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▪ Midterm announced
▪ Check the scores / answers

▪ Find TAs (office hour / email) if you 
have questions by 12/06 (Thur)

▪ Homework 3 released
▪ Due on 12/13 (Thur) 14:20 (two 

weeks)

▪ Mini-HW 8 released
▪ Due on 12/06 (Thur) 14:20
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Frequently check the website for the updated information!
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▪ DFS Applications
▪ Strongly Connected Components

▪ Topological Sorting

▪Minimal Spanning Trees (MST)
▪ Boruvka’s Algorithm

▪ Kruskal’s Algorithm

▪ Prim’s Algorithm
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Textbook Chapter 22.3 – Depth-first search
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▪ Search as deep as possible and then backtrack until finding a 
new path

6Timestamps: discovery time / finishing time
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▪ Implemented via recursion (stack)

▪ Color the vertices to keep track of progress:
▪ GRAY: discovered (first time encountered)

▪ BLACK: finished (all adjacent vertices discovered)

▪ WHITE: undiscovered 7

// Explore full graph and builds up 

a collection of DFS trees

DFS(G)

for each vertex u in G.V

u.color = WHITE

u.pi = NIL

time = 0 // global timestamp

for each vertex u in G.V

if u.color == WHITE

DFS-VISIT(G, u)

DFS-Visit(G, u)

time = time + 1

u.d = time  // discover time

u.color = GRAY

for each v in G.Adj[u]

if v.color == WHITE

v.pi = u

DFS-VISIT(G, v)

u.color = BLACK

time = time + 1

u.f = time // finish time



▪ Parenthesis Theorem
▪ Parenthesis structure: represent the discovery of vertex 𝑢 with a left 

parenthesis “(𝑢” and represent its finishing by a right parenthesis “𝑢)”. In 
DFS, the parentheses are properly nested.

▪ White Path Theorem
▪ In a DFS forest of a directed or undirected graph 𝐺 = 𝑉, 𝐸 ,

▪ vertex 𝑣 is a descendant of vertex 𝑢 in the forest  at the time 𝑢. 𝑑
that the search discovers 𝑢, there is a path from 𝑢 to 𝑣 in 𝐺 consisting 
entirely of WHITE vertices

▪ Classification of Edges in 𝐺
▪ Tree Edge

▪ Back Edge

▪ Forward Edge

▪ Cross Edge
8



Textbook Chapter 22.5 – Strongly connected components
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▪ Input: a directed graph 𝐺 = 𝑉, 𝐸

▪ Output: a connected component of 𝐺
▪ a maximal subset 𝑈 of 𝑉 s.t. any two nodes in 𝑈 are reachable in 𝐺
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Why must the strongly 
connected components 
of a graph be disjoint?
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▪ Step 1: Run DFS on 𝐺 to obtain the finish time 𝑣. 𝑓 for 𝑣 ∈ 𝑉.

▪ Step 2: Run DFS on the transpose of 𝐺 where the vertices 𝑉 are 
processed in the decreasing order of their finish time.

▪ Step 3: output the vertex partition by the second DFS
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▪ Proof by contradiction
▪ Assume that 𝑣,𝑤 is an incoming edge to 𝐶.

▪ Since 𝐶 is a strongly connected component of 𝐺, there cannot be any 
path from any node of 𝐶 to 𝑣 in 𝐺.

▪ Therefore, the finish time of 𝑣 has to be larger than any node in 𝐶, 
including 𝑢. → 𝑣. 𝑓 > 𝑢. 𝑓, contradiction
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Lemma
Let 𝐶 be the strongly connected component of 𝐺 (and 𝐺𝑇) that contains 
the node 𝑢 with the largest finish time 𝑢. 𝑓. Then 𝐶 cannot have any 
incoming edge from any node of 𝐺 not in 𝐶.



▪ Practice to prove using induction
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Theorem
By continuing the process from the vertex 𝑢∗ whose finish time 𝑢∗. 𝑓 is 
the largest excluding those in 𝐶, the algorithm returns the strongly 
connected components.
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▪ Step 1: Run DFS on 𝐺 to obtain the finish time 𝑣. 𝑓 for 𝑣 ∈ 𝑉.

▪ Step 2: Run DFS on the transpose of 𝐺 where the vertices 𝑉 are 
processed in the decreasing order of their finish time.

▪ Step 3: output the vertex partition by the second DFS

Time Complexity:
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Textbook Chapter 22.4 – Topological sort

20



21

1

2

3

5
4

6

1

2

3

5
4

6



▪ Definition
▪ a directed graph without any directed cycle
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▪ Taking courses should follow the specific order

▪ How to find a course taking order?

23

計程 資料結構 演算法

計概 作業系統

計算機網路

機率微積分上 微積分下

計組
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▪ Input: a directed acyclic graph 𝐺 = (𝑉, 𝐸)

▪ Output: a linear order of 𝑉 s.t. all edges of 𝐺 going from lower-
indexed nodes to higher-indexed nodes (左→右)
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▪ Run DFS on the input DAG G.

▪ Output the nodes in decreasing order of their finish time.

DFS(G)

for each vertex u in G.V

u.color = WHITE

u.pi = NIL

time = 0

for each vertex u in G.V

if u.color == WHITE

DFS-VISIT(G, u)

DFS-Visit(G, u)

time = time + 1

u.d = time

u.color = GRAY

for each v in G.Adj[u] (outgoing)

if v.color == WHITE

v.pi = u

DFS-VISIT(G, v)

u.color = BLACK

time = time + 1

u.f = time // finish time



Example Illustration
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Example Illustration
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▪ Run DFS on the input DAG G.

▪ Output the nodes in decreasing order of their finish time.
▪ As each vertex is finished, insert it onto the front of a linked list

▪ Return the linked list of vertices

DFS(G)

for each vertex u in G.V

u.color = WHITE

u.pi = NIL

time = 0

for each vertex u in G.V

if u.color == WHITE

DFS-VISIT(G, u)

DFS-Visit(G, u)

time = time + 1

u.d = time

u.color = GRAY

for each v in G.Adj[u]

if v.color == WHITE

v.pi = u

DFS-VISIT(G, v)

u.color = BLACK

time = time + 1

u.f = time // finish time

Time Complexity:



▪ Proof
▪ →: suppose there is a back edge 𝑢, 𝑣

▪ 𝑣 is an ancestor of 𝑢 in DFS forest

▪ There is a path from 𝑣 to 𝑢 in 𝐺 and 𝑢, 𝑣 completes the cycle 

▪  : suppose there is a cycle 𝑐

▪ Let 𝑣 be the first vertex in 𝑐 to be discovered and 𝑢 is a predecessor of 𝑣 in 𝑐

▪ Upon discovering 𝑣 the whole cycle from 𝑣 to 𝑢 is WHITE

▪ At time 𝑣. 𝑑, the vertices of 𝑐 form a path of white vertices from 𝑣 to 𝑢

▪ By the white-path theorem, vertex 𝑢 becomes a descendant of 𝑣 in the DFS forest

▪ Therefore, 𝑢, 𝑣 is a back edge
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Lemma 22.11
A directed graph is acyclic  a DFS yields no back edges.

White Path Theorem: In a DFS forest of 𝐺, 𝑣 is a 
descendant of 𝑢 in the forest  at the time 𝑢. 𝑑
that the search discovers 𝑢, there is a path from 
𝑢 to 𝑣 in 𝐺 consisting entirely of WHITE vertices



▪ Proof
▪ When 𝑢, 𝑣 is being explored, 𝑢 is GRAY and there are three cases for 𝑣:

▪ Case 1 – GRAY

▪ 𝑢, 𝑣 is a back edge (contradicting Lemma 22.11), so 𝑣 cannot be GRAY

▪ Case 2 – WHITE

▪ 𝑣 becomes descendant of 𝑢

▪ 𝑣 will be finished before 𝑢

▪ Case 3 – BLACK

▪ 𝑣 is already finished

30

Theorem 22.12
The algorithm produces a topological sort of the input DAG. That is, if 
𝑢, 𝑣 is a directed edge (from 𝑢 to 𝑣) of 𝐺, then 𝑢. 𝑓 > 𝑣. 𝑓.
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▪ Since cycle detection becomes back edge detection (Lemma 
22.11), DFS can be used to test whether a graph is a DAG

▪ Is there a topological order for cyclic graphs?

▪ Given a topological order, is there always a DFS traversal 
that produces such an order?

32



Textbook Chapter 23 – Minimal Spanning Trees
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▪ Definition
▪ a subgraph that is a tree and connects all vertices

▪ Exactly 𝑛 − 1 edges

▪ Acyclic

▪ There can be many spanning trees of a graph

▪ BFS and DFS also generate spanning trees
▪ BFS tree is typically “short and bushy”

▪ DFS tree is typically “long and stringy”
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▪ Input: a connected 𝑛-node 𝑚-edge graph 𝐺 with edge weights 𝑤

▪ Output: a spanning tree 𝑇 of 𝐺 with minimum 𝑤(𝑇)
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WLOG: we may assume that all edge weights are distinct



▪ Q: What if the graph is unweighted?

▪ Q: What if the graph contains edges with negative weights?

36

Trivial

Add a large constant to every edge; a MST remains the same



▪ Proof by contradiction
▪ Suppose there are two MSTs 𝐴 and 𝐵

▪ Let 𝑒 be the least-weight edge in 𝐴⋃𝐵 and 𝑒 is not in both

▪ WLOG, assume 𝑒 is in 𝐴

▪ Add 𝑒 to 𝐵; 𝑒 ⋃𝐵 contains a cycle 𝐶

▪ B includes at least one edge 𝑒′ that is not in 𝐴 but on 𝐶

▪ Replacing 𝑒′ with 𝑒 yields a MST with less cost

37

Theorem: MST is unique if all edge weights are distinct

If edge weights are not all distinct, then the (multi-)set of weights in 
MST is unique
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▪Otakar Borůvka
▪ Czech scientist

▪ Introduced the problem

▪ Gave an 𝑂 𝑚 log 𝑛 time algorithm

▪ The original paper was written in Czech in 1926

▪ The purpose was to efficiently provide electric coverage of 
Bohemia

39



▪ Repeat the following procedure until the resulting graph 
becomes a single node
▪ For each node 𝑢, mark its lightest incident edge 

▪ From the marked edges form a forest 𝐹, add the edges of 𝐹 into the 
set of edges to be reported

▪ Contract each maximal subtree of 𝐹 into a single node

40
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▪ Proof via contradiction
▪ An MST 𝑇 of 𝐺 that does not contain 𝑢, 𝑣

▪ A cycle 𝐶 = 𝑇 ∪ 𝑢, 𝑣 contains an edge 𝑢,𝑤 in 𝐶 that has 
larger weight than 𝑢, 𝑣

▪ 𝑇′ = 𝑇 ∪ 𝑢, 𝑣 \ 𝑢, 𝑤 must be a spanning tree of 𝐺 lighter 
than 𝑇

42

Claim: If 𝑢, 𝑣 is the lightest edge incident to 𝑢 in 𝐺, 𝑢, 𝑣 must 
belong to any MST of 𝐺

u

v

w



▪ The recurrence relation

▪ We check all edges in each phase

▪ After each contraction phase, the number of nodes is reduced 
by at least one half

▪ Time complexity:
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▪ Proof by contradiction
▪ Suppose 𝑒 is in the MST

▪ Removing 𝑒 disconnects the MST into two components T1 and T2

▪ There exists another edge 𝑒′ in 𝐶 that can reconnect T1 and T2

▪ Since 𝑤 𝑒’ < 𝑤(𝑒), the new tree has a lower weight

▪ Contradiction!

44

Let 𝐶 be any cycle in the graph 𝐺, and let 𝑒 be an edge with the 
maximum weight on 𝐶. Then the MST does not contain 𝑒.
• For simplicity, assume all edge weights are distinct



▪ Proof by contradiction
▪ Suppose 𝑒 is not in the current MST

▪ Adding 𝑒 creates a cycle in the MST

▪ There exists another edge 𝑒′ in 𝐶 that can break the cycle

▪ Since 𝑤 𝑒’ > 𝑤(𝑒), the new tree has a lower weight

▪ Contradiction!

45

Let 𝐶 be a cut in the graph, and let 𝑒 be the edge with the 
minimum cost in 𝐶. Then the MST contains 𝑒.
• Cut = a partition of the vertices
• For simplicity, assume all edge weights are distinct



Textbook Chapter 23.2 – The algorithms of Kruskal and Prim 
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▪ For each node 𝑢
▪ Make-set(𝑢): create a set consisting of 𝑢

▪ For each edge 𝑢, 𝑣 , taken in non-decreasing order by weights
▪ if Find-set(𝑢) ≠Find-set(𝑣) (i.e., 𝑢 and 𝑣 are not in the same 

set) then
▪ Output edge 𝑢, 𝑣

▪ Union(𝑢, 𝑣): union the sets containing 𝑢 and 𝑣 into a single set

47
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The lightest edge incident to a vertex must be in the MST



▪ Consider whether adding 𝑒 creates a cycle:
▪ If adding 𝑒 to 𝑇 creates a cycle 𝐶

▪ Then 𝑒 is the max weight edge in 𝐶

▪ The cycle property ensures that 𝑒 is not in the MST

▪ If adding 𝑒 = 𝑢, 𝑣 to 𝑇 does not create a cycle

▪ Before adding 𝑒, the current MST can be divided into two trees T1 
and T2 such that 𝑢 in T1 and 𝑉 in T2

▪ 𝑒 is the minimum-cost edge on the cut of T1 and T2

▪ The cut property ensures that 𝑒 is in the MST

50
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MST-KRUSKAL(G, w) // w = weights

A = empty // edge set of MST

for v in G.V

MAKE-SET(v)

sort edges of G.E into non-decreasing order by weight w

for (u, v) in G.E, taken in non-decreasing order by weight

if FIND-SET(u) ≠ FIND-SET(v)

A = A ∪ {u, v}

UNION(u, v)

return A

▪ Disjoint-set data structure with union-by-rank (Textbook Ch. 21)
▪ MAKE-SET:

▪ FIND-SET:

▪ UNION:

▪ The amortized cost of 𝑚 operations on 𝑛 elements (Exercise 21.4-4):

▪ Total complexity:



Textbook Chapter 23.2 – The algorithms of Kruskal and Prim 
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▪ Let 𝑇 consist of an arbitrary node

▪ For 𝑖 = 1 to 𝑛 − 1
▪ add the least-weighted edge incident to the current subtree
𝑇 that does not incur a cycle

53
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The lightest edge incident to a vertex must be in the MST
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MST-PRIM(G, w, r) // w = weights, r = root

for u in G.V

u.key = ∞

u.π = NIL

r.key = 0

Q = G.V

while Q ≠ empty

u = EXTRACT-MIN(Q)

for v in G.adj[u]

if v ∈ Q and w(u, v) < v.key

v.π = u

v.key = w(u, v) // DECREASE-KEY

▪ Binary min-heap (Textbook Ch. 6)
▪ BUILD-MIN-HEAP:

▪ EXTRACT-MIN:

▪ DECREASE-KEY:

▪ Total complexity:



65

▪ Fibonacci heap (Textbook Ch. 19)
▪ BUILD-MIN-HEAP:

▪ EXTRACT-MIN:        (amortized)

▪ DECREASE-KEY:    (amortized)

▪ Total complexity:

MST-PRIM(G, w, r) // w = weights, r = root

for u in G.V

u.key = ∞

u.π = NIL

r.key = 0

Q = G.V

while Q ≠ empty

u = EXTRACT-MIN(Q)

for v in G.adj[u]

if v ∈ Q and w(u, v) < v.key

v.π = u

v.key = w(u, v) // DECREASE-KEY



▪Minimal Spanning Trees (MST)
▪ Boruvka’s Algorithm:

▪ Kruskal’s Algorithm:

▪ Prim’s Algorithm:                       with binary min-heap

▪ Prim’s Algorithm:                               with Fabonacci heap
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Course Website: http://ada.miulab.tw

Email: ada-ta@csie.ntu.edu.tw
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Important announcement will be sent to @ntu.edu.tw mailbox 
& post to the course website

http://ada.miulab.tw/
mailto:ada-ta@csie.ntu.edu.tw

