


Midterm Feedback

= Mini-HW
= NTU COOL
= TA hours

= Course recordings

» Instant feedback

= Classroom (crowded, sleepy, etc.)
= Homework due time

= Pseudo code

= Difficulty of homework & exam
= TA recitation
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Announcement

= Mini-HW 7 released
= Due on 11/29 (Thur) 14:20

= Homework 3 released soon
= Due on 12/13 (Thur) 14:20 (three weeks)

——————————————————————————————————————————————————————————————————————————————————————————————



Mini-HW 7

Given a tree with N nodes, where each edge of the tree is weighted with Wi, .

(1) Please design an algorithm (that runs in O(N) time) to accumulate the weights of all edges linking u
and v. (For this question, a clear explanation is enough, no pseudo code is needed)

(2) Please simply justify the correctness of your algorithm.




Outline ~

= Graph Basics
= Graph Theory
= Graph Representations

= Graph Traversal
= Breadth-First Search (BFS)
= Depth-First Search (DFS)

= DFS Applications
= Connected Components
= Strongly Connected Components
= Topological Sorting



Graph Basics

= A graph G is defined as G = (V, E)
= V: a finite, nonempty set of vertices
= E: a set of edges / pairs of vertices

V ={1,2,3,4,5}
E={(1,2),(1,3),(1,4),(2,4),(2,5), (4,5)}




Graph Basics

= Graph type
= Undirected: edge (u,v) = (v,u)
= Directed: edge (u, v) goes from vertex u to vertex v; (u,v) # (v,u)
= Weighted: edges associate with weights

V:{1,2,3,4,5} V:{1,2,3,4,5}
E:{(172)7(173)7(174)7 E = {(271)7(173)7(47 1)7
(2,4),(2,5),(4,5)} (2,4),(2,5), (5,4)}

————————————————————————————————————————————————————————————————————————————————————————————————————————————



Graph Basics

= Adjacent (1B #F)
= |f there is an edge (u, V), then u and v are adjacent.

= Incident (1E )

= |f there is an edge (u, V), the edge(u, v) is incident from u and
is incident to v.

= Subgraph (&)
= Ifagraph G' = (V',E") is asubgraphof G = (V,E), then V' C
VandE' € FE




Graph Basics

= Degree
= The degree of a vertex u is the number of edges incident on u
= In-degree of u: #edges (x,u) in a directed graph
= OQut-degree of u: #edges (u, x) in a directed graph
= Degree = in-degree + out-degree
= |solated vertex: degree =0

(i d;)
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Graph Basics

= Path
= a sequence of edges that connect a sequence of vertices

= |[f there is a path from u (source) to v (target), there is a sequence
of edges (ul il)i (il: iZ)r ey (ik—lr ik)) (ik1 U)
= Reachable: v is reachable from u if there exists a path from u to v

= Simple Path

= All vertices except for u and v are all distinct

= Cycle
= A simple path where u and v are the same

= Subpath
= A subsequence of the path @



Graph Basics

= Connected
= Two vertices are connected if there is a path between them

= A connected graph has a path from every vertex to every other

= Tree
= a connected, acyclic, undirected graph

= Forest
= an acyclic, undirected but possibly disconnected graph

JA A AL



Graph Basics

= Theorem. Let G be an undirected graph. The following
statements are equivalent:

= (7 is a tree

= Any two vertices in G are connected by a unique simple path

= (7 is connected, but if any edge is removed from E, the
resulting graph is disconnected.

= G is connected and |E| = |V| -1
= G is acyclic,and |[E| = [V]| — 1

= (7 is acyclic, but if any edge is added to E, the resulting graph
contains a cycle

Proofs in Textbook Appendix B.5



&) Graph Theory



Seven Bridges of Kdnigsberg

(T1eEER)

= How to traverse all bridges where each one can only be
passed through once




Euler Path and Euler Tour

(—EEEH)

= Euler path

= Can you traverse each edge in a connected graph exactly once
without lifting the pen from the paper?

= Euler tour
= Can you finish where you started?

Euler path | Euler path | Euler path |
Euler tour | Euler tour | Euler tour |



Euler Path and Euler Tour

__________________________________________________________________________________________________________________________________

. Is it possible to determine whether a graph has an Euler path or an Euler tour,
' without necessarily having to find one explicitly?

__________________________________________________________________________________________________________________________________

= Solved by Leonhard Euler in 1736
= (7 has an Euler path iff G has exactly O or 2 odd vertices

= (G has an Euler tour iff all vertices must be even vertices

Even vertices = vertices with even degrees
Odd vertices = vertices with odd degrees




Hamiltonian Path

= Hamiltonian Path
= A path that visits each vertex exactly once

= Hamiltonian Cycle
= A Hamiltonian path where the start and destination are the same

= Both are NP-complete




Real-World Applications

= Modeling applications using graph theory
= What do the vertices represent?  (siooi)

2560,

= What do the edges represent?
= Undirected or directed?
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Graph Representations

= How to represent a graph in computer programs?

= Two standard ways to represent a graph G = (V,E)
= Adjacency matrix

= Adjacency list



Adjacency Matrix

= Adjacency matrix =V X V matrix A with A[u][v] = 1if
(u,v) is an edge

* For undirected graphs, A4 is symmetric;i.e., A = AT
* If weighted, store weights instead of bitsin A @



Complexity of Adjacency Matrix

= Space: O(n?)

= Time for querying an edge: @(1)

= Time for inserting an edge: ©(1)

= Time for deleting an edge: ©(1)

= Time for listing all neighbors of a vertex: ©(n)
= Time for identifying all edges: ©(n?)

= Time for finding in-degree and out-degree of a vertex?



Adjacency List

= Adjacency lists = vertex indexed array of lists

= One list per vertex, where foru € V, A[u] consists of all
vertices adjacent to u

G\e

/\/

bvvd
by

by b4

1
2
3
4
5
6

}

4

If weighted, store weights also in adjacency lists



Complexity of Adjacency List

= Space: ©(m + n)

= Time for querying an edge: ©(deg) W O(log deg)
= Time for inserting an edge: ©(1) ™ O(logdeg)
= Time for deleting an edge: ©(deg) W O(log deg)
= Time for listing all neighbors of a vertex: ©(deg)

= Time for identifying all edges: ©(m + n)

= Time for finding in-degree and out-degree of a vertex?



Representation Comparison

= Matrix representation is suitable for dense graphs
= List representation is suitable for sparse graphs

= Besides graph density, you may also choose a data structure
based on the performance of other operations

List a
vertex’s
neighbors

Adjacency Matrix ~ ©(n?) O(1) O(1) O(1) O(n) O(n?)

Identify
all edges

Query an Insertan Delete an

Space edge edge edge

O(deg) O(1) O©(deg)
O (log deg) O(log deg) O (log deg)

Adjacency List O(m +n) O(deg) ©O(m +n)




Textbook Chapter 22 — Elementary Graph Algorithms



Graph Traversal

= From a source vertex, systematically follow the edges of a
graph to visit all reachable vertices of the graph

= Useful to discover the structure of a graph

= Standard graph-searching algorithms
= Breadth-First Search (BFS, EEBiTiE=

=

= Depth-First Search (DFS, ‘X EEBLESE



&) Breadth-First Search

Textbook Chapter 22.2 — Breadth-first search



Breadth-First Search (BFS)

Layer 2




Breadth-First Search (BFS)

= Input: directed/undirected graph G = (V, E) and source s

= Qutput: a breadth-first tree with root s (Tgpg) that contains
all reachable vertices

= v.d: distance fromstov, forallv eV
= Distance is the length of a shortest path in G
= v.d = oo if vis not reachable from s
= v.d is also the depth of v in Tgpg
= .t = u if (u, v) is the last edge on shortest path to v
= u is V’s predecessor in Tggg



Breadth-First Tree

= |nitially Tggg contains only s

= As v is discovered from u, v and
(u, v) are added to Tgpg

= Tgrs is not explicitly stored; can be

reconstructed fromv.m

= Implemented via a FIFO queue

= Color the vertices to keep track of |  wni1le 0! = ()

progress:
= GRAY: discovered (first time
encountered)

= BLACK: finished (all adjacent
vertices discovered)

= WHITE: undiscovered

BFS (G, s)

for each vertex u in G.V-{s} ()(n
u.color = WHITE
u.d = o
u.pi = NIL

s.color = GRAY

s.d =0

s.pli = NIL

Q = {1}

ENQUEUE (Q, s)

u = DEQUEUE (Q)
for each v in G.Adj[u]
if v.color == WHITE ()(deg(u)
v.color = GRAY
v.d = u.d + 1
vV.pl = u
ENQUEUE (Q, v)
u.color = BLACK

» 0, (n+ Z (deg(u) + 1)) =O0(n+ m)@




BFS Illlustration
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BFS Illlustration
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Shortest-Path Distance from BFS

= Definition of §(s, v): the shortest-path distance from s to v = the
minimum number of edges in any path from s to v

= |f there is no path from s to v, then (s, v) = o

= The BFS algorithm finds the shortest-path distance to each reachable
vertex in a graph G from a given source vertex s € V.



Shortest-Path Distance from BFS

Lemma 22.1
Let G = (V, E) be a directed or undirected graph, and let s € VV be an
arbitrary vertex. Then, for any edge (u,v) € E, §(s,v) < 6(s,u) + 1.

= Proof s-VAEREE—ER/\RFRs-ul R LR+

= Case 1: u is reachable from s
= s-U- v is a path from s to v with length 6(s,u) + 1
= Hence, 6(s,v) < 6(s,u) + 1
= Case 2: u is unreachable from s
= Then v must be unreachable too. d(s,u)
= Hence, the inequality still holds.



Shortest-Path Distance from BFS

Lemma 22.2

Let G = (V, E) be a directed or undirected graph, and suppose BFS is run
on G from a given source vertex s € /. Then upon termination, for each
vertex v € V, the value v. d computed by BFS satisfies v.d = 6(s, v).

= Proof by induction BFSE LA BN E AR SN EIEDEE
Inductive hypothesis: v.d = 6(s, v) after n ENQUEUE ops

= Holds whenn = 1: s is in the queue and v.d = oo for all v € V{s}

= After n + 1 ENQUEUE ops, consider a white vertex v that is
discovered during the search from a vertex u

v.d=ud+1 > §(s,u)+ 1 (byinduction hypothesis)
> 0(s,v) (by Lemma 22.1)

= Vertex v is never enqueued again, so v. d never changes again

©



Shortest-Path Distance from BFS

Lemma 22.3
Suppose that during the execution of BFS on a graph G = (V, E), the
queue Q contains the vertices (vq, V5, ..., V,-), Where v, is the head of Q

and v, is the tail. Then, v,..d < v;.d+1andv;.d < v 1.dforl <i <.

« QP EZE—EZMNIE <P FE—EHAdE+
= Proof by induction « QFFEIEEMJIE < QI FEi+1EHIdE

Inductive hypothesis:v,..d < v;.d + 1 and v;.d < v;,4.d after n queue ops
= Holds when Q = (s).
= Consider two operations for inductive step:

= Dequeue op: when Q = (vq, vy, ..., V) and dequeue v,
= Enqueue op: when Q = (v4, vy, ..., V) and enqueue v, 4



Shortest-Path Distance from BFS

Inductive H1lv,.d < vi.d-+ 1 (QPRE—EFHJIE < QP E—EREAIdE+1)
hypothesis: H2 v;.d < v;41.d,t = 1,--- ,r — 1(QPFifERHIIE < QP Fi+1R589d1E)

= Dequeue op

C ----- vp.d < v1.d + 1 (induction hypothesis H1)

< v9.d + 1 (induction hypothesis H2) = H1 holds
R i< di=2 1 > H2holds

= Enqueue op

CL-u--a:----- Let u be v,.,;’s predecessor, Vr41.d = u.d + 1

Since u has been removed from Q, the new head
E-_&_-__.:------ v, satisfiesu.d < vi1.d (induction hypothesis H2)

’Ur,«_|_1.d <ud+1<wvi.d+1 > H1holds

vr.d < u.d + 1 (induction hypothesis H1)

Vpd <ud+1=v11.d

v;.d = ’U,,;_|_1.d,i =1,---.,7r = H2holds ,



Shortest-Path Distance from BFS

Corollary 22.4
Suppose that vertices v; and vj are enqueued during the execution of BFS,

and that v; is enqueued before v;. Then v;.d < v;.d at the time that v; is
enqueued.

= Proof #=v; EEv; BN Aqueue > v;.d < vj.d

= Lemma 22.3 proves that v;.d < v; ;. dforl <i<r
= Each vertex receives a finite d value at most once during the course of BFS
= Hence, this is proved.



Shortest-Path Distance from BFS

Theorem 22.5 — BFS Correctness

Let G = (V, E) be a directed or undirected graph, and and suppose that BFS is

run on G from a given source vertex s € V.

1) BFS discovers every vertex v € V that is reachable from the source s

2) Upon termination, v.d = 6(s,v) forallv € V

3) Forany vertex v # s that is reachable from s, one of the shortest paths
from s to v is a shortest path from s to v. w followed by the edge (v. m, v)

= Proof of (1)

= All vertices v reachable from s must be discovered; otherwise they
would have v.d = o0 > §(s, v). (contradicting with Lemma 22.2)




Shortest-Path Distance from BFS

(2) v.d =9d(s,v) VveV

= Proof of (2) by contradiction

= Assume some vertices receive d values not equal to its shortest-path
distance

= Let v be the vertex with minimum 6 (s, v) that receives such an incorrect
d value; clearlyv # s

= By Lemma 22.2, v.d = 6(s,v), thus v.d > §(s,v) (v must be reachable)

= Let u be the vertex immediately preceding v on a shortest path from s to
v,500(s,v) =6(s,u) +1

= Because (s,u) < 6(s,v) and v is the minimum &(s, v), we have u.d =
6(s,u)

=v.d>60(s,v)=06(s,u)+1=ud+1

©



Shortest-Path Distance from BFS

(2) v.d =9d(s,v) VveV

= Proof of (2) by contradiction (cont.)
=v.d>6(s,v)=06(s,u)+1=ud+1
= When dequeuing u from Q, vertex v is either WHITE, GRAY, or BLACK
= WHITE: v.d = u.d + 1, contradiction
= BLACK: it was already removed from the queue
= By Corollary 22.4, we have v.d < u.d, contradiction
= GRAY: it was painted GRAY upon dequeuing some vertex w
= Thus v.d = w.d + 1 (by construction)
= w was removed from Q earlier than u, sow.d < u.d (by Corollary 22.4)
= v.d=w.d+1<u.d+ 1, contradiction
= Thus, (2) is proved.



Shortest-Path Distance from BFS

(3) For any vertex v # s that is reachable from s, one of the shortest paths
from s to v is a shortest path from s to v. w followed by the edge (v.m, v)

= Proof of (3)

= Ifv.mr = u,thenv.d = u.d + 1. Thus, we can obtain a shortest path
from s to v by taking a shortest path from s to v. m and then traversing
the edge (v.m, v).



BFS Forest

= BFS (G, s) forms a BFS tree with all reachable v from s

= We can extend the algorithm to find a BFS forest that contains every
vertex in G

BES-Visit (G, s)
//explore full graph and builds up s.color = GRAY
a collection of BFS trees s.d =0
BFS (G) s.nn = NIL
for u in G.V Q = empty
u.color = WHITE ENQUEUE (Q, s)
u.d = o while Q # empty
u.nm = NIL u = DEQUEUE (Q)
for s in G.V for v in G.adj[u]
if(s.color == WHITE) if v.color == WHITE
// build a BFS tree v.color = GRAY
BFS-Visit (G, s) v.d = u.d + 1
V.II = u
ENQUEUE (Q, W)
u.color = BLACK




& Depth-First Search

Textbook Chapter 22.3 — Depth-first search



Depth-First Search (DFS)

= Search as deep as possible and then backtrack until findinga

new path
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DFS Algorithm

// Explore full graph and builds up
a collection of DFS trees
DFE'S (G)
for each vertex u in G.V
u.color = WHITE
u.pi = NIL
time = 0 // global timestamp
for each vertex u in G.V
if u.color == WHITE
DFS-VISIT (G, u)

O(n)

= Implemented via recursion (stack)

= Color the vertices to keep track of progress:

DFS-Visit (G, u)
time = time + 1

O(deg(u) + 1)

u.d = time // discover time
u.color = GRAY
for each v in G.Adj[u]
if v.color == WHITE

v.pl = u

DEFS-VISIT (G, W)
u.color = BLACK
time = time + 1
u.f = time // finish time

» O (n + Z (deg(u) + 1))

= GRAY: discovered (first time encountered) = O(n+m)

= BLACK: finished (all adjacent vertices discovered)

= WHITE: undiscovered




DFS Properties

= Parenthesis Theorem

= Parenthesis structure: represent the discovery of vertex u with a left
parenthesis “(u” and represent its finishing by a right parenthesis “u)”. In
DFS, the parentheses are properly nested.

= White Path Theorem
= In a DFS forest of a directed or undirected graph G = (V, E),

= vertex v is a descendant of vertex u in the forest < at the time u.d
that the search discovers u, there is a path from u to v in G consisting
entirely of WHITE vertices

= Classification of Edges in G
= Tree Edge
= Back Edge
= Forward Edge
= Cross Edge



DFS Properties

= Parenthesis Theorem

= Parenthesis structure: represent the discovery of vertex u with a left
parenthesis “(u” and represent its finishing by a right parenthesis
“u)”. In DFS, the parentheses are properly nested.

Properly nested: (x (y y) x)
Not properly nested: (x (y x) y)

4

V ‘ u

1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16
Proof in textbook p. 608 6 G DWWz s) ¢ wuw d

©



-l
DFS Properties

= White Path Theorem
= In a DFS forest of a directed or undirected graph G = (V, E),

= vertex v is a descendant of vertex u in the forest < at the time
u. d that the search discovers u, there is a path fromutovin G
consisting entirely of WHITE vertices

= Proof.
- >
= Since vis a descendantof u, u.d < v.d
= Hence, v is WHITE at time u. d

= |n fact, since v can be any descendant of u, any vertex on the path from u
to v are WHITE at time u.d

= & (textbook p. 608)



DFS Properties

= Classification of Edges in G
= Tree Edge (GRAY to WHITE)
= Edges in the DFS forest
= Found when encountering a new vertex v by exploring (u, v)
= Back Edge (GRAY to GRAY)
= (u,v), from descendant u to ancestor v in a DFS tree
= Forward Edge (GRAY to BLACK)
= (u,v), from ancestor u to descendant v. Not a tree edge.
= Cross Edge (GRAY to BLACK)

= Any other edge between trees or subtrees. Can go between vertices in
same DFS tree or in different DFS trees

In an undirected graph, back edge = forward edge.
To avoid ambiguity, classify edge as the first type in the list that applies.



DFS Properties

= Edge classification by the color of v when visiting (u, v)
= WHITE: tree edge
= GRAY: back edge
= BLACK: forward edge or cross edge

= u.d < v.d - forward edge
= u.d > v.d > cross edge

Theorem 22.10
In DFS of an undirected graph, there are only tree edges and back edges
without forward and cross edge.




DFS Applications

= Connected Components

= Strongly Connected Components

= Topological Sort



= Connected
= Components




Connected Components Problem

= Input: agraph G = (V,E)

= Qutput: a connected component of G
= a2 maximal subset U of V' s.t. any two nodes in U are connected in G

0... ““
] [ N |
. IS ..llllll“‘ ..Q
L 2
* P *
" " L 4
‘0 " :
24 . .
.
| N W



Connected Components




Problem Complexity

Upper bound = O(m + n)

Lower bound = Q(m + n)







Question?

Important announcement will be sent to @ntu.edu.tw mailbox
& post to the course website

Course Website:

Email:


http://ada17.csie.org/
mailto:ada-ta@csie.ntu.edu.tw

