


Announcement

= Homework 3 released
= Due on 12/13 (Thur) 14:20 (one week only)

= Mini-HW 9 released
= Due on 12/13 (Thur) 14:20

= Homework 4 released
= Due on 1/3 (Thur) 14:20 (four weeks later)

——————————————————————————————————————————————————————————————————————————————————————————————



Mini-HW 9

Following is the implementation of a queue using 2 stacks. (assuming that the capacity of both stacks are unlimited)

enQueue(Q, x) {
stackl.push(x);

}

deQueue(Q) {
if ( stack2.empty()) {
while (Istackl.empty() ) {
stack2.push( stack1.top() );
stackl.popl);

}

ans = stack2.top();
stack2.pop();
return ans;

Please answer the following questions:

1. What is the exact cost of a single enQueue(Q, x) operation ? (10%)

2. What is the exact cost of a single deQueue(Q) operation ? (10%)

3. What is the amortized cost of Q, considering a sequence of n operations ? Please choose one of the methods
mentioned in class (aggregate/accounting/potential) to show how you derive the answer. (80%)




Outline

= Single-Source Shortest Paths
= Bellman-Ford Algorithm
= Lawler Algorithm (SSSP in DAG)
= Dijkstra Algorithm



@ Single-Source
= Shortest Paths

Textbook Chapter 24 — Single-Source Shortest Paths



Shortest Path Problem

= Input: a weighted, directed graph G = (V,E)
= Weights can be arbitrary numbers, not necessarily distance
= Weight function needs not satisfy triangle inequality

= Qutput: a minimal-cost path from s to t s.t. (s, t) is the
minimum weight from s to t

= Problem Variants
= Single-source shortest-path problem
= Single-destination shortest-path problem
= Single-pair shortest-path problem
= All-pair shortest path problem



Cycles in Graph

= Can a shortest path contain a negative-weight edge?
Yes.
= Can a shortest path contain a negative-weight cycle?

Doesn’t make sense.

= Can a shortest path contain a cycle?
No.



Single-Source Shortest Path Problem

= Input: a weighted, directed graph G = (V, E) and a source
vertex s

= Qutput: a minimal-cost path from s to t, wheret € V



Shortest Path Tree

= Let G = (V,E) be a weighted, directed graph with no
negative-weight cycles reachable from s

= A shortest path tree G' = (V',E") of s is a subgraph of G s.t.
= /' is the set of vertices reachable from s in G

= ¢’ forms a rooted tree with root s

= For all v € V', the unique simple path fromstovin G'is a
shortest path fromstovin G



Shortest Path Tree Problem

= Input: a weighted, directed graph ¢ = (V,E) and a vertex s

= Qutput: a tree T rooted at s s.t. the path fromstou of T is
a shortest path fromstouin G



Problem Equivalence

= The shortest path tree problem is equivalent to finding the
minimal cost (s, u) from s to each node u in G

= The minimal cost from s to u in G is the length of any
shortest path fromstouin G

_______________________________________________________________________________________________________

“equivalence”: a solution to either problem can be obtained
from a solution to the other problem in linear time '

_______________________________________________________________________________________________________

Shortest Path Tree |l Single-Source Shortest
Problem Path Problem




7, Bellman-Foro
= Algorithm

Textbook Chapter 24.1 — The Bellman-Ford algorithm



Bellman and Ford

Richard Bellman, 19201984 Lester R. Ford, Jr. 1927~2017

= Norbert Wiener Prize in Applied = Proved the algorithm before
Mathematics, 1970 Bellman

* Dickson Prize, Carnegie-Mellon = An important contributor to the
University, 1970 theory of network flow.

= John von Neumann Theory
Award, 1976.

= |EEE Medal of Honor, 1979,

= Fellow of the American Academy
of Arts and Sciences, 1975.

= Membership in the National
Academy of Engineering, 1977




Bellman-Ford Algorithm

= |dea: estimate the value of d|u] to approximate §(s, u)

= |nitialization
= letd[u] = o foru € G

= letd[s] =0
= Repeat the following step for sufficient number of phases

= For each edge (u, v) € E, relax edge (u, v)
= Relaxing: If d[v] > d|u] + w(u, v), let d|v] = d|u] + w(u, v)




Bellman-Ford Algorithm lllustration




Bellman-Ford Algorithm lllustration




Bellman-Ford Algorithm lllustration




Bellman-Ford Algorithm Correctness

= Observation: let P be a shortest path from s tor

= For any vertex u in P, the subpath of P from s to u has to be a
shortest path from s to u > optimal substructure

= For any edge (u,v) in P, if d[u] = 6(s,u), then d[v] = 6(s, v) also
holds after relaxing edge (u, v)

= [f G contains no negative cycles, then each node u has a shortest
path from s to u that has at most n — 1 edges

= From observation, after the first i phases of improvement via
relaxation, the estimation of d[u] for the first i + 1 nodes u in
the path is precise (= 6 (s, u))

> 71— 1phases | ©



Bellman-Ford Algorithm Correctness
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Bellman-Ford Time Complexity

BELLMAN-FORD (G, w, s)

INITIALIZATION (G, s)

INITIALIZATION (G, s) for v in G.V
for 1 =1 to |G.V] - 1 mn—1 times v.d = e O
for (u, v) in G.E O(m) v.m = NIL ()
RELAX (u, v, Ww) s.d = 0
= Time complexity: O(mn) RELAX (u, v, W) O(1)

__________

| How todo if thereis a \
negative cycle in the graph? .~

if v.d > u.d + w(u, v)
// DECREASE-KEY
v.d u.d + w(u, v)
V.II u




Detection

Negative Cycle

= Q: How do we know G has negative cycles?

= A: Using another phase of improvement via relaxation

= Run another phase of improving the estimation of d[u] for
each vertex u € V via relaxing all edges E

= If in the n-th phase, there are still some d[u] being modified,
we know that G has negative cycles
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Negative Cycle

If there exists a negative cycle in G, in the n-th phase, there are still some
d|u] being modified.
= Proof by contradiction

= Let C be a negative cycle of k nodes vy, v, ..., Vg (V41 = Vq)

= Assume d[v;] forall 1 < i < k are not changed in a phase of
improvement, thenfor1 <i <k

dlvit1] < dlv;] + w(vi, viy1)

= Summing all k inequalities, the sum of edge weights of C is
nonnegative

U’La U’L—I—].

™
fy
S
+
| A\
g
fY
s
+
™
€
S
<
t
||M?r



Bellman-Ford Algorithm

BELLMAN-FORD (G, w, s)
INITIALIZATION (G, s)

for 1 =1 to |G.V] - 1 mn—1 times
for (u, v) in G.E ()On)
RELAX (u, v, w)
for (u, v) in G.E

if v.d > u.d + w(u, v)
return FALSE
return TRUE negative cycle detection

INITIALIZATION (G, s)
for v in G.V
v.d =

A Q
I
8

V.II =
s.d 0

= Time complexity: O(mn)

RELAX (u, v, w)
if v.d > u.d + w(u, v)
// DECREASE-KEY
v.d = u.d + w(u, v)
V.II = U

O(1)

= Finding a shortest-path tree of G: O(mn) -+ O(m + TL) — O(mn)

€




Lawler Algorithm

Textbook Chapter 24.2 — Single-source shortest paths in directed
acyclic graphs



Single-Source Shortest Path Problem

= Input: a weighted, directed, and acyclic graph ¢ = (V,E)
and a source vertex s

= Qutput: a shortest-path distance from s to t, wheret € IV

No negative cycle!



Lawler Algorithm

= |dea: one phase relaxation

= Perform a topological sort in linear time on the input DAG

=Fori=1ton
= Let v, be the i-th node in the above order

= Relax each outgoing edge (v;, u) from v,

Time complexity: O(m + n)
DN
0-0 0-0-0-0
_— b
©



Lawler Algorithm Correctness

= Assume this is a shortest path from s to u

= |f we follow the order from topological sort to relax the
vertices’ edges, in this shortest path, the left edge must be

relaxed before the right edge

= One phase of improvement is enough

ol
® @@@@@



Textbook Chapter 24.3 — Dijkstra’s algorithm



Single-Source Shortest Path Problem

= Input: a non-negative weighted, directed, graph G = (V/, E)
and a source vertex s

= Qutput: a shortest-path distance from s to t, wheret € IV

No negative cycle!



Dijkstra’s Algorithm

= |dea: BFS finds shortest paths on unweighted graph by
expanding the search frontier oY

= |nitialization -5 4

= Loops for n iterations, where each iteration
= relax outgoing edges of an unprocessed node u with minimal d[u]

= marks u as processed

©



Dijkstra’s Algorithm lllustration




Dijkstra’s Algorithm lllustration




Dijkstra’s Algorithm lllustration




Dijkstra’s Algorithm lllustration




Dijkstra’s Algorithm lllustration




Dijkstra’s Algorithm lllustration




Dijkstra’s Algorithm lllustration




Dijkstra’s Algorithm Correctness

The vertex selected by Dijkstra’s algorithm into the processed set must
precise estimation of its shortest path distance.

___________________________

= Prove by contradiction “The first node |

= Assume u is the first vertex for d[u] # 6(s,u) >
being processed (minimal distance)

*, a shortest path :
. fromstou |

= Let a shortest path P from s to u,
= x is the last vertex in P from S
= y is the first vertex in P not from S

~~~~~

= d[y] = 8(s,y) because (x,y) is L p e i
relaxed when putting x into S

_____________________

d[u] > d(s,u) = d(s,y) = dly] d[z] = (s, )|

___________________________

= v should be processed before u,

contradiction. @



Dijkstra’s Time Complexity

DIJKSTRA (G, w, s)
INITIALIZATION (G, s)
S = empty
Q = G.v // INSERT
while Q # empty
u = EXTRACT-MIN (Q)
S = SU{u}
for v in G.adj[u]
RELAX (u, v, w)

n times
n times

O(n)

m times

INITIALIZATION (G, s)
for v in G.V

= O

0 9 d
a3 Q
I

S.

= Min-priority queue
= INSERT: O(1)
= EXTRACT-MIN: O(n)
= DECREASE-KEY: Of1

)

= Total complexity: O(an + m)

RELAX (u, v, w) CKl)
if v.d > u.d + w(u, v)
// DECREASE-KEY
v.d = u.d + w(u, v)
V.II = U




Dijkstra’s Time Complexity

DIJKSTRA (G, w, s)
INITIALIZATION (G, s)

S = empty

Q = G.v // INSERT O(n)

while Q # empty n times
u = EXTRACT-MIN (Q) O(logn)
S = su{u}
for v in G.adj[u] m times

RELAX (u, v, w)

INITIALIZATION (G, s)
for v in G.V

= Fibonacci heap (Textbook Ch. 19)
= BUILD-MIN-HEAP: O(n)
= EXTRACT-MIN: O(logn) (amortized)
= DECREASE-KEY: O(1) (amortized)

= Total complexity: O(m + nlogn)

v.d = o
v.m = NIL O(n)
s.d = 0
RELAX (u, v, w) O(1)

if v.d > u.d + w(u, v)
// DECREASE-KEY
v.d = u.d + w(u, v)
V.II = U




Concluding Remarks

= Single-Source Shortest Paths
= Bellman-Ford Algorithm (general graph and weights)
. O(mn) and detecting negative cycles
= Lawler Algorithm (acyclic graph)
= O(m+n)
= Dijkstra Algorithm (non-negative weights)
. O(m + nlog n) with Fibonacci heap



Question?

Important announcement will be sent to @ntu.edu.tw mailbox
& post to the course website

Course Website:

Email:


http://ada.miulab.tw/
mailto:ada-ta@csie.ntu.edu.tw

