
Slides credited from Hsueh-I Lu & Hsu-Chun Hsiao

▪Decision Problems v.s. Optimization Problems

▪Complexity Classes
▪ P v.s. NP

▪NP, NP-Complete, NP-Hard

2

▪ Design Strategy
▪ Divide-and-Conquer

▪ Dynamic Programming

▪ Greedy Algorithms

▪ Graph Algorithms

▪ Analysis
▪ Amortized Analysis

▪ NP-Completeness

3

4

▪ For an input with size n, the worst-case running time is
for some constant k

▪ Problems that are solvable by polynomial-time algorithms as
being tractable, easy, or efficient

▪ Problems that require superpolynomial time as being
intractable, or hard, or inefficient

▪ Use total four colors s.t. the neighboring parts have different colors

5

▪ Finally proven (with the help of computers) by Kenneth Appel and
Wolfgang Haken in 1976
▪ Their algorithm runs in O(n2) time

▪ First major theorem proved by a computer

▪ Open problems remain...
▪ Linear time algorithms to find a solution

▪ Concise, human-checkable, mathematical proofs

6

▪ Given a planar graph G (e.g., a map), can we color
the vertices with k colors such that no adjacent
vertices have the same color?

▪ k = 1?

▪ k = 2?

▪ k = 3?

▪ k ≥ 4?

7

How hard is it when k = 3?
Can we know its level of difficulty before solving it?

8

9

▪ Definition: the answer is simply “yes” or “no” (or “1” or “0”)
▪ MST: Given a graph 𝐺 = 𝑉, 𝐸 and a bound 𝐾, is there a spanning tree with

a cost at most 𝐾?

▪ KNAPSACK: Given a knapsack of capacity 𝐶, a set of objects with weights and
values, and a target value 𝑉, is there a way to fill the knapsack with at least
𝑉 value?

10

▪ Definition: each feasible solution has an associated value, and we wish
to find a feasible solution with the best value (maximum or minimum)
▪ MST-OPT: Given a graph 𝐺 = 𝑉, 𝐸 , find the minimum spanning tree of 𝐺

▪ KNAPSACK-OPT: Given a knapsack of capacity 𝐶 and a set of objects with
weights and values, fill the knapsack so as to maximize the total value

11

12

How to convert an optimization problem to
a related decision problem?

Imposing a (lower or upper) bound on
the value to be optimized

▪ Every optimization problem has a decision version that is no harder
than the optimization problem.

▪ Using Aopt to solve Adec

▪ check if the optimal value ≤ k, constant overhead

▪ Using Adec to solve Aopt

▪ apply binary search on the value range, logarithmic overhead

13

Aopt: given a graph, find the
length of the shortest path

Adec: given a graph, determine
whether there is a path ≤ k

Textbook Chapter 34 – NP-Completeness

14

▪ Algorithmic design methods to solve problems efficiently (polynomial
time)
▪ Divide and conquer

▪ Dynamic programming

▪ Greedy

▪ “Hard” problems without known efficient algorithms
▪ Hamilton, knapsack, etc.

15

▪ Can we decide whether a problem is “too hard to solve” before investing our
time in solving it?

▪ Idea: decide which complexity classes the problem belongs to via reduction
▪ 已知問題A很難。若能證明問題B至少跟A一樣難，那麼問題B也很難。

16

▪ Algorithm design
▪ Design algorithms to solve

computational problems

▪ Mostly concerned with
upper bounds on resources

▪ Complexity theory
▪ Classify problems based on

their difficulty and identify
relationships between classes

▪ Mostly concerned with lower
bounds on resources

17

upper bound

Problem
Problem B

Problem A

Problem B is no easier than A

lower bound

▪ A complexity class is “a set of problems of related resource-
based complexity”
▪ Resource = time, memory, communication, ...

▪ Focus: decision problems and the resource of time

18

19

▪ The class P consists of all the problems that can be solved in
polynomial time.
▪ Sorting

▪ Exact string matching

▪ Primes

▪ …

▪ Polynomial time algorithm
▪ For inputs of size n, their worst-case running time is for some constant k

20

▪ NP consists of the problems that can be solved in non-
deterministically polynomial time.

▪ NP consists of the problems that can be “verified” in
polynomial time.

▪ P consists of the problems that can be solved in
(deterministically) polynomial time.

Non-Deterministic

21

initial
configuration

22

initial
configuration

23

This is not a randomized algorithm.

Non-Deterministic-Bubble-Sort(n)

for i = 1 to n

for j = 1 to n – 1

if A[j] < A[i+1] then

Either exchange A[j] and A[i+1] or do nothing

▪ Input: a graph G

▪ Output: a smallest vertex subset of G that covers all edges of G.

▪ Known to be NP-complete

24

25

26

▪ Input: a Graph G and an integer k.

▪ Output: Does G contain a vertex cover of size no more than k?

▪ Original problem → optimization problem
▪ 原先的路燈問題是要算出放路燈的方法

▪ Yes/No → decision problem
▪ 問k盞路燈夠不夠照亮整個公園

27

Non-Deterministic-Vertex-Cover(G, k)

set S = {}

for each vertex x of G

non-deterministically insert x to S

if |S| > k

output no

if S is not a vertex cover

output no

output yes

28

▪ If the correct answer is yes, then there is a computation path of the
algorithm that leads to yes.
▪ 至少有一條路是對的

▪ If the correct answer is no, then all computation paths of the algorithm
lead to no.
▪ 每一條路都是對的

Non-Deterministic-Vertex-Cover(G, k)

set S = {}

for each vertex x of G

non-deterministically insert x to S

if |S| > k

output no

if S is not a vertex cover

output no

output yes

29

initial
configuration

correct answer

30

polynomial

“solved” in non-deterministic polynomial time
= “verified” in polynomial time

▪ P ⊆ NP
▪ A problem solvable in polynomial time is verifiable in

polynomial time as well

▪ Any NP problem can be solved in (deterministically)
exponential time?
▪ Yes

▪ Any NP problem can be solved in (deterministically)
polynomial time?
▪ Open problem

31

Why?

▪ http://www.claymath.org/millennium-problems

32

▪ Yang–Mills and Mass Gap

▪ Riemann Hypothesis

▪ P vs NP Problem

▪ Navier–Stokes Equation

▪ Hodge Conjecture

▪ Poincaré Conjecture (solved by Grigori Perelman)

▪ Birch and Swinnerton-Dyer Conjecture

33

Grigori Perelman
Fields Medal (2006), declined
Millennium Prize (2010), declined

▪ Aug 2010 claimed a proof of P is
not equal to NP.

34

▪ problems that are
verifiable → solvable

▪ public-key cryptography
will be broken

35

Widespread belief in P ≠ NP

“If P = NP, then the world would be a profoundly different place than we usually
assume it to be. There would be no special value in “creative leaps,” no fundamental
gap between solving a problem and recognizing the solution once it's found. Everyone
who could appreciate a symphony would be Mozart; everyone who could follow a
step-by-step argument would be Gauss...” – Scott Aaronson, MIT

36

Travelling Salesman (2012)
A movie about P = NP
Best Feature Film in Silicon Valley Film Festival 2012

37

38

▪ A problem is NP-hard if it is as least as hard as all NP problems.

▪ In other words, a problem X is NP-hard if the following condition holds:
▪ If X can be solved in (deterministic) polynomial time, then all NP problems

can be solved in (deterministic) polynomial time.

39

▪ A problem is NP-complete if
▪ it is NP-hard and

▪ it is in NP.

▪ In other words, an NP-complete problem is one of the “hardest”
problems in the class NP.

▪ In other words, an NP-complete problem is a hardness representative
problem of the class NP.

▪ Hardest in NP → solving one NPC can solve all NP problems (“complete”)

▪ It is wildly believed that NPC problems have no polynomial-time solution
→ good reference point to judge whether a problem is in P
▪ We can decide whether a problem is “too hard to solve” by showing it is as

hard as an NPC problem

▪ We then focus on designing approximate algorithms or solving special cases

▪ Class P: class of problems that can be solved in

▪ Class NP: class of problems that can be verified in

▪ Class NP-hard: class of problems that are “at least as hard as all NP problems”

▪ Class NP-complete: class of problems in both NP and NP-hard

40P ≠ NP P = NP

41

undecidable: no algorithm;
e.g. halting problem
https://www.youtube.com/watch?v=wGLQiHXHWNk

42

Course Website: http://ada.miulab.tw

Email: ada-ta@csie.ntu.edu.tw

43

Important announcement will be sent to @ntu.edu.tw mailbox
& post to the course website

http://ada.miulab.tw/
mailto:ada-ta@csie.ntu.edu.tw

