
Slides credited from Hsueh-I Lu, Hsu-Chun Hsiao, & Michael Tsai

 Mini-HW

 NTU COOL

 TA hours

 Course recordings

 Instant feedback

 Classroom (crowded, sleepy, etc.)

 Homework due time

 Pseudo code

 Difficulty of homework & exam

 TA recitation

 Seat announcement
2

 Mini-HW 7 released
 Due on 11/29 (Thur) 14:20

 Homework 3 released soon
 Due on 12/13 (Thur) 14:20 (three weeks)

3

Frequently check the website for the updated information!

4

 Graph Basics

 Graph Theory

 Graph Representations

 Graph Traversal
 Breadth-First Search (BFS)

 Depth-First Search (DFS)

 DFS Applications
 Connected Components

 Strongly Connected Components

 Topological Sorting
5

 A graph G is defined as
 V: a finite, nonempty set of vertices

 E: a set of edges / pairs of vertices

6

3 5

1

4

2

 Graph type
 Undirected: edge 𝑢, 𝑣 = 𝑣, 𝑢

 Directed: edge 𝑢, 𝑣 goes from vertex 𝑢 to vertex 𝑣; 𝑢, 𝑣 ≠ 𝑣, 𝑢

 Weighted: edges associate with weights

7

3 5

1

4

2

3 5

1

4

2

How many edges at most can a undirected (or directed) graph have?

 Adjacent (相鄰)
 If there is an edge 𝑢, 𝑣 , then 𝑢 and 𝑣 are adjacent.

 Incident (作用)
 If there is an edge 𝑢, 𝑣 , the edge 𝑢, 𝑣 is incident from 𝑢 and

is incident to 𝑣.

 Subgraph (子圖)
 If a graph 𝐺′ = 𝑉′, 𝐸′ is a subgraph of 𝐺 = 𝑉, 𝐸 , then 𝑉′ ⊆
𝑉 and 𝐸′ ⊆ 𝐸

8

 Degree
 The degree of a vertex 𝑢 is the number of edges incident on 𝑢

 In-degree of 𝑢: #edges 𝑥, 𝑢 in a directed graph

 Out-degree of 𝑢: #edges 𝑢, 𝑥 in a directed graph

 Degree = in-degree + out-degree

 Isolated vertex: degree = 0

9

𝐸 =
σ𝑖 𝑑𝑖
2

 Path
 a sequence of edges that connect a sequence of vertices

 If there is a path from 𝑢 (source) to 𝑣 (target), there is a sequence
of edges 𝑢, 𝑖1 , 𝑖1, 𝑖2 , … , 𝑖𝑘−1, 𝑖𝑘 , (𝑖𝑘 , 𝑣)

 Reachable: 𝑣 is reachable from 𝑢 if there exists a path from 𝑢 to 𝑣

 Simple Path
 All vertices except for 𝑢 and 𝑣 are all distinct

 Cycle
 A simple path where 𝑢 and 𝑣 are the same

 Subpath
 A subsequence of the path

10

 Connected
 Two vertices are connected if there is a path between them

 A connected graph has a path from every vertex to every other

 Tree
 a connected, acyclic, undirected graph

 Forest
 an acyclic, undirected but possibly disconnected graph

11

3 5

1

4

2

3 5

1

4

2

3 5

1

4

2

 Theorem. Let 𝐺 be an undirected graph. The following
statements are equivalent:
 𝐺 is a tree

 Any two vertices in 𝐺 are connected by a unique simple path

 𝐺 is connected, but if any edge is removed from 𝐸, the
resulting graph is disconnected.

 𝐺 is connected and 𝐸 = 𝑉 − 1

 𝐺 is acyclic, and 𝐸 = 𝑉 − 1

 𝐺 is acyclic, but if any edge is added to 𝐸, the resulting graph
contains a cycle

12

Proofs in Textbook Appendix B.5

13

 How to traverse all bridges where each one can only be
passed through once

14

A

B

D

C
C

A

B

D

 Euler path
 Can you traverse each edge in a connected graph exactly once

without lifting the pen from the paper?

 Euler tour
 Can you finish where you started?

15

C

A

B

D

C

A

B

D

C

A

B

D
Euler path
Euler tour

Euler path
Euler tour

Euler path
Euler tour

 Solved by Leonhard Euler in 1736

 𝐺 has an Euler path iff 𝐺 has exactly 0 or 2 odd vertices

 𝐺 has an Euler tour iff all vertices must be even vertices

16

Is it possible to determine whether a graph has an Euler path or an Euler tour,
without necessarily having to find one explicitly?

Even vertices = vertices with even degrees
Odd vertices = vertices with odd degrees

 Hamiltonian Path
 A path that visits each vertex exactly once

 Hamiltonian Cycle
 A Hamiltonian path where the start and destination are the same

 Both are NP-complete

17

Modeling applications using graph theory
 What do the vertices represent?

 What do the edges represent?

 Undirected or directed?

18Social Network Knowledge Graph

19

 How to represent a graph in computer programs?

 Two standard ways to represent a graph 𝐺 = 𝑉, 𝐸
 Adjacency matrix

 Adjacency list

20

Matrix

21

 Adjacency matrix = 𝑉 × 𝑉 matrix 𝐴 with 𝐴[𝑢][𝑣] = 1 if
(𝑢, 𝑣) is an edge

1 2 3 4 5 6

1 1 1

2 1 1 1

3 1 1 1

4 1 1 1

5 1

6 1 1

1

2

3

5
4

6

• For undirected graphs, 𝐴 is symmetric; i.e., 𝐴 = 𝐴𝑇

• If weighted, store weights instead of bits in 𝐴

Matrix

 Space:

 Time for querying an edge:

 Time for inserting an edge:

 Time for deleting an edge:

 Time for listing all neighbors of a vertex:

 Time for identifying all edges:

 Time for finding in-degree and out-degree of a vertex?

22

List

 Adjacency lists = vertex indexed array of lists
 One list per vertex, where for 𝑢 ∈ 𝑉, 𝐴[𝑢] consists of all

vertices adjacent to 𝑢

23

1

2

3

4

5

6

1 4

3

2 3

2

32

5

1 4 6

4

6

1

2

3

5
4

6

If weighted, store weights also in adjacency lists

List

 Space:

 Time for querying an edge:

 Time for inserting an edge:

 Time for deleting an edge:

 Time for listing all neighbors of a vertex:

 Time for identifying all edges:

 Time for finding in-degree and out-degree of a vertex?

24

Matrix representation is suitable for dense graphs

 List representation is suitable for sparse graphs

 Besides graph density, you may also choose a data structure
based on the performance of other operations

25

Space
Query an

edge
Insert an

edge
Delete an

edge

List a
vertex’s

neighbors

Identify
all edges

Adjacency Matrix

Adjacency List

Textbook Chapter 22 – Elementary Graph Algorithms

26

 From a source vertex, systematically follow the edges of a
graph to visit all reachable vertices of the graph

 Useful to discover the structure of a graph

 Standard graph-searching algorithms
 Breadth-First Search (BFS, 廣度優先搜尋)

 Depth-First Search (DFS, 深度優先搜尋)

27

Textbook Chapter 22.2 – Breadth-first search

28

29

Source 𝒔

Layer 1

Layer 2

 Input: directed/undirected graph 𝐺 = (𝑉, 𝐸) and source 𝑠

 Output: a breadth-first tree with root 𝑠 (𝑇BFS) that contains
all reachable vertices
 𝑣. 𝑑: distance from 𝑠 to 𝑣, for all 𝑣 ∈ 𝑉

 Distance is the length of a shortest path in G

 𝑣. 𝑑 = ∞ if 𝑣 is not reachable from 𝑠

 𝑣. 𝑑 is also the depth of 𝑣 in 𝑇BFS

 𝑣. 𝜋 = 𝑢 if (𝑢, 𝑣) is the last edge on shortest path to 𝑣

 𝑢 is 𝑣’s predecessor in 𝑇BFS

30

 Initially 𝑇BFS contains only 𝑠

 As 𝑣 is discovered from 𝑢, 𝑣 and
(𝑢, 𝑣) are added to 𝑇BFS
 𝑇BFS is not explicitly stored; can be

reconstructed from 𝑣. 𝜋

 Implemented via a FIFO queue

 Color the vertices to keep track of
progress:
 GRAY: discovered (first time

encountered)
 BLACK: finished (all adjacent

vertices discovered)
 WHITE: undiscovered

31

BFS(G, s)

for each vertex u in G.V-{s}

u.color = WHITE

u.d = ∞
u.pi = NIL

s.color = GRAY

s.d = 0

s.pi = NIL

Q = {}

ENQUEUE(Q, s)

while Q! = {}

u = DEQUEUE(Q)

for each v in G.Adj[u]

if v.color == WHITE

v.color = GRAY

v.d = u.d + 1

v.pi = u

ENQUEUE(Q,v)

u.color = BLACK

𝑠

0

32

𝑤 𝑟

1 1

𝑟 𝑡 𝑥

1 2 2

𝑡 𝑥 𝑣

2 2 2

𝑥 𝑣 𝑢

2 2 3

𝑣 𝑢 𝑦

2 3 3

33

𝑢 𝑦

3 3

𝑦

3

 Definition of 𝛿(𝑠, 𝑣): the shortest-path distance from 𝑠 to 𝑣 = the
minimum number of edges in any path from 𝑠 to 𝑣
 If there is no path from 𝑠 to 𝑣, then 𝛿 𝑠, 𝑣 = ∞

 The BFS algorithm finds the shortest-path distance to each reachable
vertex in a graph 𝐺 from a given source vertex 𝑠 ∈ 𝑉.

34

 Proof
 Case 1: 𝑢 is reachable from 𝑠

 𝑠- 𝑢- 𝑣 is a path from 𝑠 to 𝑣 with length 𝛿 𝑠, 𝑢 + 1

 Hence, 𝛿 𝑠, 𝑣 ≤ 𝛿 𝑠, 𝑢 + 1

 Case 2: 𝑢 is unreachable from 𝑠

 Then 𝑣 must be unreachable too.

 Hence, the inequality still holds.

35

Lemma 22.1
Let 𝐺 = 𝑉, 𝐸 be a directed or undirected graph, and let 𝑠 ∈ 𝑉 be an
arbitrary vertex. Then, for any edge 𝑢, 𝑣 ∈ 𝐸, 𝛿 𝑠, 𝑣 ≤ 𝛿 𝑠, 𝑢 + 1.

𝑠-𝑣的最短路徑一定會小於等於𝑠-𝑢的最短路徑距離+1

s
v

u𝛿 𝑠, 𝑢

 Proof by induction

 Holds when 𝑛 = 1: 𝑠 is in the queue and 𝑣. 𝑑 = ∞ for all 𝑣 ∈ 𝑉 𝑠

 After 𝑛 + 1 ENQUEUE ops, consider a white vertex 𝑣 that is
discovered during the search from a vertex 𝑢

 Vertex 𝑣 is never enqueued again, so 𝑣. 𝑑 never changes again
36

Lemma 22.2
Let 𝐺 = 𝑉, 𝐸 be a directed or undirected graph, and suppose BFS is run
on 𝐺 from a given source vertex 𝑠 ∈ 𝑉. Then upon termination, for each
vertex 𝑣 ∈ 𝑉, the value 𝑣. 𝑑 computed by BFS satisfies 𝑣. 𝑑 ≥ 𝛿 𝑠, 𝑣 .

BFS算出的d值必定大於等於真正距離

Inductive hypothesis: 𝑣. 𝑑 ≥ 𝛿 𝑠, 𝑣 after 𝑛 ENQUEUE ops

(by induction hypothesis)

(by Lemma 22.1)

 Proof by induction

 Holds when 𝑄 = 𝑠 .

 Consider two operations for inductive step:

 Dequeue op: when 𝑄 = 𝑣1, 𝑣2, … , 𝑣𝑟 and dequeue 𝑣1
 Enqueue op: when 𝑄 = 𝑣1, 𝑣2, … , 𝑣𝑟 and enqueue 𝑣𝑟+1

37

Lemma 22.3
Suppose that during the execution of BFS on a graph 𝐺 = 𝑉, 𝐸 , the
queue 𝑄 contains the vertices 𝑣1, 𝑣2, … , 𝑣𝑟 , where 𝑣1 is the head of 𝑄
and 𝑣𝑟 is the tail. Then, 𝑣𝑟 . 𝑑 ≤ 𝑣1. 𝑑 + 1 and 𝑣𝑖 . 𝑑 ≤ 𝑣𝑖+1. 𝑑 for 1 ≤ 𝑖 < 𝑟.

• Q中最後一個點的d值 ≤ Q中第一個點的d值+1
• Q中第i個點的d值 ≤ Q中第i+1點的d值

Inductive hypothesis:𝑣𝑟. 𝑑 ≤ 𝑣1. 𝑑 + 1 and 𝑣𝑖 . 𝑑 ≤ 𝑣𝑖+1. 𝑑 after 𝑛 queue ops

 Dequeue op

 Enqueue op

38

Inductive
hypothesis:

𝑣1 𝑣2 … 𝑣𝑟−1 𝑣𝑟

𝑣2 … 𝑣𝑟−1 𝑣𝑟
(induction hypothesis H2)

𝑣1 𝑣2 … 𝑣𝑟−1 𝑣𝑟

(induction hypothesis H2)𝑣1 𝑣2 … 𝑣𝑟−1 𝑣𝑟 𝑣𝑟+1𝑢

Let 𝑢 be 𝑣𝑟+1’s predecessor,

Since 𝑢 has been removed from 𝑄, the new head
𝑣1 satisfies

(induction hypothesis H1)

H1

H2

 H1 holds

 H2 holds

 H1 holds

𝑢

(induction hypothesis H1)

 H2 holds

(Q中最後一個點的d值 ≤ Q中第一個點的d值+1)

(Q中第i個點的d值 ≤ Q中第i+1點的d值)

 Proof
 Lemma 22.3 proves that 𝑣𝑖 . 𝑑 ≤ 𝑣𝑖+1. 𝑑 for 1 ≤ 𝑖 < 𝑟

 Each vertex receives a finite 𝑑 value at most once during the course of BFS

 Hence, this is proved.

39

Corollary 22.4
Suppose that vertices 𝑣𝑖 and 𝑣𝑗 are enqueued during the execution of BFS,

and that 𝑣𝑖 is enqueued before 𝑣𝑗. Then 𝑣𝑖 . 𝑑 ≤ 𝑣𝑗 . 𝑑 at the time that 𝑣𝑗 is

enqueued.

若𝑣𝑖比𝑣𝑗早加入queue 𝑣𝑖 . 𝑑 ≤ 𝑣𝑗 . 𝑑

 Proof of (1)
 All vertices 𝑣 reachable from 𝑠 must be discovered; otherwise they

would have 𝑣. 𝑑 = ∞ > 𝛿 𝑠, 𝑣 . (contradicting with Lemma 22.2)

40

Theorem 22.5 – BFS Correctness
Let 𝐺 = 𝑉, 𝐸 be a directed or undirected graph, and and suppose that BFS is
run on 𝐺 from a given source vertex 𝑠 ∈ 𝑉.
1) BFS discovers every vertex 𝑣 ∈ 𝑉 that is reachable from the source 𝑠
2) Upon termination, 𝑣. 𝑑 = 𝛿 𝑠, 𝑣 for all 𝑣 ∈ 𝑉
3) For any vertex 𝑣 ≠ 𝑠 that is reachable from 𝑠, one of the shortest paths

from 𝑠 to 𝑣 is a shortest path from 𝑠 to 𝑣. 𝜋 followed by the edge 𝑣. 𝜋, 𝑣

(2)

 Proof of (2) by contradiction
 Assume some vertices receive 𝑑 values not equal to its shortest-path

distance

 Let 𝑣 be the vertex with minimum 𝛿 𝑠, 𝑣 that receives such an incorrect
𝑑 value; clearly 𝑣 ≠ 𝑠

 By Lemma 22.2, 𝑣. 𝑑 ≥ 𝛿 𝑠, 𝑣 , thus 𝑣. 𝑑 > 𝛿 𝑠, 𝑣 (𝑣 must be reachable)

 Let 𝑢 be the vertex immediately preceding 𝑣 on a shortest path from 𝑠 to
𝑣, so 𝛿 𝑠, 𝑣 = 𝛿 𝑠, 𝑢 + 1

 Because 𝛿 𝑠, 𝑢 < 𝛿 𝑠, 𝑣 and 𝑣 is the minimum 𝛿 𝑠, 𝑣 , we have 𝑢. 𝑑 =
𝛿 𝑠, 𝑢

 𝑣. 𝑑 > 𝛿 𝑠, 𝑣 = 𝛿 𝑠, 𝑢 + 1 = 𝑢. 𝑑 + 1

41

(2)

 Proof of (2) by contradiction (cont.)
 𝑣. 𝑑 > 𝛿 𝑠, 𝑣 = 𝛿 𝑠, 𝑢 + 1 = 𝑢. 𝑑 + 1

 When dequeuing 𝑢 from 𝑄, vertex 𝑣 is either WHITE, GRAY, or BLACK

 WHITE: 𝑣. 𝑑 = 𝑢. 𝑑 + 1, contradiction

 BLACK: it was already removed from the queue

 By Corollary 22.4, we have 𝑣. 𝑑 ≤ 𝑢. 𝑑, contradiction

 GRAY: it was painted GRAY upon dequeuing some vertex 𝑤

 Thus 𝑣. 𝑑 = 𝑤. 𝑑 + 1 (by construction)

 𝑤 was removed from 𝑄 earlier than 𝑢, so 𝑤. 𝑑 ≤ 𝑢. 𝑑 (by Corollary 22.4)

 𝑣. 𝑑 = 𝑤. 𝑑 + 1 ≤ 𝑢. 𝑑 + 1, contradiction

 Thus, (2) is proved.
42

(3) For any vertex 𝑣 ≠ 𝑠 that is reachable from 𝑠, one of the shortest paths
from 𝑠 to 𝑣 is a shortest path from 𝑠 to 𝑣. 𝜋 followed by the edge 𝑣. 𝜋, 𝑣

 Proof of (3)
 If 𝑣. 𝜋 = 𝑢, then 𝑣. 𝑑 = 𝑢. 𝑑 + 1. Thus, we can obtain a shortest path

from 𝑠 to 𝑣 by taking a shortest path from 𝑠 to 𝑣. 𝜋 and then traversing
the edge 𝑣. 𝜋, 𝑣 .

43

 BFS(G, s) forms a BFS tree with all reachable 𝑣 from 𝑠

 We can extend the algorithm to find a BFS forest that contains every
vertex in 𝐺

44

BFS-Visit(G, s)

s.color = GRAY

s.d = 0

s.π = NIL

Q = empty

ENQUEUE(Q, s)

while Q ≠ empty

u = DEQUEUE(Q)

for v in G.adj[u]

if v.color == WHITE

v.color = GRAY

v.d = u.d + 1

v.π = u

ENQUEUE(Q, v)

u.color = BLACK

//explore full graph and builds up

a collection of BFS trees

BFS(G)

for u in G.V

u.color = WHITE

u.d = ∞

u.π = NIL

for s in G.V

if(s.color == WHITE)

// build a BFS tree

BFS-Visit(G, s)

Textbook Chapter 22.3 – Depth-first search

45

 Search as deep as possible and then backtrack until finding a
new path

46Timestamps: discovery time / finishing time

1

2

3
4

8

9
12 13

14

5
6

7

10

11

 Implemented via recursion (stack)

 Color the vertices to keep track of progress:
 GRAY: discovered (first time encountered)

 BLACK: finished (all adjacent vertices discovered)

 WHITE: undiscovered 47

// Explore full graph and builds up

a collection of DFS trees

DFS(G)

for each vertex u in G.V

u.color = WHITE

u.pi = NIL

time = 0 // global timestamp

for each vertex u in G.V

if u.color == WHITE

DFS-VISIT(G, u)

DFS-Visit(G, u)

time = time + 1

u.d = time // discover time

u.color = GRAY

for each v in G.Adj[u]

if v.color == WHITE

v.pi = u

DFS-VISIT(G, v)

u.color = BLACK

time = time + 1

u.f = time // finish time

 Parenthesis Theorem
 Parenthesis structure: represent the discovery of vertex 𝑢 with a left

parenthesis “(𝑢” and represent its finishing by a right parenthesis “𝑢)”. In
DFS, the parentheses are properly nested.

 White Path Theorem
 In a DFS forest of a directed or undirected graph 𝐺 = 𝑉, 𝐸 ,

 vertex 𝑣 is a descendant of vertex 𝑢 in the forest at the time 𝑢. 𝑑
that the search discovers 𝑢, there is a path from 𝑢 to 𝑣 in 𝐺 consisting
entirely of WHITE vertices

 Classification of Edges in 𝐺
 Tree Edge

 Back Edge

 Forward Edge

 Cross Edge
48

 Parenthesis Theorem
 Parenthesis structure: represent the discovery of vertex 𝑢 with a left

parenthesis “(𝑢” and represent its finishing by a right parenthesis
“𝑢)”. In DFS, the parentheses are properly nested.

49

Properly nested: (x (y y) x)
Not properly nested: (x (y x) y)

Proof in textbook p. 608

White Path Theorem
 In a DFS forest of a directed or undirected graph 𝐺 = 𝑉, 𝐸 ,

 vertex 𝑣 is a descendant of vertex 𝑢 in the forest at the time
𝑢. 𝑑 that the search discovers 𝑢, there is a path from 𝑢 to 𝑣 in 𝐺
consisting entirely of WHITE vertices

 Proof.

 Since 𝑣 is a descendant of 𝑢, 𝑢. 𝑑 < 𝑣. 𝑑

 Hence, 𝑣 is WHITE at time 𝑢. 𝑑

 In fact, since 𝑣 can be any descendant of 𝑢, any vertex on the path from 𝑢
to 𝑣 are WHITE at time 𝑢. 𝑑

 (textbook p. 608)

50

 Classification of Edges in 𝐺
 Tree Edge (GRAY to WHITE)

 Edges in the DFS forest

 Found when encountering a new vertex 𝑣 by exploring 𝑢, 𝑣

 Back Edge (GRAY to GRAY)

 𝑢, 𝑣 , from descendant 𝑢 to ancestor 𝑣 in a DFS tree

 Forward Edge (GRAY to BLACK)

 𝑢, 𝑣 , from ancestor 𝑢 to descendant 𝑣. Not a tree edge.

 Cross Edge (GRAY to BLACK)

 Any other edge between trees or subtrees. Can go between vertices in
same DFS tree or in different DFS trees

51

In an undirected graph, back edge = forward edge.
To avoid ambiguity, classify edge as the first type in the list that applies.

 Edge classification by the color of 𝑣 when visiting 𝑢, 𝑣
 WHITE: tree edge

 GRAY: back edge

 BLACK: forward edge or cross edge

 𝑢. 𝑑 < 𝑣. 𝑑 forward edge

 𝑢. 𝑑 > 𝑣. 𝑑 cross edge

52

Why?

Theorem 22.10
In DFS of an undirected graph, there are only tree edges and back edges
without forward and cross edge.

 Connected Components

 Strongly Connected Components

 Topological Sort

53

54

 Input: a graph 𝐺 = 𝑉, 𝐸

 Output: a connected component of 𝐺
 a maximal subset 𝑈 of 𝑉 s.t. any two nodes in 𝑈 are connected in 𝐺

55
Why must the connected components of a graph be disjoint?

56

10

1

2

5

3
4

6

7

8 9

Time Complexity:

BFS and DSF both find the connected components with the same complexity

57

58

Course Website: http://ada.miulab.tw

Email: ada-ta@csie.ntu.edu.tw

59

Important announcement will be sent to @ntu.edu.tw mailbox
& post to the course website

http://ada17.csie.org/
mailto:ada-ta@csie.ntu.edu.tw

