

O e

Outline

Amortized analysis

#1: Stack Operations
Aggregate method
Accounting method
Potential method

#2: Binary Counter
Aggregate method
Accounting method
Potential method

Algorithm Design & Analysis

Design Strategy
Divide-and-Conquer
Dynamic Programming
Greedy Algorithms
Graph Algorithms

Analysis
Amortized Analysis

Amortized Analysis

Textbook Chapter 17 — Amortized Analysis

Data-Structure Operations

= A data structure comes with operations that organize the
stored data

= Different operations may have different costs
= The same operation may have different costs

PUSH V

stack

Pop
MuLTIPOP

cost

Worst Case Time Complexity

Cost of stack operations

PUsSH(S, x) = O(1)
Popr(S) = O(1)

Muttipor(S, k) = O(min(|S], k))

O(n)

PUSH Pop cost
Mutrirop 1 worst-case

stack

operations

R s,
N = { @
@ @\)) /.

Worst Case Time Complexity

Stack Operations
Suppose that we apply a sequence of n operations on a data structure. What is

the time complexity of the procedure?

n-th operation takes MuLTIPOP(S, n) = O(n) time in the worst case

n operations take O(n?) time

Can this be an over-estimate?

Q

What if only a few operations take O(n) time
and the rest of them take O(1) time?

The worst-case bound is not tight because this
expensive Multipop operation cannot occur so frequently!

__

Amortized Analysis

Goal: obtain an accurate worst-case bound in executing a sequence of
operations on a given data structure

An upper bound for any sequence of n operations

Comparison: types of running-time analysis

Worst case Running time guarantee for any input of size n
Average case Expected running time for a random input of size n
Probabilistic Expected running time of a randomized algorithm

Amortized Worst-case running time for a sequence of n operations

3 Methods for Amortized Analysis

Aggregate method (2 £%)

e Determine an upper bound T'(n) on the cost over any sequence of n operations
e The average cost per operation is then T(n)/n
e All operations have the same amortized cost

Accounting method (RC1&)X)

e Each operation is assigned an amortized cost (may differ from the actual cost)
e Each object of the data structure is associated with a credit
* Need to ensure that every object has sufficient credit at any time

Potential method (fiI8E)%)

e Similar to accounting method; each operation is assigned an amortized cost
e The data structure as a whole maintains a credit (i.e., potential)
e Need to ensure that the potential level is nonnegative at any time &e}

Stack Operations

Textbook Chapter 17.1 — Aggregate analysis
Textbook Chapter 17.2 — The accounting method
Textbook Chapter 17.3 — The potential method

Stack Operations

Stack Operations
Suppose that we apply a sequence of n operations on a data structure. What is

the time complexity of the procedure?

Implementation with an array or a linked list

PUSH(S, x): inset an element x into S O(1)
Por(S): pop the top element from S O(1)
MuLTIPOP(S, k): pop top k elements from S at once O (min(|S|, k))

PUSH Pop
MuLTIPOP MULTIPOP (S, k)
k >0

while not STACK-EMPTY (S) and
POP (S)
k=%k -1

stack

Aggregate Method (X £E

NNy

)

= Approach:
1. Determine an upper bound T'(n) on the cost of any sequence of n
operations

2. Calculate the amortized cost per operationas T(n)/n

3. All operations have the same amortized cost
T'(n
T(n) mp Amortized cost of each op =Q

cost I
Al \

operations

op,; op, e D,

Aggregate Method for Stack

The number of each operation type

PUSH(S, x): inset an element x into S N push

Popr(S): pop the top element from S Mo - n

MuLTiPoP(S, k): pop top k elements from S at once Wysstiiass

These n,,,+ N, 1m0, OPErations together take at most O(npysn)

Total cost for n operations: "push - O(1) + O(npusn) = O(n)

Amortized cost per operation: % — O(l)

n

Another Thinking

Once the push operation is taken, we prepare the additional cost for
the future usage of multipop

__

Accounting Method (ECTR)%)

Idea: save credits from the operations that take less cost for future use of -
operations that take more cost (£ ¥} & B{EE B ERJoperationsF 7o 17 2
RIRAARZ, HARKIEER S Hoperations{E F)

Approach:
Each operation is assigned a valid amortized cost

If amortized cost > actual cost, the difference becomes credit (%)

Credit is deposited in an object of the data structure

If amortized cost < actual cost, then withdraw (32) stored credits
Validity check: ensure that every object has sufficient credit for any
sequence of n operations
Calculate total amortized cost based on individual ones

Accounting Method (ECTR)%)

Validity check: ensure that every object has sufficient credit for any times
of n operations (REEB TR F)

c;: the actual cost of the i-th operation

¢;: the amortized cost of the i-th operation

n n
—> For all sequences of n operations, we require E C; > E C;

1=1 1=1
Accounting Method Aggregate Method
Each type of operations can have a Each type of operations have its
different amortized cost actual cost
Assign valid amortized costs first Compute amortized cost using T(n)
and then compute T(n)

Accounting Method for Stack

Assign the amortized cost

PUSH(S, x) 1 2
Por(S) 1 0
MuLtipor(S, k) min(|S|, k) 0

Show that for each object s.t. ZC’L . ZC’L

PusH: the pushed element is dep05|ted $1 credlt

Pop and MuLTipoP: use the credit stored with the popped element
There is always enough credit to pay for each operation

Each amortized cost is O(1) = total amortized cost is O(n)

Potential Method ({i18E)>

Idea: represent the prepaid work as “potential,” which can be released to
pay for future operations (the potential is associated with the whole data
structure rather than specific objects)

Approach:

Select a potential function that takes the current data structure state
as input and outputs a “potential level”

Validity check: ensure that the potential level is nonnegative

Calculate the amortized cost of each operation based on the potential
function

Calculate total amortized cost based on individual ones

Potential Method Accounting Method
The data structure has credits Each object within the data structure

has its credit

Potential Method ({lI8E)>

= Potential function @ maps any state of the data structure to a real number

= D,: the initial state of data structure
= D;: the state of data structure after i-th operation
= ¢;: the actual cost of i-th operation

= &: the amortized cost of i-th operation, defined as ¢; = ¢; + ®(D;) — ®(D;_1)

n

1=1

|
.M'@

¢i + (®(Dyn) — ®(Dp-1) + -+ ®(D1) — ®(Dy))

1

||
]
o
I

o~
I
|

(I)(Dn) o (I)(DO)

Potential Method ({iI§

= Total amortized cost

Y ti=) cit+ ®(Dn) — ®(Do)
1=1 1=1

n ~ T
= To obtain an upper bound on the actual cost Zi:l C; 2> Zizl &)
= Define a potential function such that ®(D,,) — ®(Dy) > 0

= Usually we set ‘I)(Do) = (),(D(DZ-) >0

c;: the actual cost of i-th operation
¢;: the amortized cost of i-th operation

Potential Method for Stack

Define ®(D;) to be the number of elements in the stack after the i-th
operation

Validity check:
The stack is initially empty > ®(Dg) = 0
The number of elements in the stack is always >0 > ®(D;) > 0

Compute amortized cost of each operation:
PUSH(S,): & = ¢; + ®(D;) — ®(Di—1) =1+ (|S[+1) — [S] =2

All operations have O(1) amortized cost = total amortized cost is O(n)

Fibonacci Heap

Prim’s Time Complexity

MST-PRIM(G, w, r) // w = weights, r = root
for u in G.V

u.key = e
u.n = NIL O(n)
r.key = 0
Q = G.V
while Q # empty n times
u = EXTRACT-MIN (Q) O(logn)
for v in G.adj[u] m times
if v € Q and w(u, v) < v.key
V.II = U
v.key = w(u, v) // DECREASE-KEY O(1)

Fibonacci heap (Textbook Ch. 19)
BUILD-MIN-HEAP: O(n)
EXTRACT-MIN: O(logn) (amortized)
DECREASE-KEY:(O(1) (amortized)

Total complexity: O(m + nlogn)

Dijkstra’s Time Complexity

DIJKSTRA (G, w, s)
INITIALIZATION (G, s)

S = empty

Q = G.v // INSERT O(n)

while Q # empty n times
u = EXTRACT-MIN (Q) O(logn)
S = SuU{u}
for v in G.adj[u] m times

RELAX (u, v, w)

INITIALIZATION (G, s)
for v in G.V

Fibonacci heap (Textbook Ch. 19)
BUILD-MIN-HEAP: O(n)
EXTRACT-MIN: O(logn) (amortized)
DECREASE-KEY: O(1) (amortized)

Total complexity: O(m + nlogn)

v.d = o
v.m = NIL O(n)
s.d = 0
RELAX (u, v, w) O(1)

if v.d > u.d + w(u, v)
// DECREASE-KEY
v.d = u.d + w(u, v)
V.II = U

Binary Counter

Textbook Chapter 17.1 — Aggregate analysis
Textbook Chapter 17.2 — The accounting method
Textbook Chapter 17.3 — The potential method

Binary Counter

Binary Counter

Suppose that a counter is initially zero. We increment the counter n times. How

many bits are altered throughout the process?

Implementation with a k-bit array

INCREMENT (A) 1
while 1 < A.length and A[1i] == 1

A[i] =0 11
i=1+1 increment

if i < A.length 100

Ali] =1 101

: . . 110

Each operation takes O(log n) time in the worst case 11

n operations take O(n log n) time O 1000

1001
1010
1011
1100
1101
1110
1111
10000

Aggregate Method for Binary Counter

Counter Total Cost of First n
Value Operations
0 0

0 0 0 0
1 0 0 0 1 1
2 0 0 1 0 3
3 0 0 1 1 4
4 0 1 0 0 7
5 0 1 0 1 8
6 0 1 1 0 10
7 0 1 1 1 11
g8 | 1 0 0 0 15

flip every increment
flip every 2 increments

flip every 4 increments @
flip every 8 increments

Aggregate Method for Binary Counter

Total #bits flipping in n increment operations:

T LY
n R —_ “ e I
2 "1 ok ="

Total cost of the sequence: O(n)

Amortized cost per operation: =2\""/ _ 0(1)

Accounting Method for Binary Counter

Assign the amortized cost

bit 0 > bit 1 1 2 (17812 bit 1) i) iy
bit 1 = bit 0 1 0 (FiefF1Ebit 112 EAYS1)
increment #flipped bits 2 for setting a bitto 1

Validity check:
Each bit O to bit 1, we save additional S1 in the bit 1
When bit 1 becomes to bit 0, we spend the saved cost

Each increment
Change many 1s to Os = free
Change exactlyaOto1 - O(1)

Each amortized cost is O(1) = total amortized cost is O(n)

Accounting Method for Binary Counter

Counter Total Cost of First n
Value Operations
0

0 0 0 0 0
1 0 0 0 1 1
2 0 0 1 ¥ 0 3
3 0 0 1 ¥ 1 ¥y 4
4 0 1 ¥y 0 0 7
5 0 1 ¥ 0 1 @ 8
6 0 1) 1 0 10
7 0 1 G 1 ¥ 1 @ 11
8 1 ¢y 0 0 0 15

Amortized cost per operation is O(1)
Total amortized cost of n operations is O(n) @

c;: the actual cost of i-th operation
¢;: the amortized cost of i-th operation

Potential Method for Binary Counter

Define ®(D;) to be the number of 1s in the counter after the j-th
operation

Validity check:
The counter is initially zero > ®(Dg) = 0

The number of 1’s cannot be negative > &(D,) > 0

Compute amortized cost of each INCREMENT:
Let LSB,(i) be the number of continuous 1s in the suffix

For example, LSB,(01011011) = 2, and LSB,(01011111) =5
= (LSBo(i — 1)+ 1)+ (®(D;j_1) — LSBy(i — 1)+ 1) — ®(D;_1)

= 2
All operations have O(1) amortized cost = total amortized cost is O(n)

Concluding Remarks

Aggregate method (B£E5%)

e Determine an upper bound T'(n) on the cost over any sequence of n operations
e The average cost per operation is then T(n)/n
e All operations have the same amortized cost

Accounting method (FCT& %)

e Each operation is assigned an amortized cost (may differ from the actual cost)
e Each object of the data structure is associated with a credit
* Need to ensure that every object has sufficient credit at any time

Potential method (iZ8E)X%)

e Similar to accounting method; each operation is assigned an amortized cost
e The data structure as a whole maintains a credit (i.e., potential)
e Need to ensure that the potential level is nonnegative at any time

Question?

Important announcement will be sent to @ntu.edu.tw mailbox
& post to the course website

Course Website: http://ada.miulab.tw

Email: ada-ta@csie.ntu.edu.tw

http://ada.miulab.tw/
mailto:ada-ta@csie.ntu.edu.tw

