

Algorithm Design and Analysis

YUN-NUNG (VIVIAN) CHEN HTTP://ADA.MIULAB.TW

Mine 1

- Amortized analysis
- #1: Stack Operations
 - Aggregate method
 - Accounting method
 - Potential method
- #2: Binary Counter
 - Aggregate method
 - Accounting method
 - Potential method

Algorithm Design & Analysis

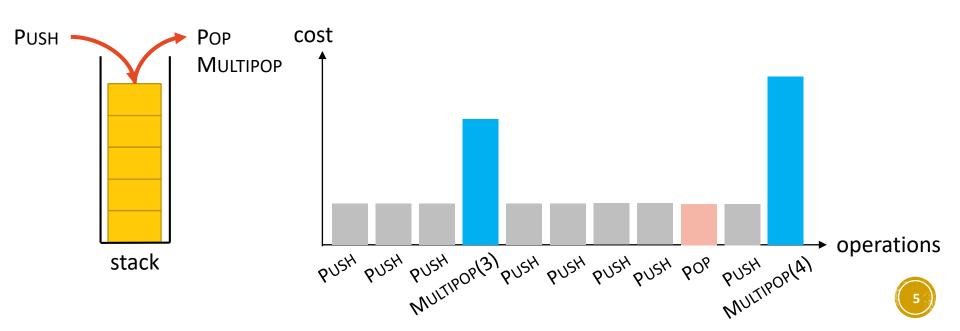
- Design Strategy
 - Divide-and-Conquer
 - Dynamic Programming
 - Greedy Algorithms
 - Graph Algorithms
- Analysis
 - Amortized Analysis

(a) Amortized Analysis

Textbook Chapter 17 – Amortized Analysis

Data-Structure Operations

- A data structure comes with operations that organize the stored data
 - Different operations may have different costs
 - The same operation may have different costs



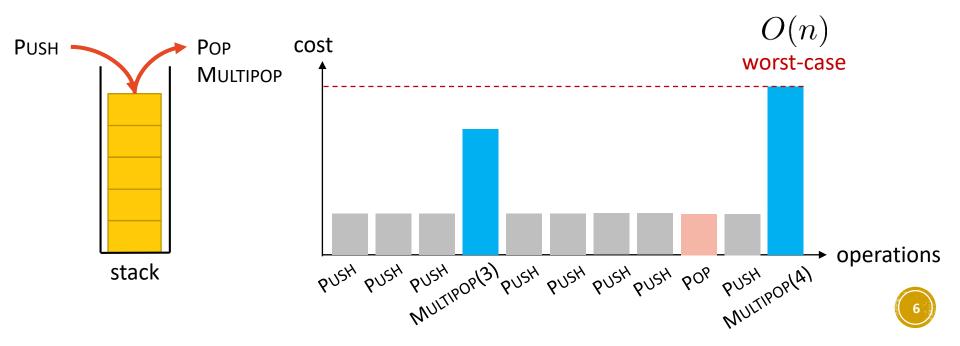
Worst Case Time Complexity

Cost of stack operations

PUSH(S, x) = O(1)

Pop(S) = O(1)

Multipop(S, k) = O(min(|S|, k))



Worst Case Time Complexity

Stack Operations

Suppose that we apply a sequence of *n* operations on a data structure. What is the time complexity of the procedure?

- n-th operation takes Multipop(S, n) = O(n) time in the worst case
- n operations take $O(n^2)$ time

Can this be an over-estimate?

What if only a few operations take O(n) time and the rest of them take O(1) time?

The worst-case bound is not tight because this expensive Multipop operation cannot occur so frequently!

Amortized Analysis

- Goal: obtain an accurate worst-case bound in executing a sequence of operations on a given data structure
 - An upper bound for any sequence of n operations
- Comparison: types of running-time analysis

Туре	Description
Worst case	Running time guarantee for any input of size n
Average case	Expected running time for a random input of size n
Probabilistic	Expected running time of a randomized algorithm
Amortized	Worst-case running time for a sequence of <i>n</i> operations

3 Methods for Amortized Analysis

Aggregate method (聚集法)

- Determine an upper bound T(n) on the cost over any sequence of n operations
- The average cost per operation is then T(n)/n
- All operations have the same amortized cost

Accounting method (記帳法)

- Each operation is assigned an amortized cost (may differ from the actual cost)
- Each object of the data structure is associated with a credit
- Need to ensure that every object has sufficient credit at any time

Potential method (位能法)

- Similar to accounting method; each operation is assigned an amortized cost
- The data structure as a whole maintains a credit (i.e., potential)
- Need to ensure that the potential level is nonnegative at any time

Stack Operations

Textbook Chapter 17.1 – Aggregate analysis

Textbook Chapter 17.2 – The accounting method

Textbook Chapter 17.3 – The potential method

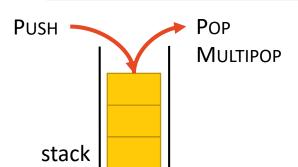
Stack Operations

Stack Operations

Suppose that we apply a sequence of *n* operations on a data structure. What is the time complexity of the procedure?

Implementation with an array or a linked list

Operation Type	Cost
Push(S, x): inset an element x into S	O(1)
Pop(S): pop the top element from S	O(1)
MULTIPOP(S, k): pop top k elements from S at once	$O(\min(S ,k))$



```
MULTIPOP(S, k)
while not STACK-EMPTY(S) and k > 0
POP(S)
k = k - 1
```

Aggregate Method (聚集法)

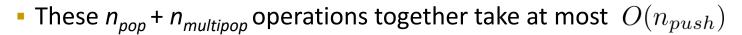
Approach:

- 1. Determine an upper bound T(n) on the cost of any sequence of n operations
- 2. Calculate the amortized cost per operation as T(n)/n
- 3. All operations have the same amortized cost

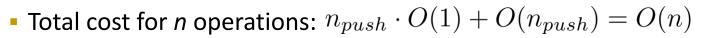
Aggregate Method for Stack

The number of each operation type

Operation Type	#Operations
Push(S, x): inset an element x into S	n _{push}
Pop(S): pop the top element from S	n_{pop}
MULTIPOP(S, k): pop top k elements from S at once	n _{multipop}



Key idea: #pop elements ≤ #push operations/elements



• Amortized cost per operation:
$$\frac{O(n)}{n} = O(1)$$

Another Thinking

 Once the push operation is taken, we prepare the additional cost for the future usage of multipop

Key idea: #pop elements ≤ #push operations/elements

$$n_{push} \cdot 2 \cdot O(1) = O(n)$$

Accounting Method (記帳法)

- Idea: save credits from the operations that take less cost for future use of operations that take more cost (針對使用花費較低的operations時先存錢 未雨綢繆, 供未來花費較高的operations使用)
- Approach:
 - 1. Each operation is assigned a *valid* amortized cost
 - If amortized cost > actual cost, the difference becomes credit (存)
 - Credit is deposited in an object of the data structure
 - If amortized cost < actual cost, then withdraw (提) stored credits
 - 2. **Validity check**: ensure that every object has sufficient credit for any sequence of *n* operations
 - 3. Calculate total amortized cost based on individual ones

- Validity check: ensure that every object has sufficient credit for any times of n operations (不能有赤字)
 - c_i: the actual cost of the i-th operation
 - \hat{c}_i : the amortized cost of the i-th operation
 - \rightarrow For all sequences of *n* operations, we require

$$\sum_{i=1}^{n} \hat{c}_i \ge \sum_{i=1}^{n} c_i$$

Accounting Method

- Each type of operations can have a different amortized cost
- Assign valid amortized costs first and then compute T(n)

Aggregate Method

- Each type of operations have its actual cost
- Compute amortized cost using T(n)

Accounting Method for Stack

1. Assign the amortized cost

Operation Type	Actual Cost	Amortized Cost
Push(S, x)	1	2
Pop(S)	1	0
MULTIPOP(S, k)	min(S , k)	0

- 2. Show that for each object s.t. $\sum_{i=1}^{n} \hat{c}_i \geq \sum_{i=1}^{n} c_i$
 - Push: the pushed element is deposited \$1 credit
 - POP and MULTIPOP: use the credit stored with the popped element
 - There is always enough credit to pay for each operation
- 3. Each amortized cost is $O(1) \rightarrow$ total amortized cost is O(n)

Potential Method (位能法)

- Idea: represent the prepaid work as "potential," which can be released to pay for future operations (the potential is associated with the whole data structure rather than specific objects)
- Approach:
 - 1. Select a **potential function** that takes the **current data structure state** as input and outputs a "potential level"
 - 2. Validity check: ensure that the potential level is nonnegative
 - Calculate the amortized cost of each operation based on the potential function
 - 4. Calculate total amortized cost based on individual ones
- Potential Method
 - The data structure has credits

Accounting Method

 Each object within the data structure has its credit

Potential Method (位能法)

- Potential function Φ maps any state of the data structure to a real number
 - D₀: the initial state of data structure
 - D_i: the state of data structure after i-th operation
 - c_i: the actual cost of i-th operation
 - $\hat{\mathbf{c}}_i$: the amortized cost of *i*-th operation, **defined** as $\hat{c}_i = c_i + \Phi(D_i) \Phi(D_{i-1})$

$$\sum_{i=1}^{n} \hat{c}_i = \sum_{i=1}^{n} (c_i + \Phi(D_i) - \Phi(D_{i-1}))$$

$$= \sum_{i=1}^{n} c_i + (\Phi(D_n) - \Phi(D_{n-1}) + \dots + \Phi(D_1) - \Phi(D_0))$$

$$= \sum_{i=1}^{n} c_i + \Phi(D_n) - \Phi(D_0)$$

Total amortized cost

$$\sum_{i=1}^{n} \hat{c}_i = \sum_{i=1}^{n} c_i + \Phi(D_n) - \Phi(D_0)$$

- To obtain an upper bound on the actual cost $\sum_{i=1}^n \hat{c}_i \geq \sum_{i=1}^n c_i$
 - Define a potential function such that $\ \Phi(D_n) \Phi(D_0) \geq 0$
 - Usually we set $\Phi(D_0)=0, \Phi(D_i)\geq 0$

c_i: the actual cost of *i*-th operation

 \hat{c}_i : the amortized cost of *i*-th operation

Potential Method for Stack

- Define $\Phi(D_i)$ to be the number of elements in the stack after the *i*-th operation
- Validity check:
 - The stack is initially empty $\rightarrow \Phi(D_0) = 0$
 - The number of elements in the stack is always \geq 0 ightarrow $\Phi(D_i) \geq 0$
- Compute amortized cost of each operation:
 - PUSH(S, x): $\hat{c}_i = c_i + \Phi(D_i) \Phi(D_{i-1}) = 1 + (|S| + 1) |S| = 2$
 - Pop(S): $\hat{c}_i = c_i + \Phi(D_i) \Phi(D_{i-1}) = 1 + (|S| 1) |S| = 0$

- Multipop(S, k): $\hat{c}_i = 0$ Practice: justify why it is zero

All operations have O(1) amortized cost \rightarrow total amortized cost is O(n)

Fibonacci Heap

Prim's Time Complexity

```
MST-PRIM(G, w, r) // w = weights, r = root
  for u in G.V
    u.key = \infty
    u.\pi = NIL
  r.key = 0
  Q = G.V
                                                  n times
  while Q \neq empty
                                                  O(\log n)
    u = EXTRACT-MIN(Q)
    for v in G.adj[u]
                                                  m times
      if v \in Q and w(u, v) < v.key
        v.\pi = u
                                                  O(1)
        v.key = w(u, v) // DECREASE-KEY
```

- Fibonacci heap (Textbook Ch. 19)
 - BUILD-MIN-HEAP: O(n)
 - EXTRACT-MIN: $O(\log n)$ (amortized)
 - DECREASE-KEY:O(1) (amortized)
- Total complexity: $O(m + n \log n)$

Dijkstra's Time Complexity

```
DIJKSTRA(G, w, s)
  INITIALIZATION(G, s)
  S = empty
  Q = G.v // INSERT O(n)
  while Q ≠ empty n times
  u = EXTRACT-MIN(Q) O(log n)
  S = SU{u}
  for v in G.adj[u] m times
   RELAX(u, v, w)
```

- Fibonacci heap (Textbook Ch. 19)
 - BUILD-MIN-HEAP: O(n)
 - ullet EXTRACT-MIN: $O(\log n)$ (amortized)
 - DECREASE-KEY: O(1) (amortized)
- Total complexity: $O(m + n \log n)$

```
INITIALIZATION (G, s)

for v in G.V

v.d = \infty

v.\pi = NIL

s.d = 0
```

```
RELAX(u, v, w) O(1)

if v.d > u.d + w(u, v)

// DECREASE-KEY

v.d = u.d + w(u, v)

v.n = u
```


Textbook Chapter 17.1 – Aggregate analysis

Textbook Chapter 17.2 – The accounting method

Textbook Chapter 17.3 – The potential method

Binary Counter

01100 10110 11110

Binary Counter

Suppose that a counter is initially zero. We increment the counter *n* times. How many bits are altered throughout the process?

Implementation with a k-bit array

```
INCREMENT(A)
i = 0
while i < A.length and A[i] == 1
    A[i] = 0
    i = i + 1
if i < A.length
    A[i] = 1</pre>
```

Each operation takes $O(\log n)$ time in the worst case

• n operations take $O(n \log n)$ time Ω

increment

Aggregate Method for Binary Counter

Counter Value	A[3]	A[2]	A[1]	A[0]	Total Cost of First <i>n</i> Operations
0	0	0	0	0	0
1	0	0	0	1	1
2	0	0	1	0	3
3	0	0	1	1	4
4	0	1	0	0	7
5	0	1	0	1	8
6	0	1	1	0	10
7	0	1	1	1	11
8	1	0	0	0	15

flip every increment

flip every 2 increments

flip every 4 increments flip every 8 increments

Aggregate Method for Binary Counter

Total #bits flipping in n increment operations:

$$n + \frac{n}{2} + \frac{n}{4} + \dots + \frac{n}{2k} < 2n$$

- Total cost of the sequence: O(n)
- Amortized cost per operation: $\frac{O(n)}{n} = O(1)$

Accounting Method for Binary Counter

1. Assign the amortized cost

Operation	Actual Cost	Amortized Cost
bit $0 \rightarrow bit 1$	1	2 (存\$1到bit 1)
bit $1 \rightarrow bit 0$	1	0 (用掉存在bit 1裡面的\$1)
increment	#flipped bits	2 for setting a bit to 1

2. Validity check:

- Each bit 0 to bit 1, we save additional \$1 in the bit 1
- When bit 1 becomes to bit 0, we spend the saved cost
- 3. Each increment
 - Change many 1s to 0s → free
 - Change exactly a 0 to 1 \rightarrow O(1)
- Each amortized cost is $O(1) \rightarrow$ total amortized cost is O(n)

Accounting Method for Binary Counter

Counter Value	A[3]	A[2]	A[1]	A[0]	Total Cost of First <i>n</i> Operations
0	0	0	0	0	0
1	0	0	0	1	1
2	0	0	1	0	3
3	0	0	1	1	4
4	0	1	0	0	7
5	0	1	0	1	8
6	0	1	1	0	10
7	0	1	1	1	11
8	1 🎡	0	0	0	15

Amortized cost per operation is O(1)Total amortized cost of n operations is O(n)

c_i: the actual cost of *i*-th operation

 \hat{c}_i : the amortized cost of *i*-th operation

Potential Method for Binary Counter

- 1. Define $\Phi(D_i)$ to be **the number of 1s in the counter** after the *i*-th operation
- 2. Validity check:
 - The counter is initially zero $\rightarrow \Phi(D_0) = 0$
 - The number of 1's cannot be negative $ightarrow \Phi(D_i) \geq 0$
- Compute amortized cost of each INCREMENT:
 - Let LSB₀(i) be the number of continuous 1s in the suffix
 - For example, $LSB_0(01011011) = 2$, and $LSB_0(01011111) = 5$

$$\hat{c}_i = c_i + \Phi(D_i) - \Phi(D_{i-1})
= (LSB_0(i-1) + 1) + (\Phi(D_{i-1}) - LSB_0(i-1) + 1) - \Phi(D_{i-1})
- 2$$

4. All operations have O(1) amortized cost \rightarrow total amortized cost is O(n)

Concluding Remarks

Aggregate method (聚集法)

- Determine an upper bound T(n) on the cost over any sequence of n operations
- The average cost per operation is then T(n)/n
- All operations have the same amortized cost

Accounting method (記帳法)

- Each operation is assigned an amortized cost (may differ from the actual cost)
- Each object of the data structure is associated with a credit
- Need to ensure that every object has sufficient credit at any time

Potential method (位能法)

- Similar to accounting method; each operation is assigned an amortized cost
- The data structure as a whole maintains a credit (i.e., potential)
- Need to ensure that the potential level is nonnegative at any time

Three analyzing methods reach the same answer, and choose your preference

Question?

Important announcement will be sent to @ntu.edu.tw mailbox & post to the course website

Course Website: http://ada.miulab.tw

Email: ada-ta@csie.ntu.edu.tw