". The rest of the cells are empty.

The goal is to connect all of the islands by drawing a series of bridges between the islands. The bridges must follow
certain criteria:

« They must begin and end at distinct islands, travelling a straight line in between.

They must not cross any other bridges or islands.
« They may only run orthogonally (i.e. they may not run diagonally).
At most two bridges connect a pair of islands.

+ The number of bridges connected to each island must match the number on that island.
The bridges must connect the islands into a single connected group.

Now given the rules of {&% 7|7 %, please prove within which complexity class does this game fall in.
(You can claim Karp's 21 NP-complete problems directly, everything else must be proven explicitly before use)

p.s. you can also play the game online here -> https:/www.puzzle-bridges.com/

Outline

= Complexity Classes
=P v.s. NP

= NP, NP-Complete, NP-Hard

= Polynomial-Time Reduction

Vertex Cover Problem (I /& &1 28)

= Input: a graph G
= Qutput: a smallest vertex subset of G that covers all edges of G.

= Known to be NP-complete

IHlustration

Vertex Cover (Decision Version)

Input: a Graph G and an integer k.

Output: Does G contain a vertex cover of size no more than k?

Original problem = optimization problem

REENEEBREZEES L RESERNTT A

Yes/No > decision problem
BIkEE IR NE 20 A 20 B T2 & A &

Non-Deterministic Algorithm

Non-Deterministic-Vertex-Cover (G, k)
set S = {}
for each vertex x of G
non-deterministically insert x to S
if |S] > k
output no
if S is not a vertex cover
output no
output yes

Algorithm Correctness

Non-Deterministic-Vertex-Cover (G, k)
set S = {}
for each vertex x of G
non-deterministically insert x to S
if |S] > k
output no
if S is not a vertex cover
output no
output yes

If the correct answer is yes, then there is a computation path of the
algorithm that Ieads to yes.

2PE—REZHH

If the correct answer is no, then all computation paths of the algorithm
lead to no.

REEEEH

Non-Deterministic Problem Sclving

initial
configuration

correct answer

Non-Deterministic Polynomial

h polynomial =‘

' “solved” in non-deterministic polynomial time
. = “verified” in polynomial time

PZS NPorNPCP?

PC NP

A problem solvable in polynomial time is verifiable in
polynomial time as well

Any NP problem can be solved in (deterministically) @ (D

exponential time?
Yes

Any NP problem can be solved in (deterministically)
polynomial time?
Open problem

USS1,000,000 Per Problem

= http://www.claymath.org/millennium-problems

per VideoMATH

Michael Atiyah Timothy Gowers John Tate

The
The Millenniutn The lmportance The Millenminm =~ CMl Millenminmn
Prize :"roble‘mc of Mackemahts Prise :Drob/e'm: Koot 9

A Lecture b,

A Lecture by e,
kel Atk

Timthy, Gowers 1o ""-,:,-.

b A Lectore e A Flin
Jobun Tate S & Framgoi fisseyre

3

Clap Mathmata s haet 2ude

W Camaser Vet N Mmoo Mocting
Coluge & Frane, P Culige & Prance, Parm Collegr de Feance, Pen Caliege de Prance. Parn
My 34-2¢ 3000 May bhedn 30 oy 34 sy May ra 1 oo

Millennium Problems

= Yang—Miills and Mass Gap
= Riemann Hypothesis

-[P vs NP Problem]

= Navier—Stokes Equation
= Hodge Conjecture
= Poincaré Conjecture (solved by Grigori Perelman)

= Birch and Swinnerton-Dyer Conjecture

Grigori Perelman

Fields Medal (2006), declined
Millennium Prize (2010), declined

Vinay Deolalikar

= Aug 2010 claimed a proof of P is
not equal to NP.

If P=NP

problems that are public-key cryptography
verifiable = solvable will be broken

“If P = NP, then the world would be a profoundly different place than we usually
assume it to be. There would be no special value in “creative leaps,” no fundamental
gap between solving a problem and recognizing the solution once it's found. Everyone
who could appreciate a symphony would be Mozart; everyone who could follow a
step-by-step argument would be Gauss...” — Scott Aaronson, MIT

Widespread belief in P # NP

s e

7\ LT '
Travelling Salesman (2012) .i‘“" ’
A movie about P = NP =

Best Feature Film in Silicon Valley Film Festival'2012

\ P rd

NP-Hardness

A problem is NP-hard if it is as least as hard as all NP problems.

In other words, a problem X is NP-hard if the following condition holds:

If X can be solved in (deterministic) polynomial time, then all NP problems
can be solved in (deterministic) polynomial time.

NP-Completeness (NPC)

A problem is NP-complete if
it is NP-hard and

itisin NP.

In other words, an NP-complete problem is one of the “hardest”
problems in the class NP.

In other words, an NP-complete problem is a hardness representative
problem of the class NP.

Hardest in NP = solving one NPC can solve all NP problems (“complete”)

It is wildly believed that NPC problems have no polynomial-time solution
— good reference point to judge whether a problem is in P

We can decide whether a problem is “too hard to solve” by showing it is as
hard as an NPC problem

We then focus on designing approximate algorithms or solving special cases

Complexity Classes

= Class P: class of problems that can be solved in O(n*)
= Class NP: class of problems that can be verified in O(n*)
= Class NP-hard: class of problems that are “at least as hard as all NP problems”

= Class NP-complete: class of problems in both NP and NP-hard

P=NP=
NP-Complete

NP Q§>

P % NP P

More Complexity Classes

undecidable: no algorithm;

recognizable e.g. halting problem

decidable

EXPSPACE
EXPTIME
PSPACE=NPSPACE

An Undecidable Problem —
Halting Problem

Halting problem is to determine whether a program p halts on input x

Proof for undecidable via a counterexample
Suppose h can determine whether a program p halts on input x

h(p, x) = return (p halts on input x)
Define g(p) = if h(p,p) is 0 then return 0 else HANG
- g(g) = if h(g,g) is 0 then return 0 else HANG

Both cases contradict the assumption:
g halts on g: then h(g,g)=1, which would make g(g) hang

g does not halt on g: then h(g,g)=0, which would make g(g) halt
Halts

17 a1

Complexity Classes

= Which oneisin P?

Shortest Simple Path

LCS with 2 Input
Sequences

Degree-Constrained
Spanning Tree

N\

Longest Simple Path

Hamitonian Cycle

LCS with Arbitrary
Input Sequences

Minimal Spanning

Tree

1 7 4
5 8 3 e
B|7 9
a 8

Candy Crush is NP-Hard

Bejeweled, Candy Crush and other match-three games are (NP-)Hard!

What is this all about?

This 1s an implementation of the reduction provided in the paper Bejeweled,_Candy Crush and other Match-Three Games are (NP)-
Hard which has been accepted for presentation at the 2074 JEEE Conference on Computational Intelligence and Games (CIG 2014).
To find more about what NP-Hard means you can read this blog post or the corresponding page on Wikipedia.

About the authors

We are an Italian group of three people: Luciano Guala, Stefano Leucci, and Emanuele Natale. We had the weird idea to spend our
weekends proving that Candy Crush Saga is NP-Hard. We also thought that it was nice to put online an implementation of our
hardness reduction... so here it is!

Rules

Swap two adjacent gems in order to match three or more gems of the same kind. The matched gems will pop, and the gems above will fall. It is possibile to have chains of
pops.

For a complete understanding of what's going on please read the paper on ArXiv.
In a nutshell (for those "tl;dr" folks): you can swap one or two gems on each choice wire from the top one to the bottom one, then you have to traverse the goal wire to
reach the goal gem. Popping a wire means setting the corresponing variable to true.

Sudoku is NPC

Minesweeper Consistency is NPC

= Minesweeper Consistency: Given a state of what purports to be a
Minesweeper games, is it logically consistent?

P 1 s To U201 U125 A U3 U1 R 1] el
el SOEIERS EAEIEEDES KRR
ML b 4 :11 I T 1 I N 0 X

LS
M
1]

I3 | | e
N |-
M-
[
Lad | | e |)

[VIS

Polynomial-Time
Reduction

Textbook Chapter 34.3 — NP-completeness and reducibility

First NP-Complete Problem —
SAT (Satisfiability)

= Input: a Boolean formula with variables

= Qutput: whether there is a truth assignment for the variables that
satisfies the input Boolean formula

(xVyVz)AN(xVygVZI)A(ZVyY)

= Stephan A. Cook [FOCS 1971] proved that

= SAT can be solved in non-deterministic polynomial time
- SAT € NP

= |f SAT can be solved in deterministic polynomial time,
then so can any NP problems = SAT € NP-hard

Reduction

Problem A can be reduced (in polynomial time) to Problem B

= Problem B can be reduced (in polynomial time) from Problem A
We can find an algorithm that solves Problem B to help solve Problem A

Instance a of

a
A

If problem B has a polynomial-time algorithm, then so does problem A

Instance 5 of B FINIZGT0 0| Answer for 3
| forB '

N
Ar

swer for a

\

——

__

oo

=~

Practice: design a MULTIPLY() function by ADD(), DIVIDE(), and SQUARE()

Reduction

A reduction is an algorithm for transforming a problem instance into another

Instance ofﬁ Instance § of B Algorithm to

k' " decide B
Definition

Reduction from A to B implies A is not harder than B

A <, B if A can be reduced to B in polynomial time

Applications
Designing algorithms: given algorithm for B, we can also solve A

Classifying problems: establish relative difficulty between A and B
Proving limits: if A is hard, then so is B

__

__

Questions

If A is an NP-hard problem and B can be reduced from A, then B is an
NP-hard problem?

If A is an NP-complete problem and B can be reduced from A, then B is
an NP-complete problem?

If Ais an NP-complete problem and B can be reduced from A, then B is
an NP-hard problem?

Problem Difficulty

Q: Which one is harder?

KNAPSACK: Given a set PARTITION: Given a set of n
{aq, ..., a,} of non-negative // non-negative integers
integers, and an integer K, {aq, ..., a,}, decide if there is
decide if there is a subset P S a subset P € [1,n] such that
[1,n] such that }};cp a; = K. Yiep @i = igp 4.

A: They have equal difficulty.

Proof:
PARTITION Sp KNAPSACK

KNAPSACK <, PARTITION

Polynomial Time Reduction

KNAPSACK: Given a set PARTITION: Given a set of n
{aq, ..., a,} of non-negative // non-negative integers
integers, and an integer K, {aq, ..., a,}, decide if there is
decide if there is a subset P S a subset P € [1,n] such that
[1,n] such that }};cp a; = K. Yiep @i = igp 4.

PARTITION <p KNAPSACK
If we can solve KNAPSACK, how can we use that to solve PARTITION?

KNAPSACK <p PARTITION
If we can solve PARTITION, how can we use that to solve KNAPSACK?

PARTITION <) KNAPSACK

KNAPSACK: Given a set {a, ..., a,} of /i PARTITION: Given a set of n non-
non-negative integers, and an integer negative integers {ay, ..., a, }, decide
K, decide if there is a subset P € [1,n] if there is a subset P € [1,n] such
such that },;cpa; = K. that X;cp a; = Xigp a;.

If we can solve KNAPSACK, how can we use that to solve PARTITION?

Polynomial-time reduction
Set K = %Z?:l a;
p-time reduction
5 6 7 8 > 5 6 7 8

PARTITION instance KNAPSACK instance with

K =3 x26=13

PARTITION <) KNAPSACK

Instance of(‘ N ERNN I Algorithm to decide

PARTITION k KNAPSACK KNAPSACK

= If we can solve KNAPSACK, how can we use that to solve PARTITION?

= Polynomial-time reduction
= Set K = %Z?:l a;

p-time reduction
5 6 7 8 » | 5 6 7 8

PARTITION instance KNAPSACK instance with
K =3 x26=13

= Correctness proof: KNAPSACK returns yes if and only if an equal-size
partition exists

KNAPSACK <) PARTITION

KNAPSACK: Given a set {a, ..., a,} of
non-negative integers, and an integer
K, decide if there is a subset P € [1,n]
such that },;cpa; = K.

4

PARTITION: Given a set of n non-

negative integers {ay, ..., a, }, decide

if there is a subset P € [1,n] such
that X;ep @i = Xigp 4i-

If we can solve PARTITION, how can we use that to solve KNAPSACK?

Polynomial-time reduction
Set H = %Z?:l a;
Add anp+1 — 2H + 2K, Anp+2 = A4H

p-time reduction !

>

5 6 7 8
KNAPSACK instance with K = 11

5 6 7 8 48

52

PARTITION instance

KNAPSACK <) PARTITION

Instance of(‘ N ERNN I Algorithm to decide

KNAPSACK k PARTITION PARTITION

= If we can solve PARTITION, how can we use that to solve KNAPSACK?

= Polynomial-time reduction
= Set H = %Z?:l a;

« Add a,41 = 2H + 2K, any2 =4H 8H + 2K
A
p-time reduction !
5 6 7 8 > 5 6 7 8 48 | 52
KNAPSACK instance with K = 11 PARTITION instance

= Correctness proof: PARTITION returns yes if and only if there is a @é

subset P C [1,n] such that },;cpa; = K

KNAPSACK <, PARTITION

Polynomial-time reduction
Set H = % Z?:l a;
Add an+1 = 2H + 2K, Gpt2 = 4H

Correctness proof: PARTITION returns yes if and only if there is a subset
P C |1,n]suchthat };cpa; = K

“if” direction

K 4H + K 4H + K
A A A
| ! | ! | \
aq a, as ay ‘ a4 Ay dsg a, as Ag
e e ‘Ol 4 2K e AH
2H — K K

PARTITION returns yes!

KNAPSACK <, PARTITION

Polynomial-time reduction
Set H = % Z?:l a;
Add an+1 = 2H + 2K, Gpt2 = 4H

Correctness proof: PARTITION returns yes if and only if there is a subset
P C |1,n]suchthat };cpa; = K
“only if” direction
Because Z?:Jrf a; = 8H + 2K, if PARTITION returns yes, each set has 4H + K
{a,, ..., a,} must be divided into 2H — K and K

14H + K 14H + K K
A A A
| \ | \ | !
a, as as a4 Ay g ‘ a, a, as ay
: : 2H + 2K O preeeneens : AH

2H - K K asubsetPs.t.);cpa; =K

Reduction for Proving Limits

Instance a ofﬁ Instance f§ of B Algorithm to

t' ” decide B
= Definition

= Reduction from A to B implies A is not harder than B
= A<, Bif Acan be reduced to B in polynomial time

= NP-completeness proofs

= Goal: prove that B is NP-hard
Known: A is NP-complete/NP-hard
Approach: construct a polynomial-time reduction algorithm to convert a to
Correctness: if we can solve B, then A can be solved 2 A <, B
B is no easier than A = Ais NP-hard, so B is NP-hard

|_,

__

Proving NP-
Completeness

Formal Language Framework

Focus on decision problems
A language L over)’ is any set of strings made up of symbols from)’

Every language L over), is a subset of)"
S = {e;0;1;10;11; 101; 111; - - - }

' The formal-language framework allows us to express concisely the relation
. between decision problems and algorithms that solve them.

An algorithm A accepts a string x € {0,1}* if A(z) =1
The language accepted by an algorithm A is the set of strings
L={zec{0,1}*: A(x) =1}

An algorithm A rejects a string x if A(x) =0

Proving NP-Completeness

NP-Complete (NPC): class of decision problems in both NP and NP-hard

In other words, a decision problem L is NP-complete if

L € NP

L € NP-hard (thatis, L’ <, L for every L" € NP)

How to prove L is NP-hard ?

all NP problems

held by Goal: prove
definition polynomial-
L \SK time reduction
known (&
L nee L

Ls 7 problem

all NP problems

Polynomial-Time Reducible

“If Ly, Ly C {0,1}* arelanguagess.t. L; <, Lo, thenL, € P implies L, € P.

Yes, x € Ly
X Transform >

function f

No,z & Ly

Circuit Satisfiability Problem

Given a Boolean combinational circuit composed of AND, OR, and NOT
gates, is it satisfiable?
Satisfiable: there exists an assighnment s.t. outputs = 1

P
] o—

Satisfiable Unsatisfiable

T3,

YV

CIRCUIT-SAT

CIRCUIT-SAT = {<C>: Cis a satisfiable Boolean combinational circuit}

CIRCUIT-SAT can be solved in non-deterministic polynomial time
> ENP

If CIRCUIT-SAT can be solved in deterministic polynomial time, then so
can any NP problems

—> € NP-hard
(proof in textbook 34.3)
CIRCUIT-SAT is NP-complete

Pv.s. NP

If one proves that SAT can be solved by a polynomial-time
algorithm, then NP = P.

If somebody proves that SAT cannot be solved by any
polynomial-time algorithm, then NP # P.

Karp’s NP-Complete Problems

T
CNF-SAT CHROMATIC NUMBER
0-1 INTEGER PROGRAMMING CLIQUE COVER
CLIQUE EXACT COVER
SET PACKING 3-dimensional MATCHING
VERTEX COVER STEINER TREE
SET COVERING HITTING SET
FEEDBACK ARC SET KNAPSACK
FEEDBACK NODE SET JOB SEQUENCING
DIRECTED HAMILTONIAN CIRCUIT PARTITION

UNDIRECTED HAMILTONIAN CIRCUIT MAX-CUT
3-SAT

Karp’s NP-Complete Problems

A4

Clique Cover

3.5AT Chromatic Number

4

Satisflability

0-1 Programming

4

Exact Cover

Set Packing

Clique

Feedback Node Set

Node Cover

Feedback Arc Set

Directed HCP

Undirected HCP

A\ d

Set Covering

Steiner Tree
Hitting Set
Partition Max Cut
Knapsack
lob Sequencing
#1 3D Matching

)
“J

€

Formula Satisfiability Problem (SAT)

Given a Boolean formula @ with variables, is there a variable
assignment satisfying @

¢ = ((x1 = x2) V((—x1 ¢ x3) VIg)) A o

A (AND), V (OR), = (NOT), = (implication), <> (if and only if)
Satisfiable: @ is evaluated to 1

516‘1:0 2132:0,583:1351’:4:1
»=((0—=0)V-((-0<1)V1)A-0
(11D VI)AL

(
(1v
(1V (1\/1))/\1
(1VO0)A
1
1

!

SAT

SAT = {® | @ is a Boolean formula with a satisfying assignment }

Is SAT € NP-Complete?

To prove that SAT is NP-Complete, we show that
SAT € NP
SAT € NP-hard (CIRCUIT-SAT < SAT)
CIRCUIT-SAT is a known NPC problem

Construct a reduction f transforming every CIRCUIT-SAT instance to an SAT
instance

Prove that x € CIRCUIT-SAT iff f(x) € SAT
Prove that fis a polynomial time transformation

SAT € NP

Polynomial-time verification: replaces each variable in the formula
with the corresponding value in the certificate and then evaluates the
expression

Qb = ((.’L’l — .582) \Y _l((_l.il?l <> .513'3) \Y .584)) /\ —X9

I :07562:0,583:132174: 1
<
*

initial
configuration

v

h polynomial

SAT € NP-Hara

CIRCUIT-SAT is a known NPC problem

Construct a reduction f transforming every CIRCUIT-SAT instance to an
SAT instance

Assign a variable to each wire in circuit C
Represent the operation of each gate using a formula, e.g. Z10 <> (z7 A g A Z9)
@ = AND the output variable and the operations of all gates

mbs
@ > Xg X10

X1

X5

-~

X2

¥

X
xg—bc !

U

SAT € NP-Hara

) ¢ =10 N (T4 > —x3)
. | > A (z5 < (21 V 22))
>QX :Dﬁ A (xg <> —xy)
: A(x7 ¢ (x1 ANz Axy))
. - jD?} A (zs ¢ (5 V 26))
- DO - A (z9 <> (16 V 7))
A (x10 > (z7 Axg A X9))

Prove that x € CIRCUIT-SAT <> f(x) € SAT
X € CIRCUIT-SAT - f(x) € SAT
f(x) € SAT - x € CIRCUIT-SAT

fis a polynomial time transformation CIRCUIT-SAT < SAT -> SAT € NP-hard i

3-CNF-SAT Problem

3-CNF-SAT: Satisfiability of Boolean formulas in 3-conjunctive normal
form (3-CNF)

(CL‘l vV X V _1.582) N (33‘3 V i) V 213‘4) A (_133‘1 V I3 V _|CU4)

3-CNF = AND of clauses, each of which is the OR of exactly 3 distinct literals
A literal is an occurrence of a variable or its negation, e.g., x; or -x;

r1 =0,20 =0,2x3 = 1,24 = 1 > satisfiable

3-CNF-SAT

3-CNF-SAT = {® | ® is a Boolean formula in 3-conjunctive normal form
(3-CNF) with a satisfying assignment }

Is 3-CNF-SAT € NP-Complete?

To prove that SAT is NP-Complete, we show that
3-CNF-SAT € NP

3-CNF-SAT € NP-hard (SAT < 3-CNF-SAT)
SAT is a known NPC problem

Construct a reduction f transforming every SAT instance to an 3-CNF-SAT
instance

Prove that x € SAT iff f(x) € 3-CNF-SAT

Prove that fis a polynomial time transformation

We focus on the reduction construction from now on, but remember that a full
proof requires showing that all other conditions are true as well

SAT < 3-CNF-SAT

Construct a binary parser tree for an input formula ® and introduce a
variable y; for the output of each internal node

¢) = ((391 — 213‘2) V _l((_l.iUl <> 393) V 2134)) /\ X9

SAT < 3-CNF-SAT

Rewrite ® as the AND of the root variable and clauses describing the
operation of each node

=11 A (y1 < (y2 A ~x2))
A (y2 < (Y3 V ya))
A (ys <> (T1 A x2))
A (Y4 < —Ys5)
A (ys <> (Y6 V @4))
A (Ys <> (1 A 23))

SAT Sp 3-CNF-SAT — 41 A(51 © (92 A —22))]
A (y2 < (Y3 V ya))
c) Convert each clause ®i’ to CNF Ays ¢ (71 A 22))
= Construct a truth table for each clause @i’ A (y4 A _‘95)
= Construct the disjunctive normal form for -O®i’ A (ys < (Y6 V 14))
« Apply DeMorgan’s Law to get the CNF formula ®i” A (ye <> (mz1 A x3))

Y1 Y2 Y2 o, -0/ ,
. 1 1 o | 1 | = AyAr2)V(y1r Ay2 Axe)
1 1 0 1 0 V (y1 A —y2 A —z2) V (—y1 Ays A —x2)
1 0 1 0 1 @
! 0 0 0 1 Cb,1 = (—y1 VY2 Vxe) A (—yr Vya V xa)
° : . ! 0 A(—y1 Vy2 Vo) Ay V-oyz V)
0 1 0 0 1
0 0 1 1 0 —(a A b) =—aV —b
./’.\‘z
0 0 0 1 0 _'(a\/b):_l(],/_lb 5\.;.‘:;

SAT < 3-CNF-SAT

Construct @"” in which each clause C; exactly 3 distinct literals
3 distinct literals: C; = 11 V Iy V I3
2 distinct literals: C; = 11 V [
C; =1, Viy = (ll\/lg\/p)/\(ll\/lg\/_'p)
1 literal only: (; =1
Ci=l=(IUVpVg ANIV-pVgNIVpV-g) AV -pV-q)

@’ is satisfiable iff @ is satisfiable
All transformation can be done in polynomial time

— 3-CNF-SAT is NP-Complete

. T
// . // T

y ‘\\ y \\
/ NP-Hard A / NP-Hard \

§ 1 J 4
]/ wl‘ f ‘\
| | \‘ |

\ /J L /ﬂ
® \ NP-Complete /f \ NPP_SO%F;; e) /
Concluding Remarks o o
e P=w

P#NP

Proving NP-Completeness: L € NPCiff L € NP and L € NP-hard

Step-by-step approach for proving L in NPC:
Prove L € NP
Prove L € NP-hard
Select a known NPC problem C
Construct a reduction f transforming every instance of C to an instance of L
Provethat x € C <= f(z) € C,Vx € {0,1}*

Prove that f is a polynomial time transformation L € NP
{0.13% f {0.13

*— |
—

——e

><
P

Question?

Important announcement will be sent to @ntu.edu.tw mailbox
& post to the course website

Course Website: http://ada.miulab.tw

Email: ada-ta@csie.ntu.edu.tw

http://ada17.csie.org/
mailto:ada-ta@csie.ntu.edu.tw

