

Algorithm Design and Analysis YUN-NUNG (VIVIAN) CHEN HTTP://ADA.MIULAB.TW

Slides credited from Hsueh-I Lu & Hsu-Chun Hsiao

Announcement

- Homework 3 released
 - Due on 12/13 (Thur) 14:20 (one week only)
- Mini-HW 9 released
 - Due on 12/13 (Thur) 14:20
- Homework 4 released
 - Due on 1/3 (Thur) 14:20 (four weeks later)

Frequently check the website for the updated information!

Mini-HW 9

Following is the implementation of a queue using 2 stacks. (assuming that the capacity of both stacks are unlimited)

```
enQueue(Q, x) {
   stack1.push(x);
}
deQueue(Q) {
   if ( stack2.empty() ) {
     while ( !stack1.empty() ) {
        stack2.push( stack1.top() );
        stack1.pop();
     }
   ans = stack2.top();
   stack2.pop();
   return ans;
}
```

Please answer the following questions:

- 1. What is the <u>exact cost</u> of a single **enQueue(Q, x)** operation ? (10%)
- 2. What is the exact cost of a single deQueue(Q) operation ? (10%)
- 3. What is the <u>amortized cost</u> of Q, considering *a sequence of n operations* ? Please choose one of the methods mentioned in class (aggregate/accounting/potential) to show how you derive the answer. (80%)

Mine

Outline

- Single-Source Shortest Paths
 - Bellman-Ford Algorithm
 - Lawler Algorithm (SSSP in DAG)
 - Dijkstra Algorithm

Single-Source Shortest Paths

Textbook Chapter 24 – Single-Source Shortest Paths

Shortest Path Problem

- Input: a weighted, directed graph G = (V, E)
 - Weights can be arbitrary numbers, not necessarily distance
 - Weight function needs not satisfy triangle inequality
- Output: a minimal-cost path from s to t s.t. $\delta(s, t)$ is the minimum weight from s to t
- Problem Variants
 - Single-source shortest-path problem
 - Single-destination shortest-path problem
 - Single-pair shortest-path problem
 - All-pair shortest path problem

Cycles in Graph

- Can a shortest path contain a negative-weight edge?
 Yes.
- Can a shortest path contain a negative-weight cycle?
 Doesn't make sense.
- Can a shortest path contain a cycle?
 No.

Single-Source Shortest Path Problem

- Input: a weighted, directed graph G = (V, E) and a source vertex s
- Output: a minimal-cost path from s to t, where $t \in V$

Shortest Path Tree

- Let G = (V, E) be a weighted, directed graph with no negative-weight cycles reachable from s
- A shortest path tree G' = (V', E') of s is a subgraph of G s.t.
 - V' is the set of vertices reachable from s in G
 - G' forms a rooted tree with root s
 - For all $v \in V'$, the unique simple path from s to v in G' is a shortest path from s to v in G

Shortest Path Tree Problem

- Input: a weighted, directed graph G = (V, E) and a vertex s
- Output: a tree T rooted at s s.t. the path from s to u of T is a shortest path from s to u in G

Problem Equivalence

- The shortest path tree problem is equivalent to finding the minimal cost $\delta(s, u)$ from s to each node u in G
 - The minimal cost from s to u in G is the length of any shortest path from s to u in G

"equivalence": a solution to either problem can be obtained from a solution to the other problem in linear time

=

Shortest Path Tree Problem Single-Source Shortest Path Problem

Bellman-Ford Algorithm

Textbook Chapter 24.1 – The Bellman-Ford algorithm

Bellman and Ford

Richard Bellman, 1920~1984

- Norbert Wiener Prize in Applied Mathematics, 1970
- Dickson Prize, Carnegie-Mellon University, 1970
- John von Neumann Theory Award, 1976.
- IEEE Medal of Honor, 1979,
- Fellow of the American Academy of Arts and Sciences, 1975.
- Membership in the National Academy of Engineering, 1977

Lester R. Ford, Jr. 1927~2017

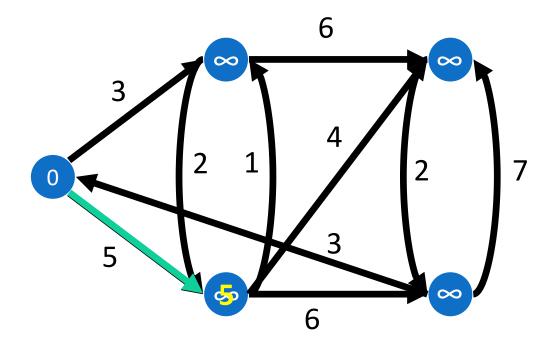
- Proved the algorithm before Bellman
- An important contributor to the theory of network flow.

Bellman-Ford Algorithm

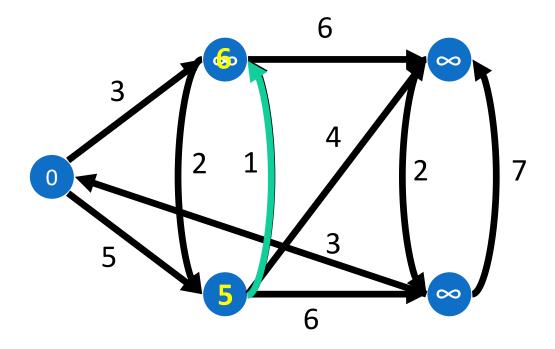
- Idea: estimate the value of d[u] to approximate $\delta(s, u)$
- Initialization
 - Let $d[u] = \infty$ for $u \in G$
 - Let d[s] = 0
- Repeat the following step for <u>sufficient number of phases</u>
 - For each edge $(u, v) \in E$, relax edge (u, v)
 - Relaxing: If d[v] > d[u] + w(u, v), let d[v] = d[u] + w(u, v)

 \rightarrow improve the estimation of d[u]

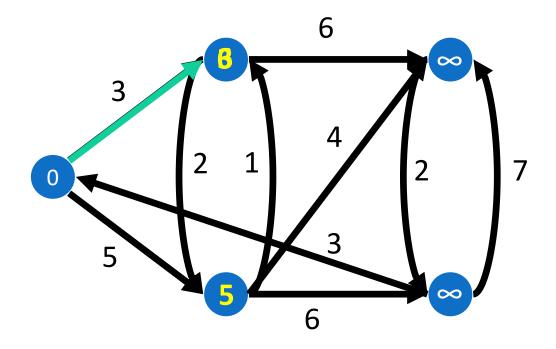
Bellman-Ford Algorithm Illustration



Bellman-Ford Algorithm Illustration



Bellman-Ford Algorithm Illustration



Bellman-Ford Algorithm Correctness

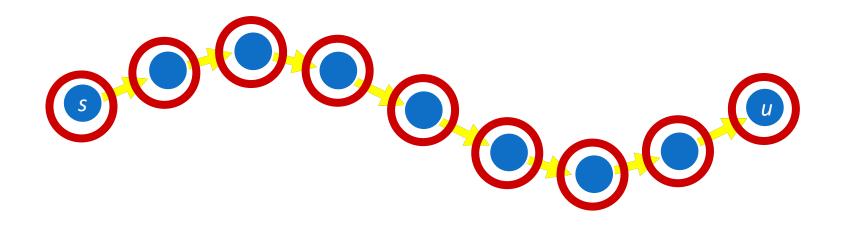
Observation: let P be a shortest path from s to r

- For any vertex u in P, the subpath of P from s to u has to be a shortest path from s to u → optimal substructure
- For any edge (u, v) in P, if $d[u] = \delta(s, u)$, then $d[v] = \delta(s, v)$ also holds after relaxing edge (u, v)

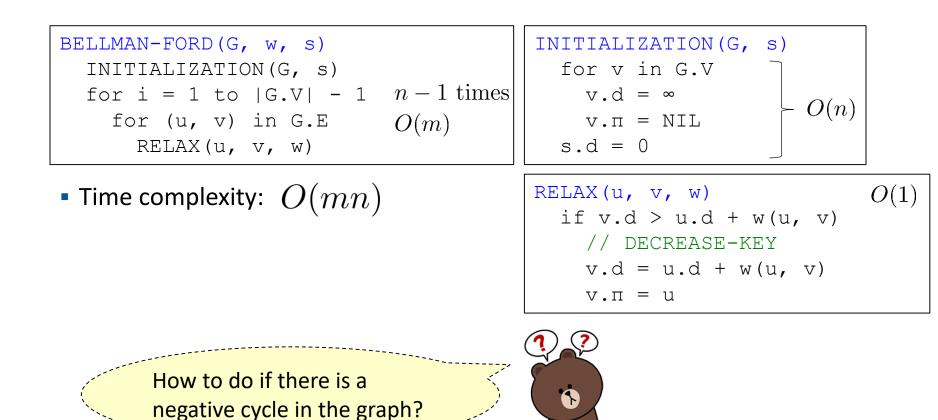
- If G contains no negative cycles, then each node u has a shortest path from s to u that has at most n − 1 edges
- From observation, after the first i phases of improvement via relaxation, the estimation of d[u] for the first i + 1 nodes u in the path is precise (= $\delta(s, u)$)

$$\rightarrow n-1$$
 phases

Bellman-Ford Algorithm Correctness

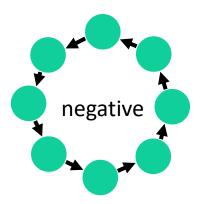


Bellman-Ford Time Complexity



Negative Cycle Detection

- Q: How do we know G has negative cycles?
- A: Using another phase of improvement via relaxation
 - Run another phase of improving the estimation of d[u] for each vertex $u \in V$ via relaxing all edges E
 - If in the n-th phase, there are still some d[u] being modified, we know that G has negative cycles



Negative Cycle Detection

If there exists a negative cycle in G, in the n-th phase, there are still some d[u] being modified.

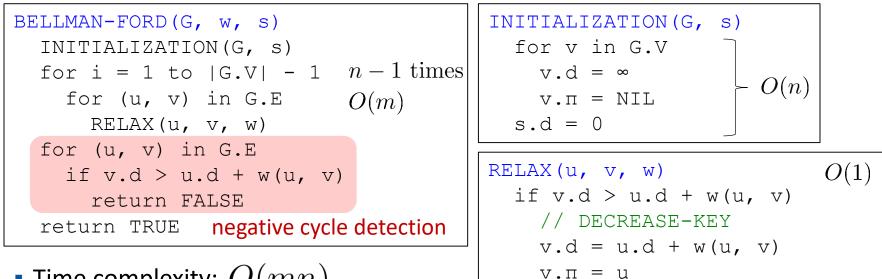
- Proof by contradiction
 - Let C be a negative cycle of k nodes v_1, v_2, \dots, v_k ($v_{k+1} = v_1$)
 - Assume $d[v_i]$ for all $1 \le i \le k$ are not changed in a phase of improvement, then for $1 \le i \le k$

 $d[v_{i+1}] \le d[v_i] + w(v_i, v_{i+1})$

 Summing all k inequalities, the sum of edge weights of C is nonnegative

$$\sum_{i=1}^{k} d[v_{i+1}] \le \sum_{i=1}^{k} d[v_i] + \sum_{i=1}^{k} w(v_i, v_{i+1}) \implies 0 \le \sum_{i=1}^{k} w(v_i, v_{i+1})$$

Bellman-Ford Algorithm



- Time complexity: O(mn)
- Finding a shortest-path tree of G: O(mn) + O(m+n) = O(mn)

Lawler Algorithm

Textbook Chapter 24.2 – Single-source shortest paths in directed acyclic graphs

Single-Source Shortest Path Problem

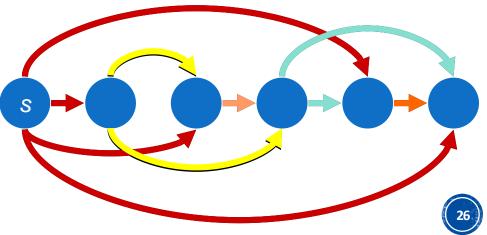
- Input: a weighted, directed, and acyclic graph G = (V, E)and a source vertex s
- Output: a shortest-path distance from s to t, where $t \in V$

No negative cycle!

Lawler Algorithm

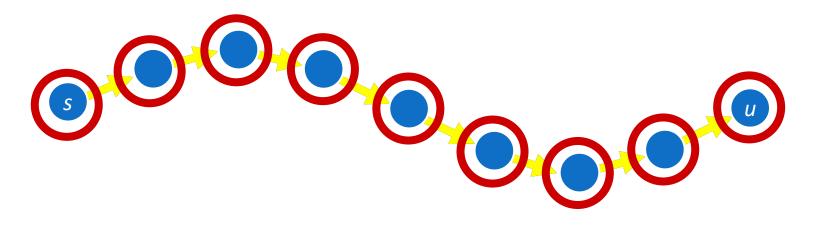
- Idea: one phase relaxation
- Perform a topological sort in linear time on the input DAG
- For i = 1 to n
 - Let v_i be the *i*-th node in the above order
 - Relax each outgoing edge (v_i, u) from v_i

Time complexity: O(m+n)



Lawler Algorithm Correctness

- Assume this is a shortest path from s to u
- If we follow the order from topological sort to relax the vertices' edges, in this shortest path, the left edge must be relaxed before the right edge
- One phase of improvement is enough

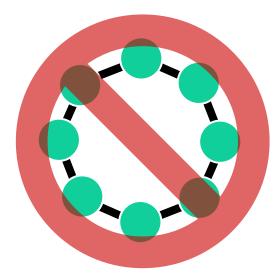


Dijkstra's Algorithm

Textbook Chapter 24.3 – Dijkstra's algorithm

Single-Source Shortest Path Problem

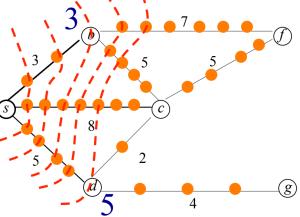
- Input: a non-negative weighted, directed, graph G = (V, E)and a source vertex s
- Output: a shortest-path distance from s to t, where $t \in V$



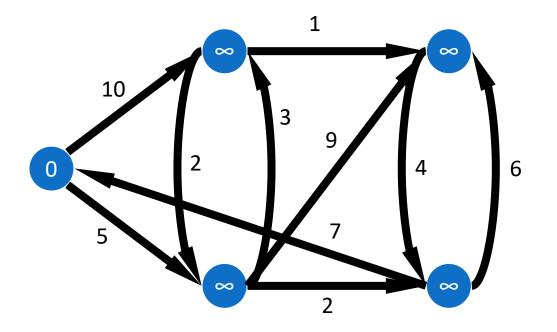
No negative cycle!

Dijkstra's Algorithm

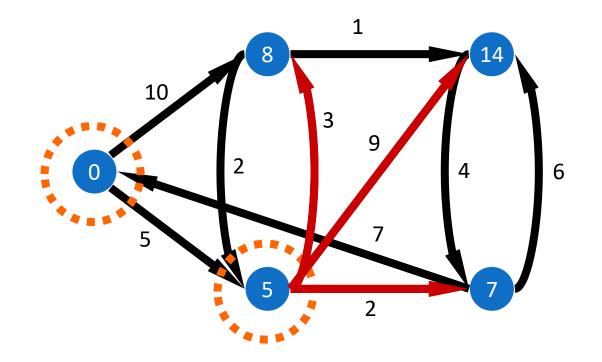
 Idea: BFS finds shortest paths on unweighted graph by expanding the search frontier

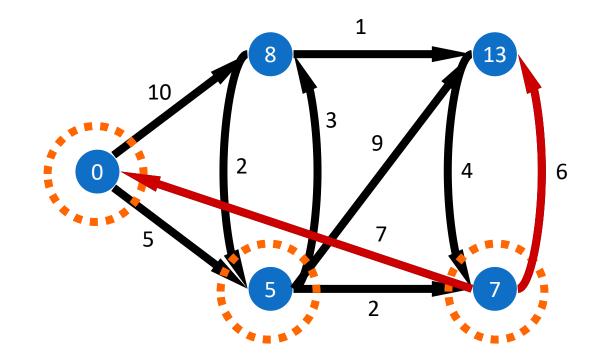


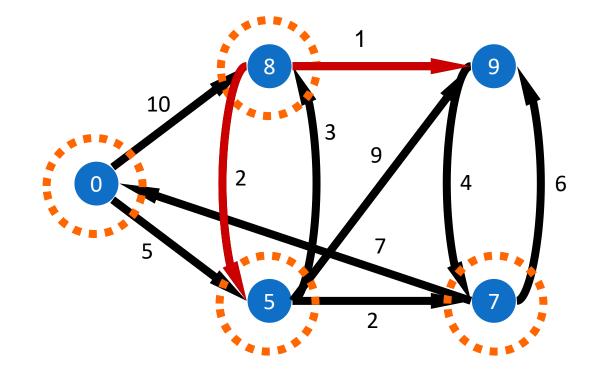
- Initialization
- Loops for n iterations, where each iteration
 - relax outgoing edges of an unprocessed node u with minimal d[u]
 - marks u as processed

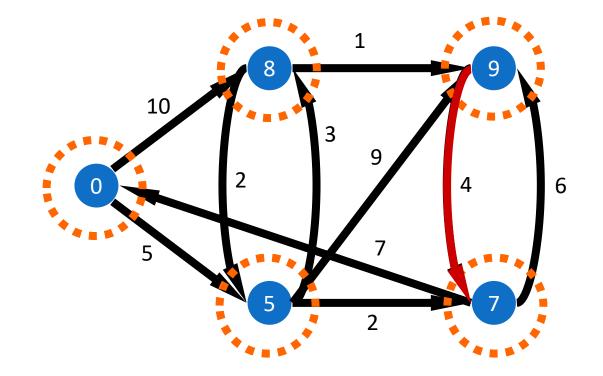


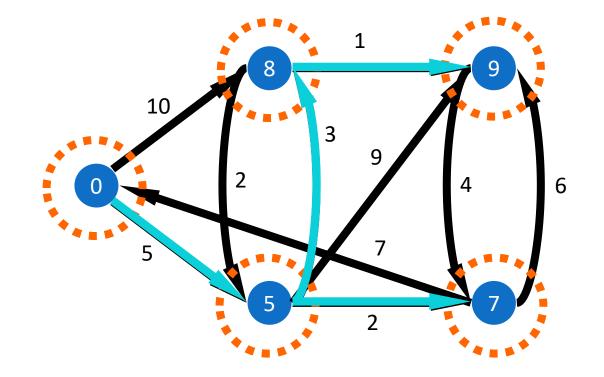












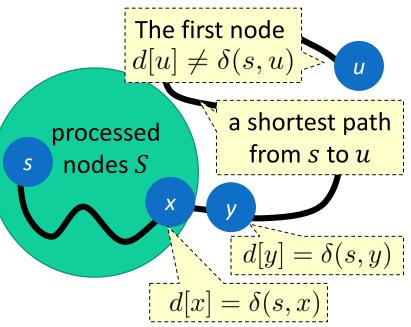
Dijkstra's Algorithm Correctness

The vertex selected by Dijkstra's algorithm into the processed set must precise estimation of its shortest path distance.

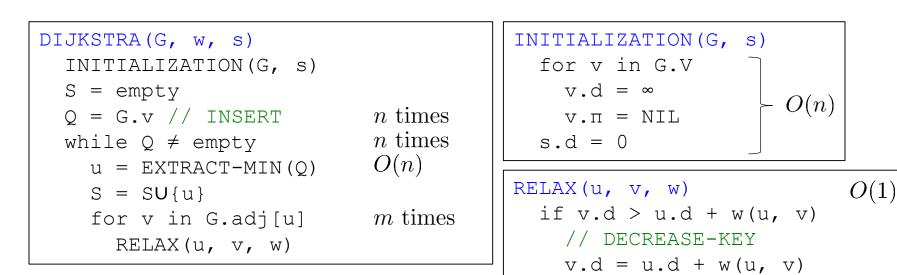
- Prove by contradiction
 - Assume u is the first vertex for being processed (minimal distance)
 - Let a shortest path P from s to u,
 - x is the last vertex in P from S
 - *y* is the first vertex in *P* not from *S*
 - $d[y] = \delta(s, y)$ because (x, y) is relaxed when putting x into S

$$d[u] > \delta(s, u) \ge \delta(s, y) = d[y]$$

y should be processed before u, contradiction.



Dijkstra's Time Complexity

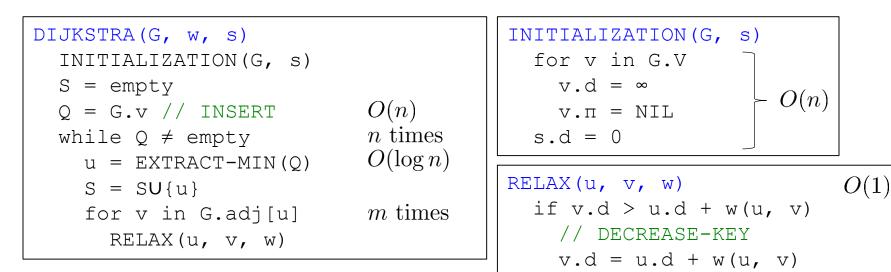


v.п = u

- Min-priority queue
 - INSERT: O(1)
 - EXTRACT-MIN: O(n)
 - DECREASE-KEY: O(1)

- Total complexity: $O(n^2+m)$

Dijkstra's Time Complexity



v.п = u

- Fibonacci heap (Textbook Ch. 19)
 - BUILD-MIN-HEAP: O(n)
 - EXTRACT-MIN: $O(\log n)$ (amortized)
 - DECREASE-KEY: O(1) (amortized)

• Total complexity: $O(m + n \log n)$

Concluding Remarks

Single-Source Shortest Paths

- Bellman-Ford Algorithm (general graph and weights)
 - O(mn) and detecting negative cycles
- Lawler Algorithm (acyclic graph)
 - O(m+n)
- Dijkstra Algorithm (non-negative weights)
 - $O(m + n \log n)$ with Fibonacci heap

Question?

Important announcement will be sent to @ntu.edu.tw mailbox & post to the course website

Course Website: http://ada.miulab.tw

Email: ada-ta@csie.ntu.edu.tw