AR

National Taiwan University Slides credited from Hsueh-I Lu & Hsu-Chun Hsiao

Announcement

= Midterm announced
= Check the scores / answers

= Find TAs (office hour / email) if you ’
have questions by 12/06 (Thur)

= Homework 3 released

= Due on 12/13 (Thur) 14:20 (two
weeks)

= Mini-HW 8 released
= Due on 12/06 (Thur) 14:20

——

Mini-HW 8

Consider the following graph :

(1) Please use Kruskal's algorithm to find the minimum spanning tree "step-by-step".
(2) Please use Prim algorithm to find the minimum spanning tree "step-by-step".
Note :

- pseudo-code is not needed, but please DO show the process step by step.

- You just need to draw how edges are added iteratively.

Outline _Q _/_W.T&M

= DFS Applications
= Strongly Connected Components
= Topological Sorting

= Minimal Spanning Trees (MST)
= Boruvka’s Algorithm
= Kruskal’s Algorithm
= Prim’s Algorithm

) De pth-First Search

Textbook Chapter 22.3 — Depth-first search

Depth-First Search (DFS)

= Search as deep as possible and then backtrack until findinga

new path
$ 12 13
o
g B -

s

EA-— -

g
NoeARaR M HInnnnnnt
/'I'imestamm:discovery time / finishing time

DFS Algorithm

// Explore full graph and builds up
a collection of DFS trees
DFE'S (G)
for each vertex u in G.V
u.color = WHITE
u.pi = NIL
time = 0 // global timestamp
for each vertex u in G.V
if u.color == WHITE
DFS-VISIT (G, u)

= Implemented via recursion (stack)

DFS-Visit (G, u)
time = time + 1
u.d = time // discover time
u.color = GRAY
for each v in G.Adj[u]
if v.color == WHITE
v.pl = u
DFS-VISIT (G, W)
u.color = BLACK
time = time + 1
u.f = time // finish time

= Color the vertices to keep track of progress:
= GRAY: discovered (first time encountered)

= BLACK: finished (all adjacent vertices discovered)

= WHITE: undiscovered

DFS Properties

= Parenthesis Theorem

= Parenthesis structure: represent the discovery of vertex u with a left
parenthesis “(u” and represent its finishing by a right parenthesis “u)”. In
DFS, the parentheses are properly nested.

= White Path Theorem
= In a DFS forest of a directed or undirected graph G = (V, E),

= vertex v is a descendant of vertex u in the forest < at the time u.d
that the search discovers u, there is a path from u to v in G consisting
entirely of WHITE vertices

= Classification of Edges in G
= Tree Edge
= Back Edge
= Forward Edge
= Cross Edge

oly Connected
—~ Components

Textbook Chapter 22.5 — Strongly connected components

Strongly Connected Components

= Input: a directed graph G = (V,E)

= Qutput: a connected component of G
= a3 maximal subset U of V' s.t. any two nodes in U are reachable in G

-

hy must the strongly
connected components

Algorithm

= Step 1: Run DFS on G to obtain the finish time v. f forv € V.

= Step 2: Run DFS on the transpose of G where the vertices I/ are
processed in the decreasing order of their finish time.

= Step 3: output the vertex partition by the second DFS

Transpose of A Graph

Example lllustration

‘ &
Algorithm Correctness r's

CW

Lemma

Let C be the strongly connected component of G (and G7) that contains
the node u with the largest finish time wu. f. Then C cannot have any
incoming edge from any node of G notin C.

= Proof by contradiction
= Assume that (v, w) is an incoming edge to C.

= Since C is a strongly connected component of , there cannot be any
path from any node of C to v in G.

= Therefore, the finish time of v has to be larger than any node in C,
including u. =2 v. f > u. f, contradiction

Algorithm Correctness

Theorem
By continuing the process from the vertex u* whose finish time u”. f is

the largest excluding those in C, the algorithm returns the strongly
connected components.

= Practice to prove using induction

G

C C

Time Complexity

= Step 1: Run DFS on G to obtain the finish time v. f forv € V.

= Step 2: Run DFS on the transpose of G where the vertices I/ are
processed in the decreasing order of their finish time.

= Step 3: output the vertex partition by the second DFS

Time Complexity: ©(n + m)

Problem Complexity

Upper bound = O(m + n)

Lower bound = Q(m + n)

Topological Sort

Textbook Chapter 22.4 — Topological sort

Directed Acyclic Graph (DAG)

= Definition
= a directed graph without any directed cycle

a—
J"\ﬁ@

Topological Sort Problem

= Taking courses should follow the specific order

= How to find a course taking order?

BSR4

BitlA51E

BT S A S

Topological Sort Problem

= |nput: a directed acyclic graph G = (V,E)

= Qutput: a linear order of V s.t. all edges of G going from lower-
indexed nodes to higher-indexed nodes (2= %)

7~ N 7

o 0-0-0-0-0

Algorithm

= Run DFS on the input DAG G.

= Qutput the nodes in decreasing order of their finish time.

DFS (G)
for each vertex u in G.V
u.color = WHITE
u.pi = NIL

time = 0
for each vertex u in G.V
if u.color == WHITE

DFS-VISIT (G, u)

DFS-Visit (G, u)
time = time + 1
u.d = time
u.color = GRAY

for each v in G.Adj[u] (outgoing)
if v.color == WHITE
vV.pl = U

DFS-VISIT (G, v)
u.color = BLACK
time = time + 1
u.f = time // finish time

Example lllustration

6 o< 0—*6—*0—*6—*0

A

Example lllustration

Time Complexity

= Run DFS on the input DAG G. ©(n + m)

= Qutput the nodes in decreasing order of their finish time.
= As each vertex is finished, insert it onto the front of a linked list ©(n)
= Return the linked list of vertices

_ _ DFS-Visit (G,

Time Comple)“ty: @(?’L + m) iimisi éimeul 1
u.d = time
u.color = GRAY

for each v in G.Adj[u]

DF'S (G)
for each vertex u in G.V

i £ . 1 == WHITE
u.color = WHITE thoV.coror
u.pi = NIL vV.pl = U
time = 0 DFS-VISIT (G, V)
for each vertex u in G.V u.color = BLACK
if u.color == WHITE time = time + 1

DFS-VISIT (G, u) u.f = time // finish time

Algorithm Correctness

Lemma 22.11

A directed graph is acyclic <~ a DFS yields no back edges.

= Proof

= 2: suppose there is a back edge (u, v)

v is an ancestor of u in DFS forest

= There is a path from v to u in G and (u, v) completes the cycle

= & :suppose thereis a cycle ¢
Let v be the first vertex in ¢ to be discovered and u is a predecessor of vin ¢

Upon discovering v the whole cycle from v to u is WHITE

At time v. d, the vertices of ¢ form a path of white vertices from v tou

By the white-path theorem, vertex u becomes a descendant of v in the DFS forest

Therefore, (u, v) is a back edge __ L

l

White Path Theorem: In a DFS forest of G, v is a

descendant of u in the forest < at the time u.d
that the search discovers u, there is a path from
u to v in G consisting entirely of WHITE vertices

©

Algorithm Correctness

Theorem 22.12

The algorithm produces a topological sort of the input DAG. That is, if
(u, v) is a directed edge (from u to v) of G, thenu. f > v. f.

= Proof

= When (u, v) is being explored, u is GRAY and there are three cases for v:
= Case 1 - GRAY

= (u,v) is a back edge (contradicting Lemma 22.11), so v cannot be GRAY
= Case 2 - WHITE

= v becomes descendant of u

= v will be finished before u » v.f <u.f
= Case 3 —BLACK

= v is already finished W v.f<u.f

Problem Complexity

Upper bound = O(m + n)

Lower bound = Q(m + n)

Discussion

= Since cycle detection becomes back edge detection (Lemma
22.11), DFS can be used to test whether a graph is a DAG

= |s there a topological order for cyclic graphs?

= Given a topological order, is there always a DFS traversal
that produces such an order?

= Minimal Spanning
= Tree (MST)

Textbook Chapter 23 — Minimal Spanning Trees

Spanning Tree

= Definition
= a subgraph that is a tree and connects all vertices
= Exactlyn — 1 edges
= Acyclic
= There can be many spanning trees of a graph

= BFS and DFS also generate spanning trees
= BFS tree is typically “short and bushy”

= DFS tree is typically “long and stringy”

Minimal Spanning Tree Problem

= Input: a connected n-node m-edge graph G with edge weights w

= Qutput: a spanning tree T of G with minimum w(T)

Minimal Spanning Tree Problem

= Q: What if the graph is unweighted?
Trivial
= Q: What if the graph contains edges with negative weights?

Add a large constant to every edge; a MST remains the same

Uniqueness of MIST

Theorem: MST is unique if all edge weights are distinct

= Proof by contradiction
= Suppose there are two MSTs A and B

= Let e be the least-weight edge in AUB and e is not in both
= WLOG, assume eisin 4

= Add e to B; {e}UB contains a cycle C

= B includes at least one edge e’ that is not in 4 but on C

= Replacing e’ with e yields a MST with less cost

If edge weights are not all distinct, then the (multi-)set of weights in
MST is unique

®) Boruvka’s Alg

Inventor of MST

= Otakar BoruUvka
= Czech scientist
= Introduced the problem
= Gave an O(mlogn) time algorithm

= The original paper was written in Czech in 1926

= The purpose was to efficiently provide electric coverage of
Bohemia

Boruvka’s Algorithm

= Repeat the following procedure until the resulting graph
becomes a single node
= For each node u, mark its lightest incident edge

= From the marked edges form a forest F, add the edges of F into the
set of edges to be reported

= Contract each maximal subtree of F into a single node

Boruvka’s Algorithm Illustration

Algorithm Correctness

Claim: If (u, v) is the lightest edge incident to u in G, (u, v) must
belong to any MST of G

= Proof via contradiction
= An MST T of G that does not contain (u, v)

= Acycle C =T U (u, v) contains an edge (u,w) in C that has
larger weight than (u, v)

=T" =T U (u,v)\(u, w) must be a spanning tree of G lighter
than T

Time Complexity

= The recurrence relation

T(m,n) <T(m,n/2)+ O(m)

= We check all edges in each phase ® O(m)

= After each contraction phase, the number of nodes is reduced
by at least one half

= Time complexity: O(m log n)

Cycle Property

Let C be any cycle in the graph G, and let e be an edge with the

maximum weight on C. Then the MST does not contain e.
e For simplicity, assume all edge weights are distinct

= Proof by contradiction
= Suppose e is in the MST
= Removing e disconnects the MST into two components T1 and T2
= There exists another edge e’ in C that can reconnect T1 and T2
= Since w(e’) < w(e), the new tree has a lower weight
= Contradiction!

Cut Property

Let C be a cut in the graph, and let e be the edge with the

minimum cost in C. Then the MST contains e.
e Cut = a partition of the vertices
e For simplicity, assume all edge weights are distinct

= Proof by contradiction
= Suppose e is not in the current MST
= Adding e creates a cycle in the MST
= There exists another edge e’ in C that can break the cycle
= Since w(e’) > w(e), the new tree has a lower weight
= Contradiction!

O Kruskal’s Algorithm

Textbook Chapter 23.2 — The algorithms of Kruskal and Prim

Kruskal’s Algorithm

= For each node u
= Make-set(u): create a set consisting of u

= For each edge (u, v), taken in non-decreasing order by weights

= if Find-set(u) #Find-set(v) (i.e., u and v are not in the same
set) then
= Qutput edge (u, v)
= Union(u, v): union the sets containing u and v into a single set

Kruskal’s Algorithm lllustration

Kruskal’s Algorithm Correctness

Kruskal’s Algorithm Correctness

= Consider whether adding e creates a cycle:
= |f adding e to T creates a cycle C
= Then e is the max weight edge in C
= The cycle property ensures that e is not in the MST
= |f adding e = (u,v) to T does not create a cycle

= Before adding e, the current MST can be divided into two trees T1
and T2 suchthatuinTland V' in T2

= ¢ is the minimum-cost edge on the cut of T1 and T2

= The cut property ensures that e is in the MST

Kruskal’s Time Complexity

MST-KRUSKAL (G, w) // w = weights
A = empty // edge set of MST
for v in G.V

MAKE-SET (v)

sort edges of G.E into non-decreasing order by weight w ()Unlogﬂﬂ
for (u, v) in G.E, taken in non-decreasing order by weight m times
if FIND-SET (u) # FIND-SET (V)
A =AU {u v}
UNION (u, v)
return A

= Disjoint-set data structure with union-by-rank (Textbook Ch. 21)
= MAKE-SET: O(1)

= FIND-SET: O(logn)
= UNION: O(logn)

= The amortized cost of m operations on n elements (Exercise 21.4-4): O(m logn)

= Total complexity: O(m log m) = O(mlogn) @

&) Prim’s Algorithm

Textbook Chapter 23.2 — The algorithms of Kruskal and Prim

Prim’s Algorithm

= Let T consist of an arbitrary node

sFori=1ton—1
= add the least-weighted edge incident to the current subtree
T that does not incur a cycle

Prim’s Algorithm lllustration

8 12
o—O0—0

I S
o—0—©

Prim’s Algorithm lllustration

8 12
o—O0—0

I S
o—0—©

Prim’s Algorithm lllustration

8 12
o——O0—0

I S
o—0—©

Prim’s Algorithm lllustration

8 12
o——O0—0

I S
o—0—©

Prim’s Algorithm lllustration

8 12
o——O0—0

. { |
o—0—©

Prim’s Algorithm lllustration

8 12
o——O0—0

1 1|
o—0—©

Prim’s Algorithm lllustration

8 12
o——O0—0

1 1|
o—0—©

Prim’s Algorithm lllustration

8 12
o——O0—0

1 1|
o—0—©

Prim’s Algorithm lllustration

8 12
o—O0—0

1 1|
o—0—©

Prim’s Algorithm Correctness

Prim’s Time Complexity

MST-PRIM(G, w, r) // w = weights, r = root
for u in G.V
u.key = e
u.mr = NIL
r.key =
Q =G.V
while Q # empty
u = EXTRACT-MIN (Q)
for v in G.adj[u]
if v € Q and w(u, v) < v.key
V.II = U

v.key w(u, v) // DECREASE-KEY

O(n)

n times
O(logn)

m times

O(logn)

= Binary min-heap (Textbook Ch. 6)
= BUILD-MIN-HEAP: O(n)
= EXTRACT-MIN: O(logn)
* DECREASE-KEY: O(logn)

= Total complexity:O(n logn + mlogn) = O(mlogn)

()

Prim’s Time Complexity

MST-PRIM(G, w, r) // w = weights, r = root
for u in G.V

u.key = e
u.m = NIL O(n)
r.key = 0
Q = G.V
while Q # empty n times
u = EXTRACT-MIN (Q) O(logn)
for v in G.adj[u] m times
if v € Q and w(u, v) < v.key
V.II = U
v.key = w(u, v) // DECREASE-KEY O(1)

= Fibonacci heap (Textbook Ch. 19)
= BUILD-MIN-HEAP: O(n)
» EXTRACT-MIN: O(logn) (amortized)
= DECREASE-KEY:(O(1) (amortized)

= Total complexity: O(m + n logn)

Concluding Remarks

= Minimal Spanning Trees (MST)

Boruvka’s Algorithm: O(m logn)

Kruskal’s Algorithm: O(m logn)

Prim’s Algorithm: O(m log n) with binary min-heap

Prim’s Algorithm: O(m + nlog n) with Fabonacci heap

Be Continued...

Question?

Important announcement will be sent to @ntu.edu.tw mailbox
& post to the course website

Course Website:

Email:

http://ada.miulab.tw/
mailto:ada-ta@csie.ntu.edu.tw

