
Slides credited from Hsueh-I Lu & Hsu-Chun Hsiao

▪ Homework 3 released
▪ Due on 12/13 (Thur) 14:20 (one week only)

▪ Mini-HW 9 released
▪ Due on 12/13 (Thur) 14:20

▪ Homework 4 released
▪ Due on 1/3 (Thur) 14:20 (four weeks later)

2

Frequently check the website for the updated information!

3

▪ Single-Source Shortest Paths
▪ Bellman-Ford Algorithm

▪ Lawler Algorithm (SSSP in DAG)

▪ Dijkstra Algorithm

4

Textbook Chapter 24 – Single-Source Shortest Paths

5

▪ Input: a weighted, directed graph 𝐺 = 𝑉, 𝐸
▪ Weights can be arbitrary numbers, not necessarily distance

▪ Weight function needs not satisfy triangle inequality

▪ Output: a minimal-cost path from 𝑠 to 𝑡 s.t. 𝛿 𝑠, 𝑡 is the
minimum weight from 𝑠 to 𝑡

▪ Problem Variants
▪ Single-source shortest-path problem
▪ Single-destination shortest-path problem
▪ Single-pair shortest-path problem
▪ All-pair shortest path problem

6

▪ Can a shortest path contain a negative-weight edge?

▪ Can a shortest path contain a negative-weight cycle?

▪ Can a shortest path contain a cycle?

7

Yes.

Doesn’t make sense.

No.

▪ Input: a weighted, directed graph 𝐺 = 𝑉, 𝐸 and a source
vertex 𝑠

▪ Output: a minimal-cost path from 𝑠 to 𝑡, where 𝑡 ∈ 𝑉

8

▪ Let 𝐺 = 𝑉, 𝐸 be a weighted, directed graph with no
negative-weight cycles reachable from 𝑠

▪ A shortest path tree 𝐺′ = 𝑉′, 𝐸′ of 𝑠 is a subgraph of 𝐺 s.t.
▪ 𝑉′ is the set of vertices reachable from 𝑠 in 𝐺

▪ 𝐺′ forms a rooted tree with root 𝑠

▪ For all 𝑣 ∈ 𝑉′, the unique simple path from 𝑠 to 𝑣 in 𝐺′ is a
shortest path from 𝑠 to 𝑣 in 𝐺

9

▪ Input: a weighted, directed graph 𝐺 = 𝑉, 𝐸 and a vertex 𝑠

▪ Output: a tree 𝑇 rooted at 𝑠 s.t. the path from 𝑠 to 𝑢 of 𝑇 is
a shortest path from 𝑠 to 𝑢 in 𝐺

10

▪ The shortest path tree problem is equivalent to finding the
minimal cost 𝛿 𝑠, 𝑢 from 𝑠 to each node 𝑢 in 𝐺
▪ The minimal cost from 𝑠 to 𝑢 in 𝐺 is the length of any

shortest path from 𝑠 to 𝑢 in 𝐺

11

“equivalence”: a solution to either problem can be obtained
from a solution to the other problem in linear time

Shortest Path Tree
Problem

Single-Source Shortest
Path Problem

=

Textbook Chapter 24.1 – The Bellman-Ford algorithm

12

Richard Bellman, 1920~1984

▪ Norbert Wiener Prize in Applied
Mathematics, 1970

▪ Dickson Prize, Carnegie-Mellon
University, 1970

▪ John von Neumann Theory
Award, 1976.

▪ IEEE Medal of Honor, 1979,

▪ Fellow of the American Academy
of Arts and Sciences, 1975.

▪ Membership in the National
Academy of Engineering, 1977

Lester R. Ford, Jr. 1927~2017

▪ Proved the algorithm before
Bellman

▪ An important contributor to the
theory of network flow.

13

▪ Idea: estimate the value of 𝑑 𝑢 to approximate 𝛿 𝑠, 𝑢

▪ Initialization
▪ Let 𝑑 𝑢 = ∞ for 𝑢 ∈ 𝐺

▪ Let 𝑑 𝑠 = 0

▪ Repeat the following step for sufficient number of phases
▪ For each edge 𝑢, 𝑣 ∈ 𝐸, relax edge 𝑢, 𝑣

▪ Relaxing: If 𝑑 𝑣 > 𝑑 𝑢 + 𝑤 𝑢, 𝑣 , let 𝑑 𝑣 = 𝑑 𝑢 + 𝑤 𝑢, 𝑣

14

→ improve the estimation of 𝑑 𝑢

15

0

∞ ∞
6

3

2 1
4

2 7

3

6

5
∞ ∞5

16

0

∞ ∞
6

3

2 1
4

2 7

3

6

5
∞5

6

17

0

∞
6

3

2 1
4

2 7

3

6

5
∞5

63

▪ Observation: let 𝑃 be a shortest path from 𝑠 to 𝑟
▪ For any vertex 𝑢 in 𝑃, the subpath of 𝑃 from 𝑠 to 𝑢 has to be a

shortest path from 𝑠 to 𝑢→ optimal substructure

▪ For any edge 𝑢, 𝑣 in 𝑃, if 𝑑 𝑢 = 𝛿 𝑠, 𝑢 , then 𝑑 𝑣 = 𝛿 𝑠, 𝑣 also
holds after relaxing edge 𝑢, 𝑣

▪ If 𝐺 contains no negative cycles, then each node 𝑢 has a shortest
path from 𝑠 to 𝑢 that has at most n – 1 edges

▪ From observation, after the first 𝑖 phases of improvement via
relaxation, the estimation of 𝑑 𝑢 for the first 𝑖 + 1 nodes 𝑢 in
the path is precise (= 𝛿 𝑠, 𝑢)

18

s
ru

→ 𝑛 − 1 phases

19

s u

▪ Time complexity:

20

BELLMAN-FORD(G, w, s)

INITIALIZATION(G, s)

for i = 1 to |G.V| - 1

for (u, v) in G.E

RELAX(u, v, w)

INITIALIZATION(G, s)

for v in G.V

v.d = ∞

v.π = NIL

s.d = 0

RELAX(u, v, w)

if v.d > u.d + w(u, v)

// DECREASE-KEY

v.d = u.d + w(u, v)

v.π = u

How to do if there is a
negative cycle in the graph?

▪ Q: How do we know 𝐺 has negative cycles?

▪ A: Using another phase of improvement via relaxation
▪ Run another phase of improving the estimation of 𝑑 𝑢 for

each vertex 𝑢 ∈ 𝑉 via relaxing all edges 𝐸

▪ If in the 𝑛-th phase, there are still some 𝑑 𝑢 being modified,
we know that 𝐺 has negative cycles

21

▪ Proof by contradiction
▪ Let 𝐶 be a negative cycle of 𝑘 nodes 𝑣1, 𝑣2, … , 𝑣𝑘 (𝑣𝑘+1 = 𝑣1)

▪ Assume 𝑑 𝑣𝑖 for all 1 ≤ 𝑖 ≤ 𝑘 are not changed in a phase of
improvement, then for 1 ≤ 𝑖 ≤ 𝑘

▪ Summing all 𝑘 inequalities, the sum of edge weights of 𝐶 is
nonnegative

22

If there exists a negative cycle in 𝐺, in the 𝑛-th phase, there are still some
𝑑 𝑢 being modified.

negative

▪ Time complexity:

▪ Finding a shortest-path tree of 𝐺:

23

BELLMAN-FORD(G, w, s)

INITIALIZATION(G, s)

for i = 1 to |G.V| - 1

for (u, v) in G.E

RELAX(u, v, w)

for (u, v) in G.E

if v.d > u.d + w(u, v)

return FALSE

return TRUE

INITIALIZATION(G, s)

for v in G.V

v.d = ∞

v.π = NIL

s.d = 0

RELAX(u, v, w)

if v.d > u.d + w(u, v)

// DECREASE-KEY

v.d = u.d + w(u, v)

v.π = u

negative cycle detection

Textbook Chapter 24.2 – Single-source shortest paths in directed
acyclic graphs

24

▪ Input: a weighted, directed, and acyclic graph 𝐺 = 𝑉, 𝐸
and a source vertex 𝑠

▪ Output: a shortest-path distance from 𝑠 to 𝑡, where 𝑡 ∈ 𝑉

25
No negative cycle!

▪ Idea: one phase relaxation

▪ Perform a topological sort in linear time on the input DAG

▪ For 𝑖 = 1 to 𝑛
▪ Let 𝑣𝑖 be the 𝑖-th node in the above order

▪ Relax each outgoing edge (𝑣𝑖, 𝑢) from 𝑣𝑖

Time complexity:

26

s

▪ Assume this is a shortest path from 𝑠 to 𝑢

▪ If we follow the order from topological sort to relax the
vertices’ edges, in this shortest path, the left edge must be
relaxed before the right edge

▪ One phase of improvement is enough

27

s u

Textbook Chapter 24.3 – Dijkstra’s algorithm

28

▪ Input: a non-negative weighted, directed, graph 𝐺 = 𝑉, 𝐸
and a source vertex 𝑠

▪ Output: a shortest-path distance from 𝑠 to 𝑡, where 𝑡 ∈ 𝑉

29
No negative cycle!

▪ Idea: BFS finds shortest paths on unweighted graph by
expanding the search frontier

▪ Initialization

▪ Loops for 𝑛 iterations, where each iteration
▪ relax outgoing edges of an unprocessed node 𝑢 with minimal 𝑑 𝑢

▪ marks 𝑢 as processed

30

31

0

∞ ∞

∞ ∞

10

2

3

1

4 6
9

7

2

5

32

0

10 ∞

5 ∞

10

2

3

1

4 6
9

7

2

5

33

0

8 14

5 7

10

2

3

1

4 6
9

7

2

5

34

0

8 13

5 7

10

2

3

1

4 6
9

7

2

5

35

0

8 9

5 7

10

2

3

1

4 6
9

7

2

5

36

0

8 9

5 7

10

2

3

1

4 6
9

7

2

5

37

0

8 9

5 7

10

2

3

1

4 6
9

7

2

5

▪ Prove by contradiction
▪ Assume 𝑢 is the first vertex for

being processed (minimal distance)

▪ Let a shortest path 𝑃 from 𝑠 to 𝑢,

▪ 𝑥 is the last vertex in 𝑃 from 𝑆

▪ 𝑦 is the first vertex in 𝑃 not from 𝑆

▪ 𝑑 𝑦 = 𝛿 𝑠, 𝑦 because 𝑥, 𝑦 is
relaxed when putting 𝑥 into 𝑆

▪ 𝑦 should be processed before 𝑢,
contradiction. 38

s

x y

u

processed
nodes 𝑆

The vertex selected by Dijkstra’s algorithm into the processed set must
precise estimation of its shortest path distance.

The first node

a shortest path
from 𝑠 to 𝑢

▪ Min-priority queue
▪ INSERT:

▪ EXTRACT-MIN:

▪ DECREASE-KEY:

▪ Total complexity:

39

DIJKSTRA(G, w, s)

INITIALIZATION(G, s)

S = empty

Q = G.v // INSERT

while Q ≠ empty

u = EXTRACT-MIN(Q)

S = S∪{u}
for v in G.adj[u]

RELAX(u, v, w)

INITIALIZATION(G, s)

for v in G.V

v.d = ∞

v.π = NIL

s.d = 0

RELAX(u, v, w)

if v.d > u.d + w(u, v)

// DECREASE-KEY

v.d = u.d + w(u, v)

v.π = u

▪ Fibonacci heap (Textbook Ch. 19)
▪ BUILD-MIN-HEAP:

▪ EXTRACT-MIN: (amortized)

▪ DECREASE-KEY: (amortized)

▪ Total complexity:

40

DIJKSTRA(G, w, s)

INITIALIZATION(G, s)

S = empty

Q = G.v // INSERT

while Q ≠ empty

u = EXTRACT-MIN(Q)

S = S∪{u}
for v in G.adj[u]

RELAX(u, v, w)

INITIALIZATION(G, s)

for v in G.V

v.d = ∞

v.π = NIL

s.d = 0

RELAX(u, v, w)

if v.d > u.d + w(u, v)

// DECREASE-KEY

v.d = u.d + w(u, v)

v.π = u

▪ Single-Source Shortest Paths
▪ Bellman-Ford Algorithm (general graph and weights)

▪ and detecting negative cycles

▪ Lawler Algorithm (acyclic graph)

▪

▪ Dijkstra Algorithm (non-negative weights)

▪ with Fibonacci heap

41

Course Website: http://ada.miulab.tw

Email: ada-ta@csie.ntu.edu.tw

42

Important announcement will be sent to @ntu.edu.tw mailbox
& post to the course website

http://ada.miulab.tw/
mailto:ada-ta@csie.ntu.edu.tw

