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▪Decision Problems v.s. Optimization Problems

▪Complexity Classes
▪ P v.s. NP

▪NP, NP-Complete, NP-Hard
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▪ Design Strategy
▪ Divide-and-Conquer

▪ Dynamic Programming

▪ Greedy Algorithms

▪ Graph Algorithms

▪ Analysis
▪ Amortized Analysis

▪ NP-Completeness
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▪ For an input with size n, the worst-case running time is                  
for some constant k

▪ Problems that are solvable by polynomial-time algorithms as 
being tractable, easy, or efficient

▪ Problems that require superpolynomial time as being 
intractable, or hard, or inefficient



▪ Use total four colors s.t. the neighboring parts have different colors
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▪ Finally proven (with the help of computers) by Kenneth Appel and 
Wolfgang Haken in 1976
▪ Their algorithm runs in O(n2) time

▪ First major theorem proved by a computer

▪ Open problems remain...
▪ Linear time algorithms to find a solution

▪ Concise, human-checkable, mathematical proofs
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▪ Given a planar graph G (e.g., a map), can we color 
the vertices with k colors such that no adjacent 
vertices have the same color?

▪ k = 1?

▪ k = 2?

▪ k = 3?

▪ k ≥ 4?
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How hard is it when k = 3?
Can we know its level of difficulty before solving it?
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▪ Definition: the answer is simply “yes” or “no” (or “1” or “0”)
▪ MST: Given a graph 𝐺 = 𝑉, 𝐸 and a bound 𝐾, is there a spanning tree with 

a cost at most 𝐾?

▪ KNAPSACK: Given a knapsack of capacity 𝐶, a set of objects with weights and 
values, and a target value 𝑉, is there a way to fill the knapsack with at least 
𝑉 value?
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▪ Definition: each feasible solution has an associated value, and we wish 
to find a feasible solution with the best value (maximum or minimum)
▪ MST-OPT: Given a graph 𝐺 = 𝑉, 𝐸 , find the minimum spanning tree of 𝐺

▪ KNAPSACK-OPT: Given a knapsack of capacity 𝐶 and a set of objects with 
weights and values, fill the knapsack so as to maximize the total value
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How to convert an optimization problem to 
a related decision problem?

Imposing a (lower or upper) bound on 
the value to be optimized



▪ Every optimization problem has a decision version that is no harder 
than the optimization problem.

▪ Using Aopt to solve Adec

▪ check if the optimal value ≤ k, constant overhead

▪ Using Adec to solve Aopt

▪ apply binary search on the value range, logarithmic overhead
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Aopt: given a graph, find the 
length of the shortest path

Adec: given a graph, determine 
whether there is a path ≤ k



Textbook Chapter 34 – NP-Completeness 
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▪ Algorithmic design methods to solve problems efficiently (polynomial 
time)
▪ Divide and conquer

▪ Dynamic programming

▪ Greedy

▪ “Hard” problems without known efficient algorithms 
▪ Hamilton, knapsack, etc.
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▪ Can we decide whether a problem is “too hard to solve” before investing our 
time in solving it?

▪ Idea: decide which complexity classes the problem belongs to via reduction
▪ 已知問題A很難。若能證明問題B至少跟A一樣難，那麼問題B也很難。
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▪ Algorithm design
▪ Design algorithms to solve 

computational problems

▪ Mostly concerned with 
upper bounds on resources

▪ Complexity theory
▪ Classify problems based on 

their difficulty and identify 
relationships between classes

▪ Mostly concerned with lower 
bounds on resources
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upper bound

Problem
Problem B

Problem A

Problem B is no easier than A

lower bound



▪ A complexity class is “a set of problems of related resource-
based complexity”
▪ Resource = time, memory, communication, ...

▪ Focus: decision problems and the resource of time
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▪ The class P consists of all the problems that can be solved in 
polynomial time.
▪ Sorting

▪ Exact string matching

▪ Primes

▪ …

▪ Polynomial time algorithm
▪ For inputs of size n, their worst-case running time is               for some constant k
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▪ NP consists of the problems that can be solved in non-
deterministically polynomial time.

▪ NP consists of the problems that can be “verified” in 
polynomial time.

▪ P consists of the problems that can be solved in 
(deterministically) polynomial time.

Non-Deterministic
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initial 
configuration
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initial 
configuration
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This is not a randomized algorithm.

Non-Deterministic-Bubble-Sort(n)

for i = 1 to n

for j = 1 to n – 1

if A[j] < A[i+1] then

Either exchange A[j] and A[i+1] or do nothing



▪ Input: a graph G

▪ Output: a smallest vertex subset of G that covers all edges of G.

▪ Known to be NP-complete 
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▪ Input: a Graph G and an integer k.

▪ Output: Does G contain a vertex cover of size no more than k?

▪ Original problem → optimization problem
▪ 原先的路燈問題是要算出放路燈的方法

▪ Yes/No → decision problem
▪ 問k盞路燈夠不夠照亮整個公園
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Non-Deterministic-Vertex-Cover(G, k)

set S = {}

for each vertex x of G

non-deterministically insert x to S

if |S| > k

output no

if S is not a vertex cover

output no

output yes
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▪ If the correct answer is yes, then there is a computation path of the 
algorithm that leads to yes.
▪ 至少有一條路是對的

▪ If the correct answer is no, then all computation paths of the algorithm 
lead to no.
▪ 每一條路都是對的

Non-Deterministic-Vertex-Cover(G, k)

set S = {}

for each vertex x of G

non-deterministically insert x to S

if |S| > k

output no

if S is not a vertex cover

output no

output yes
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initial 
configuration

correct answer
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polynomial 

“solved” in non-deterministic polynomial time
= “verified” in polynomial time



▪ P ⊆ NP
▪ A problem solvable in polynomial time is verifiable in 

polynomial time as well

▪ Any NP problem can be solved in (deterministically) 
exponential time?
▪ Yes

▪ Any NP problem can be solved in (deterministically) 
polynomial time?
▪ Open problem
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Why?



▪ http://www.claymath.org/millennium-problems
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▪ Yang–Mills and Mass Gap

▪ Riemann Hypothesis

▪ P vs NP Problem

▪ Navier–Stokes Equation

▪ Hodge Conjecture

▪ Poincaré Conjecture (solved by Grigori Perelman)

▪ Birch and Swinnerton-Dyer Conjecture
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Grigori Perelman
Fields Medal (2006), declined
Millennium Prize (2010), declined



▪ Aug 2010 claimed a proof of P is 
not equal to NP.
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▪ problems that are 
verifiable → solvable

▪ public-key cryptography 
will be broken
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Widespread belief in P ≠ NP

“If P = NP, then the world would be a profoundly different place than we usually
assume it to be. There would be no special value in “creative leaps,” no fundamental
gap between solving a problem and recognizing the solution once it's found. Everyone
who could appreciate a symphony would be Mozart; everyone who could follow a
step-by-step argument would be Gauss...” – Scott Aaronson, MIT
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Travelling Salesman (2012)
A movie about P = NP
Best Feature Film in Silicon Valley Film Festival 2012



37



38

▪ A problem is NP-hard if it is as least as hard as all NP problems.

▪ In other words, a problem X is NP-hard if the following condition holds:
▪ If X can be solved in (deterministic) polynomial time, then all NP problems

can be solved in (deterministic) polynomial time.
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▪ A problem is NP-complete if
▪ it is NP-hard and

▪ it is in NP.

▪ In other words, an NP-complete problem is one of the “hardest” 
problems in the class NP.

▪ In other words, an NP-complete problem is a hardness representative 
problem of the class NP.

▪ Hardest in NP → solving one NPC can solve all NP problems (“complete”)

▪ It is wildly believed that NPC problems have no polynomial-time solution 
→ good reference point to judge whether a problem is in P
▪ We can decide whether a problem is “too hard to solve” by showing it is as 

hard as an NPC problem

▪ We then focus on designing approximate algorithms or solving special cases



▪ Class P: class of problems that can be solved in

▪ Class NP: class of problems that can be verified in

▪ Class NP-hard: class of problems that are “at least as hard as all NP problems”

▪ Class NP-complete: class of problems in both NP and NP-hard

40P ≠ NP P = NP
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undecidable: no algorithm; 
e.g. halting problem
https://www.youtube.com/watch?v=wGLQiHXHWNk
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Course Website: http://ada.miulab.tw

Email: ada-ta@csie.ntu.edu.tw
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Important announcement will be sent to @ntu.edu.tw mailbox 
& post to the course website

http://ada.miulab.tw/
mailto:ada-ta@csie.ntu.edu.tw

