
Slides credited from Hsueh-I Lu & Hsu-Chun Hsiao

▪ Midterm announced
▪ Check the scores / answers

▪ Find TAs (office hour / email) if you
have questions by 12/06 (Thur)

▪ Homework 3 released
▪ Due on 12/13 (Thur) 14:20 (two

weeks)

▪ Mini-HW 8 released
▪ Due on 12/06 (Thur) 14:20

2

Frequently check the website for the updated information!

3

▪ DFS Applications
▪ Strongly Connected Components

▪ Topological Sorting

▪Minimal Spanning Trees (MST)
▪ Boruvka’s Algorithm

▪ Kruskal’s Algorithm

▪ Prim’s Algorithm

4

Textbook Chapter 22.3 – Depth-first search

5

▪ Search as deep as possible and then backtrack until finding a
new path

6Timestamps: discovery time / finishing time

1

2

3
4

8

9
12 13

14

5
6

7

10

11

▪ Implemented via recursion (stack)

▪ Color the vertices to keep track of progress:
▪ GRAY: discovered (first time encountered)

▪ BLACK: finished (all adjacent vertices discovered)

▪ WHITE: undiscovered 7

// Explore full graph and builds up

a collection of DFS trees

DFS(G)

for each vertex u in G.V

u.color = WHITE

u.pi = NIL

time = 0 // global timestamp

for each vertex u in G.V

if u.color == WHITE

DFS-VISIT(G, u)

DFS-Visit(G, u)

time = time + 1

u.d = time // discover time

u.color = GRAY

for each v in G.Adj[u]

if v.color == WHITE

v.pi = u

DFS-VISIT(G, v)

u.color = BLACK

time = time + 1

u.f = time // finish time

▪ Parenthesis Theorem
▪ Parenthesis structure: represent the discovery of vertex 𝑢 with a left

parenthesis “(𝑢” and represent its finishing by a right parenthesis “𝑢)”. In
DFS, the parentheses are properly nested.

▪ White Path Theorem
▪ In a DFS forest of a directed or undirected graph 𝐺 = 𝑉, 𝐸 ,

▪ vertex 𝑣 is a descendant of vertex 𝑢 in the forest at the time 𝑢. 𝑑
that the search discovers 𝑢, there is a path from 𝑢 to 𝑣 in 𝐺 consisting
entirely of WHITE vertices

▪ Classification of Edges in 𝐺
▪ Tree Edge

▪ Back Edge

▪ Forward Edge

▪ Cross Edge
8

Textbook Chapter 22.5 – Strongly connected components

9

▪ Input: a directed graph 𝐺 = 𝑉, 𝐸

▪ Output: a connected component of 𝐺
▪ a maximal subset 𝑈 of 𝑉 s.t. any two nodes in 𝑈 are reachable in 𝐺

10

1

2

4

6
3

5

7

8

Why must the strongly
connected components
of a graph be disjoint?

11

▪ Step 1: Run DFS on 𝐺 to obtain the finish time 𝑣. 𝑓 for 𝑣 ∈ 𝑉.

▪ Step 2: Run DFS on the transpose of 𝐺 where the vertices 𝑉 are
processed in the decreasing order of their finish time.

▪ Step 3: output the vertex partition by the second DFS

12

1

2

4

6
3

5

1

2

4

6
3

5

13

1

3

2

6
5

4

1

2

4

5

3

6

▪ Proof by contradiction
▪ Assume that 𝑣,𝑤 is an incoming edge to 𝐶.

▪ Since 𝐶 is a strongly connected component of 𝐺, there cannot be any
path from any node of 𝐶 to 𝑣 in 𝐺.

▪ Therefore, the finish time of 𝑣 has to be larger than any node in 𝐶,
including 𝑢. → 𝑣. 𝑓 > 𝑢. 𝑓, contradiction

14

𝑢

G

𝑤
C

𝑣

Lemma
Let 𝐶 be the strongly connected component of 𝐺 (and 𝐺𝑇) that contains
the node 𝑢 with the largest finish time 𝑢. 𝑓. Then 𝐶 cannot have any
incoming edge from any node of 𝐺 not in 𝐶.

▪ Practice to prove using induction

15

𝑢

G

C

Theorem
By continuing the process from the vertex 𝑢∗ whose finish time 𝑢∗. 𝑓 is
the largest excluding those in 𝐶, the algorithm returns the strongly
connected components.

𝑢

GT

C

16

1

3

2

6
5

4

17

1

3

2

6
5

4

18

▪ Step 1: Run DFS on 𝐺 to obtain the finish time 𝑣. 𝑓 for 𝑣 ∈ 𝑉.

▪ Step 2: Run DFS on the transpose of 𝐺 where the vertices 𝑉 are
processed in the decreasing order of their finish time.

▪ Step 3: output the vertex partition by the second DFS

Time Complexity:

19

Textbook Chapter 22.4 – Topological sort

20

21

1

2

3

5
4

6

1

2

3

5
4

6

▪ Definition
▪ a directed graph without any directed cycle

22

1

2

3

5
4

6

▪ Taking courses should follow the specific order

▪ How to find a course taking order?

23

計程 資料結構 演算法

計概 作業系統

計算機網路

機率微積分上 微積分下

計組

24

▪ Input: a directed acyclic graph 𝐺 = (𝑉, 𝐸)

▪ Output: a linear order of 𝑉 s.t. all edges of 𝐺 going from lower-
indexed nodes to higher-indexed nodes (左→右)

a b df c e

a

b

d

f
c

ef b da c e

25

▪ Run DFS on the input DAG G.

▪ Output the nodes in decreasing order of their finish time.

DFS(G)

for each vertex u in G.V

u.color = WHITE

u.pi = NIL

time = 0

for each vertex u in G.V

if u.color == WHITE

DFS-VISIT(G, u)

DFS-Visit(G, u)

time = time + 1

u.d = time

u.color = GRAY

for each v in G.Adj[u] (outgoing)

if v.color == WHITE

v.pi = u

DFS-VISIT(G, v)

u.color = BLACK

time = time + 1

u.f = time // finish time

Example Illustration

26

a

b

d

f
c

e

a b df c e
1

2

3

4

5

6

Example Illustration

27

a

b

d

f
c

e

f b da c e

1

2

3

4

6

5

28

▪ Run DFS on the input DAG G.

▪ Output the nodes in decreasing order of their finish time.
▪ As each vertex is finished, insert it onto the front of a linked list

▪ Return the linked list of vertices

DFS(G)

for each vertex u in G.V

u.color = WHITE

u.pi = NIL

time = 0

for each vertex u in G.V

if u.color == WHITE

DFS-VISIT(G, u)

DFS-Visit(G, u)

time = time + 1

u.d = time

u.color = GRAY

for each v in G.Adj[u]

if v.color == WHITE

v.pi = u

DFS-VISIT(G, v)

u.color = BLACK

time = time + 1

u.f = time // finish time

Time Complexity:

▪ Proof
▪ →: suppose there is a back edge 𝑢, 𝑣

▪ 𝑣 is an ancestor of 𝑢 in DFS forest

▪ There is a path from 𝑣 to 𝑢 in 𝐺 and 𝑢, 𝑣 completes the cycle

▪ : suppose there is a cycle 𝑐

▪ Let 𝑣 be the first vertex in 𝑐 to be discovered and 𝑢 is a predecessor of 𝑣 in 𝑐

▪ Upon discovering 𝑣 the whole cycle from 𝑣 to 𝑢 is WHITE

▪ At time 𝑣. 𝑑, the vertices of 𝑐 form a path of white vertices from 𝑣 to 𝑢

▪ By the white-path theorem, vertex 𝑢 becomes a descendant of 𝑣 in the DFS forest

▪ Therefore, 𝑢, 𝑣 is a back edge

29

Lemma 22.11
A directed graph is acyclic a DFS yields no back edges.

White Path Theorem: In a DFS forest of 𝐺, 𝑣 is a
descendant of 𝑢 in the forest at the time 𝑢. 𝑑
that the search discovers 𝑢, there is a path from
𝑢 to 𝑣 in 𝐺 consisting entirely of WHITE vertices

▪ Proof
▪ When 𝑢, 𝑣 is being explored, 𝑢 is GRAY and there are three cases for 𝑣:

▪ Case 1 – GRAY

▪ 𝑢, 𝑣 is a back edge (contradicting Lemma 22.11), so 𝑣 cannot be GRAY

▪ Case 2 – WHITE

▪ 𝑣 becomes descendant of 𝑢

▪ 𝑣 will be finished before 𝑢

▪ Case 3 – BLACK

▪ 𝑣 is already finished

30

Theorem 22.12
The algorithm produces a topological sort of the input DAG. That is, if
𝑢, 𝑣 is a directed edge (from 𝑢 to 𝑣) of 𝐺, then 𝑢. 𝑓 > 𝑣. 𝑓.

31

▪ Since cycle detection becomes back edge detection (Lemma
22.11), DFS can be used to test whether a graph is a DAG

▪ Is there a topological order for cyclic graphs?

▪ Given a topological order, is there always a DFS traversal
that produces such an order?

32

Textbook Chapter 23 – Minimal Spanning Trees

33

▪ Definition
▪ a subgraph that is a tree and connects all vertices

▪ Exactly 𝑛 − 1 edges

▪ Acyclic

▪ There can be many spanning trees of a graph

▪ BFS and DFS also generate spanning trees
▪ BFS tree is typically “short and bushy”

▪ DFS tree is typically “long and stringy”

34

2

1

1

2

2

3

1

▪ Input: a connected 𝑛-node 𝑚-edge graph 𝐺 with edge weights 𝑤

▪ Output: a spanning tree 𝑇 of 𝐺 with minimum 𝑤(𝑇)

35

2

1

1

1

2

2

2

3

1

WLOG: we may assume that all edge weights are distinct

▪ Q: What if the graph is unweighted?

▪ Q: What if the graph contains edges with negative weights?

36

Trivial

Add a large constant to every edge; a MST remains the same

▪ Proof by contradiction
▪ Suppose there are two MSTs 𝐴 and 𝐵

▪ Let 𝑒 be the least-weight edge in 𝐴⋃𝐵 and 𝑒 is not in both

▪ WLOG, assume 𝑒 is in 𝐴

▪ Add 𝑒 to 𝐵; 𝑒 ⋃𝐵 contains a cycle 𝐶

▪ B includes at least one edge 𝑒′ that is not in 𝐴 but on 𝐶

▪ Replacing 𝑒′ with 𝑒 yields a MST with less cost

37

Theorem: MST is unique if all edge weights are distinct

If edge weights are not all distinct, then the (multi-)set of weights in
MST is unique

38

▪Otakar Borůvka
▪ Czech scientist

▪ Introduced the problem

▪ Gave an 𝑂 𝑚 log 𝑛 time algorithm

▪ The original paper was written in Czech in 1926

▪ The purpose was to efficiently provide electric coverage of
Bohemia

39

▪ Repeat the following procedure until the resulting graph
becomes a single node
▪ For each node 𝑢, mark its lightest incident edge

▪ From the marked edges form a forest 𝐹, add the edges of 𝐹 into the
set of edges to be reported

▪ Contract each maximal subtree of 𝐹 into a single node

40

41

2.1

1.3

2.3

1.2

2.2

3.1

2.4

3

1

1.5

1.4

2.6

2.7

2.5

3.2

5

3.3

4

4.1

5.1

▪ Proof via contradiction
▪ An MST 𝑇 of 𝐺 that does not contain 𝑢, 𝑣

▪ A cycle 𝐶 = 𝑇 ∪ 𝑢, 𝑣 contains an edge 𝑢,𝑤 in 𝐶 that has
larger weight than 𝑢, 𝑣

▪ 𝑇′ = 𝑇 ∪ 𝑢, 𝑣 \ 𝑢, 𝑤 must be a spanning tree of 𝐺 lighter
than 𝑇

42

Claim: If 𝑢, 𝑣 is the lightest edge incident to 𝑢 in 𝐺, 𝑢, 𝑣 must
belong to any MST of 𝐺

u

v

w

▪ The recurrence relation

▪ We check all edges in each phase

▪ After each contraction phase, the number of nodes is reduced
by at least one half

▪ Time complexity:

43

▪ Proof by contradiction
▪ Suppose 𝑒 is in the MST

▪ Removing 𝑒 disconnects the MST into two components T1 and T2

▪ There exists another edge 𝑒′ in 𝐶 that can reconnect T1 and T2

▪ Since 𝑤 𝑒’ < 𝑤(𝑒), the new tree has a lower weight

▪ Contradiction!

44

Let 𝐶 be any cycle in the graph 𝐺, and let 𝑒 be an edge with the
maximum weight on 𝐶. Then the MST does not contain 𝑒.
• For simplicity, assume all edge weights are distinct

▪ Proof by contradiction
▪ Suppose 𝑒 is not in the current MST

▪ Adding 𝑒 creates a cycle in the MST

▪ There exists another edge 𝑒′ in 𝐶 that can break the cycle

▪ Since 𝑤 𝑒’ > 𝑤(𝑒), the new tree has a lower weight

▪ Contradiction!

45

Let 𝐶 be a cut in the graph, and let 𝑒 be the edge with the
minimum cost in 𝐶. Then the MST contains 𝑒.
• Cut = a partition of the vertices
• For simplicity, assume all edge weights are distinct

Textbook Chapter 23.2 – The algorithms of Kruskal and Prim

46

▪ For each node 𝑢
▪ Make-set(𝑢): create a set consisting of 𝑢

▪ For each edge 𝑢, 𝑣 , taken in non-decreasing order by weights
▪ if Find-set(𝑢) ≠Find-set(𝑣) (i.e., 𝑢 and 𝑣 are not in the same

set) then
▪ Output edge 𝑢, 𝑣

▪ Union(𝑢, 𝑣): union the sets containing 𝑢 and 𝑣 into a single set

47

48

2.1

1.3 1.2

2.2

1

1.5

1.4 2.7

2.5

3.2

4.1

2.3
3.1

2.4

3

2.6
5

3.3

4

5.1

49

The lightest edge incident to a vertex must be in the MST

▪ Consider whether adding 𝑒 creates a cycle:
▪ If adding 𝑒 to 𝑇 creates a cycle 𝐶

▪ Then 𝑒 is the max weight edge in 𝐶

▪ The cycle property ensures that 𝑒 is not in the MST

▪ If adding 𝑒 = 𝑢, 𝑣 to 𝑇 does not create a cycle

▪ Before adding 𝑒, the current MST can be divided into two trees T1
and T2 such that 𝑢 in T1 and 𝑉 in T2

▪ 𝑒 is the minimum-cost edge on the cut of T1 and T2

▪ The cut property ensures that 𝑒 is in the MST

50

51

MST-KRUSKAL(G, w) // w = weights

A = empty // edge set of MST

for v in G.V

MAKE-SET(v)

sort edges of G.E into non-decreasing order by weight w

for (u, v) in G.E, taken in non-decreasing order by weight

if FIND-SET(u) ≠ FIND-SET(v)

A = A ∪ {u, v}

UNION(u, v)

return A

▪ Disjoint-set data structure with union-by-rank (Textbook Ch. 21)
▪ MAKE-SET:

▪ FIND-SET:

▪ UNION:

▪ The amortized cost of 𝑚 operations on 𝑛 elements (Exercise 21.4-4):

▪ Total complexity:

Textbook Chapter 23.2 – The algorithms of Kruskal and Prim

52

▪ Let 𝑇 consist of an arbitrary node

▪ For 𝑖 = 1 to 𝑛 − 1
▪ add the least-weighted edge incident to the current subtree
𝑇 that does not incur a cycle

53

54

13

50

11

7

2

8 12

9

10

1440

31

6

20

55

13

50

11

7

2

8 12

9

10

1440

31

6

20

56

13

50

11

7

2

8 12

9

10

1440

31

6

20

57

13

50

11

7

2

8 12

9

10

1440

31

6

20

58

13

50

11

7

2

8 12

9

10

1440

31

6

20

59

13

50

11

7

2

8 12

9

10

1440

31

6

20

60

13

50

11

7

2

8 12

9

10

1440

31

6

20

61

13

50

11

7

2

8 12

9

10

1440

31

6

20

62

13

50

11

7

2

8 12

9

10

1440

31

6

20

63

The lightest edge incident to a vertex must be in the MST

64

MST-PRIM(G, w, r) // w = weights, r = root

for u in G.V

u.key = ∞

u.π = NIL

r.key = 0

Q = G.V

while Q ≠ empty

u = EXTRACT-MIN(Q)

for v in G.adj[u]

if v ∈ Q and w(u, v) < v.key

v.π = u

v.key = w(u, v) // DECREASE-KEY

▪ Binary min-heap (Textbook Ch. 6)
▪ BUILD-MIN-HEAP:

▪ EXTRACT-MIN:

▪ DECREASE-KEY:

▪ Total complexity:

65

▪ Fibonacci heap (Textbook Ch. 19)
▪ BUILD-MIN-HEAP:

▪ EXTRACT-MIN: (amortized)

▪ DECREASE-KEY: (amortized)

▪ Total complexity:

MST-PRIM(G, w, r) // w = weights, r = root

for u in G.V

u.key = ∞

u.π = NIL

r.key = 0

Q = G.V

while Q ≠ empty

u = EXTRACT-MIN(Q)

for v in G.adj[u]

if v ∈ Q and w(u, v) < v.key

v.π = u

v.key = w(u, v) // DECREASE-KEY

▪Minimal Spanning Trees (MST)
▪ Boruvka’s Algorithm:

▪ Kruskal’s Algorithm:

▪ Prim’s Algorithm: with binary min-heap

▪ Prim’s Algorithm: with Fabonacci heap

66

67

Course Website: http://ada.miulab.tw

Email: ada-ta@csie.ntu.edu.tw

68

Important announcement will be sent to @ntu.edu.tw mailbox
& post to the course website

http://ada.miulab.tw/
mailto:ada-ta@csie.ntu.edu.tw

