National Taiwan University Slides credited from Hsu-Chun Hsiao

Announcement

Mini-HW 6 Released
= Due on 11/01 (Thur) 14:20

11/01 Midterm Review QA Session
= Optional participation

Homework 2
= Due on 11/06 (Tue) 18:00

11/08 Midterm Exam

Mini-HW 6

Piepie is an experienced cake baker. To bake a cake, he needs to mix all of the ingredients together
into batter(3@). However, the process of stirring requests lots of body strength, which is equal to
the sum of weight of what you mixed. And, you can only mix two bowls of batter into one each time.

Here's an example:

« If there are three ingredients, {eggs, butter, flour}, you can either (a.) mix eggs and butter together
first, include the flour at last. Or, you can also (b.) mix eggs and flour together first, than include
the eggs at last. But you CAN'T put all of the three things together in one sitting.

« If the weight of {eggs, butter, flour} are {3, 5, 10}, then the (a.) approach should require (3+5)+
(8410)=26 units of body strength, while the (b.) approach requires (3+10)+(13+8)=34 units of
body strength.

Now, given an sorted sequence of the weight of N ingredients, please design a greedy algorithm to
tell Piepie whats the order of stirring, so that he can use least body strength to complete the cake.

(40%)

Please prove the correctness of your algorithm, including Greedy-choice property (30%) & Optimal
substructure (30%). Your algorithm should have an O (N log N') time complexity.

Midterm!!!

Date: 11/08 (Thursday)
Time: 14:20-17:20 (3 hours)
Location: R102, R103, R104 (check the seat assignment before entering the room)

Content
= Recurrence and Asymptotic Analysis
= Divide and Conquer
= Dynamic Programming
= Greedy

Based on slides, assighments, and some variations (practice via textbook exercises)
Format: Yes/No, Multiple-Choice, Short Answer, Prove/Explanation

Easy: ~“60%, Medium: ~30%, Hard: ~10%

Close book

©

O e

Outline

= Greedy Algorithms
= Greedy #1: Activity-Selection / Interval Scheduling

= Greedy #2: Coin Changing

= Greedy #3: Fractional Knapsack Problem

= Greedy #4: Breakpoint Selection

= Greedy #5: Huffman Codes

= Greedy #6: Scheduling to Minimize Lateness

= Greedy #7: Task-Scheduling

) Coin Changing (7))

, . . T:',, s

Textbook Exercise 16.1

Coin Changing Problem

= Input: n dollars and unlimited coins with values {v;} (1, 5, 10, 50)

= Qutput: the minimum number of coins with the total value n

= Cashier’s algorithm: at each iteration, add the coin with the largest
value no more than the current total

Step 1: Cast Optimization Problem

Coin Changing Problem
Input: n dollars and unlimited coins with values {v;} (1, 5, 10, 50)
Output: the minimum number of coins with the total valuen

= Subproblems
= C (1) : minimal number of coins for the total value i
= Goal: C(n)

Step 2: Prove Optimal Substructure

Coin Changing Problem
Input: n dollars and unlimited coins with values {v;} (1, 5, 10, 50)
Output: the minimum number of coins with the total valuen

= Suppose OPT is an optimal solution to C (1), there are 4 cases:
= Case 1: coin 1in OPT
= OPT\coinl is an optimal solutionof C (1 - wv;)
= Case 2: coin 2 in OPT
= OPT\coin2 is an optimal solutionof C (1 - v,)
= Case 3: coin 3 in OPT
= OPT\coin3 is an optimal solutionof C (1 - wv;)
= Case 4: coin4in OPT
= OPT\coin4 is an optimal solutionof C (1 - v,)

C; = minj(l + C’i—'vj)

©

Step 3: Prove Greedy-Choice Property

Coin Changing Problem
Input: n dollars and unlimited coins with values {v;} (1, 5, 10, 50)
Output: the minimum number of coins with the total valuen

= Greedy choice: select the coin with the largest value no more than the
current total

= Proof via contradiction (use the case 10 < i < 50 for demo)
= Assume that there is no OPT including this greedy choice (choose 10)
- all OPT use 1, 5, 50 to pay i
= 50 cannot be used
= #coins with value 5 < 2 - otherwise we can use a 10 to have a better output
= #tcoins with value 1 <5 - otherwise we can use a 5 to have a better output

= We cannot pay i with the constraints (at most 5 + 4 = 9)

= Fractional Knapsack
= Problem &
¥y
LB

Textbook Exercise 16.2-2

& 0
1@ 2’

Knapsack Problem y

&

= Input: n items where i-th item has value v; and weighs w; (v; and w;
are positive integers)

= Qutput: the maximum value for the knapsack with capacity of W

= Variants of knapsack problem
= 0-1 Knapsack Problem: BIEY)m REEE—{&
Unbounded Knapsack Problem: 2IE¥) ol LA Z= %@
Multidimensional Knapsack Problem: 5 812 BB R
S

Multiple-Choice Knapsack Problem: E— ¥ m&mZE—{&
Fractional Knapsack Problem: ¥ @ o] IR Z &[5

A< % ‘.
(o)

2 s P
Q\ =

Knapsack Problem

S

= Input: n items where i-th item has value v; and weighs w; (v; and w;
are positive integers)

= Qutput: the maximum value for the knapsack with capacity of W

= Variants of knapsack problem
= 0-1 Knapsack Problem: BIEY)m REEE—{&
Unbounded Knapsack Problem: 2IE¥) ol LA Z= %@
Multidimensional Knapsack Problem: 5 812 BB R
S

Multiple-Choice Knapsack Problem: E— ¥ m&mZE—{&
Fractional Knapsack Problem: g o] LI R ZE 5

Fractional Knapsack Problem

= Input: n items where i-th item has value v; and weighs w; (v; and w; are
positive integers)

= Qutput: the maximum value for the knapsack with capacity of W, where
we can take any fraction of items

= Greedy algorithm: at each iteration, choose the item with the highest %
l

and continue when W —w; > 0

Step 1: Cast Optimization Problem

Fractional Knapsack Problem
Input: n items where i-th item has value v; and weighs w;
Output: the max value within W capacity, where we can take any fraction of items

= Subproblems

= F'-KP (1, w): fractional knapsack problem within w capacity for the first i items

= Goal: F-KP(n, W)

Step 2: Prove Optimal Substructure

Fractional Knapsack Problem
Input: n items where i-th item has value v; and weighs w;
Output: the max value within W capacity, where we can take any fraction of items

= Suppose OPT is an optimal solution to F-KP (i, w), there are 2 cases:
= Case 1: full/partial item i in OPT

= Remove w' of item i from OPT is an optimal solutionof F-KP (i - 1, w — w')
= Case 2:item i notin OPT
= OPTis an optimal solutionof F-KP (1 - 1, w)

Step 3: Prove Greedy-Choice Property

Fractional Knapsack Problem
Input: n items where i-th item has value v; and weighs w;
Output: the max value within W capacity, where we can take any fraction of items

= Greedy choice: select the item with the highest %

l

= Proof via contradiction (j = argmax%)
i i

= Assume that there is no OPT including this greedy choice
= If W < wj, we can replace all items in OPT with item j

= If W > wj, we can replace any item weighting w; in OPT with item j

= The total value must be equal or higher, because item j has the highest %

&) Breakpoint Selection

Breakpoint Selection Problem

= Input: a planned route with n 4+ 1 gas stations by, ..., b,; the car can go at
most C after refueling at a breakpoint

= Qutput: a refueling schedule (by—2 b,,) that minimizes the number of stops

Ideally: stop when out of gas

i i

Actually: may not be able to find the gas station when out of gas

A 4

<
<«

A 4

<
<«

= Greedy algorithm: go as far as you can before refueling @

Step 1: Cast Optimization Problem

Breakpoint Selection Problem
Input: n + 1 breakpoints by, ..., by,; gas storage is C
Output: a refueling schedule (by=2 b,,) that minimizes the number of stops

= Subproblems
= B (1) :breakpoint selection problem from b; to b,
= Goal: B(0)

Step 2: Prove Optimal Substructure

Breakpoint Selection Problem
Input: n + 1 breakpoints by, ..., by,; gas storage is C

Output: a refueling schedule (by=2 b,,) that minimizes the number of stops

= Suppose OPT is an optimal solution to B (1) where j is the largest
index satisfying b; — b; < C, there are j — i cases

= Case 1:stop at b; ¢

= OPT+{b,,} is an optimal solutionof B (1 + 1)
= Case 2:stop at b; .,

= OPT+{b,,,} is an optimal solution of B (1 + 2)

= Case j — i: stop at b;
= OPT+{b;} is an optimal solution of B (J)

B, = minKkgj(l + Bk)

©

Step 3: Prove Greedy-Choice Property

Breakpoint Selection Problem
Input: n + 1 breakpoints by, ..., by,; gas storage is C
Output: a refueling schedule (by=2 b,,) that minimizes the number of stops

= Greedy choice: go as far as you can before refueling (select b;)

= Proof via contradiction

= Assume that there is no OPT including this greedy choice (after b; then stop
at by, k # j)

= If k > j, we cannot stop at by, due to out of gas

= If k < j, we can replace the stop at by, with the stop at b;
= The total value must be equal or higher, because we refuel later (b; > by)

B; = minKkgj(l + By)=» B, =1+ B;

Pseudo Code

Breakpoint Selection Problem

Input: n + 1 breakpoints by, ...

, by,; gas storage is C

Output: a refueling schedule (by=2 b,,) that minimizes the number of stops

BP-Select (C, Db)

Sort(b) s.t. b[0] < Db
p =0
S = {0}
for 1 =1 ton -1
if b[i + 1] - blp]
if 1 ==1p

return “no solution

A =AU {i}
p =1
return A

[1] < .. < b[n]

> C

144

T(n) =0O(nlogn)

Textbook Chapter 16.3 — Huffman codes

Encoding & Decoding

= Code (#®15) is a system of rules to convert information—such as a
letter, word, sound, image, or gesture—into another, sometimes
shortened or secret, form or representation for communication
through a channel or storage in a medium.

input
message

—

encoded

message

\ 4

decoded
message

Encoding & Decoding

= Goal
= Enable communication and storage
= Detect or correct errors introduced during transmission
= Compress data: lossy or lossless

536E6F6F7079
g Decoder Snoopy
: .'

Snoopy

N T
v
-
| ﬂ

Lossy Data Compression: Autoencoder

N7
\ ?ﬁffﬂ £ k

A 7 AN .

A

Input Image

Reconstructed Image

PO
R ;*f:-f& ¥
s R : o
,’.‘*}.‘.ﬁ}'ﬁ‘. T £ "‘.‘
e T —_ 2K SN AT
PRI - YR
TRr SRR :
V25 b A REN
L AT

£

g;r‘ﬁgr \

28 28 i i 3 i“l‘t\}:\é _3' 28 28
2 dimension % »"ﬁ-‘\ {\1
= Encoder Decoder ﬁﬁ“\é\;
- Hidden layer 2 : Hidden layer 1 : “‘\ﬁ
~ 7 300 neurons 300 neurons \;} .
Lr / Encoder Decoder \)
Hidden layer 1 : Hidden layer 2 1 ™3
{ 500 neurons 500 neurons 1
Input layer : Reconstruct layer :
784 neurons 784 neurons

Lossless Data Compression

= Goal: encode each symbol using an unique binary code (w/o ambiguity)
= How to represent symbols?

= How to ensure decode(encode(x))=x?
= How to minimize the number of bits?

Lossless Data Compression

= Goal: encode each symbol using an unique binary code (w/o ambiguity)
= How to represent symbols?

= How to ensure decode(encode(x))=x?
= How to minimize the number of bits?

10101101011010100101010010
TTCGGTTTGGGAT

€

Symbol A B C D E F

Frequency (k) 45 13 12 16 9 5
Code Fixed-length 000 001 010 011 100 101
Variable-length 0 101 100 111 1101 1100

= Fixed-length: use the same number = Variable-length: shorter codewords
of bits for encoding every symbol for more frequent symbols

= Ex. ASCII, Big5, UTF

* The length of this sequence is = The length of this sequence is
(45+134+124+16+9+5) -3 4514 (13 +12+16) -3+ (9+5) -4

= 300 — 294 ©

Lossless Data Compression

= Goal: encode each symbol using an unique binary code (w/o ambiguity)
= How to represent symbols?

= How to ensure decode(encode(x))=x?
= How to minimize the number of bits?

Prefix Code

= Definition: a variable-length code where no codeword is a
prefix of some other codeword

Symbol A B C D E F
Frequency (K) 45 13 12 16 9 5
Prefix code 0 101 100 111 1101 1100

Variable-length

Not prefix code 0 101 10 111 1101 1100

= Ambiguity: decode(1011100) can be ‘BF’ or ‘CDAA’

__

Lossless Data Compression

= Goal: encode each symbol using an unique binary code (w/o ambiguity)
= How to represent symbols?

= How to ensure decode(encode(x))=x?
= How to minimize the number of bits?

Letter Frequency Distribution

shorter codewords Unigram Distribution longer codewords
12

10

Frequency (%)
(o)

ETOAINSHRLUDYMWGFCBPKV] XZQ @

Total Length of Codes

= The weighted depth of a leaf = weight of a leaf (freq) X depth of a leaf
= Total length of codes = Total weighted depth of leaves
= Cost of thetree T

B(T) = 3 frea(c) - dr(0)

= Average bits per character
B(T
% = CeZC;1"e1ative—freq(c) - dr(c)

How to find the optimal prefix
code to minimize the cost?

Prefix Code Problem

= |Input: n positive integers wy, wo, ..., w,, indicating word frequency

= Qutput: a binary tree of n leaves, whose weights form wy, w,, ..., w,, s.t.
the cost of the tree is minimized

T" = arg mjin B(T) = arg mjin Z freq(c) - dr(c)

Step 1: Cast Optimization Problem

Prefix Code Problem
Input: n positive integers wy, wo, ..., w,, indicating word frequency
Output: a binary tree of n leaves with minimal cost

= Subproblem: merge two characters into a new one whose weight is their sum
= PC (1) : prefix code problem for i leaves oo () S Pe i = Ay |
= Goal: PC (n)

= [ssues
= |t is not the subproblem of the original problem

= The cost of two merged characters should be considered

Example

Step 2: Prove Optimal Substructure

Prefix Code Problem
Input: n positive integers wy, wo, ..., w,, indicating word frequency
Output: a binary tree of n leaves with minimal cost

= Suppose T" is an optimal solution = T is an optimal solution to
toPC (1, {w; ;.q,, 2}) PC(1i+1l, {w; ;1, %X, V})

freq(z) = freq(z) + freq(y)

Step 2: Prove Optimal Substructure

= B(T") — freq(2)dr(z) + freq(x)dr(z) + freq(y)dr(y)
= B(T") — (freq(z) +freq(y))dr (2) +freq(x) (1 +d7 (2)) +freq(y) (1 +dr (2))
B(T") + freq(z) + freq(y)
©

Step 2: Prove Optimal Substructure

= Optimal substructure: T’ is OPT if and only if T is OPT

The difference is freq(z) + freq(y)

freq(x) freq(y)

©

Greedy Algorithm Design

Prefix Code Problem
Input: n positive integers wy, wo, ..., w,, indicating word frequency
Output: a binary tree of n leaves with minimal cost

= Greedy choice: merge repeatedly until one tree left
= Select two trees x, y with minimal frequency roots freq(x) and freq(y)

= Merge into a single tree by adding root z with the frequency freq(x) + freq(y)

Example

®002o0 6 2 ® @

Initial set (store in a priority queue)

CA f\‘ QAIZQQ
‘

Example

Example

Step 3: Prove Greedy-Choice Property

Prefix Code Problem
Input: n positive integers wy, wo, ..., w,, indicating word frequency
Output: a binary tree of n leaves with minimal cost

= Greedy choice: merge two nodes with min weights repeatedly OPT: T

= Proof via contradiction
= Assume that there is no OPT including this greedy choice
= x and y are two symbols with lowest frequencies
= a and b are siblings with largest depths
= WLOG, assume freq(a) < freq(b) and freq(x) < freq(y)
- freq(x) < freq(a) and freq(y) < freq(b) a b
= Exchanging a with x and then b with y can make the tree equally or better

©

Step 3: Prove Greedy-Choice Property

OPT: T

a b

B(T)— B(T") =) _,cgfreq(s)dr(s) — >, freq(s)dr (s)
= freq(z)dr(z) + freq(a)dr(a) — freq(z)dr (z) — freq(a)dr (a)
= freq(z)dr(z) + freq(a)dr(a) — freq(z)dr(a) — freq(a)dr(z)
= (freq(a) — freq(z))(dr(a) — dr(x)) >0 - freq(z) < freq(a)
= Because T is OPT, T" must be another optimal solution.
©

Step 3: Prove Greedy-Choice Property

OPT: T

a b
B(T") — B(T")=) _segfreqa(s)dr/ (s) — > .cqfreq(s)dr.(s)

= freq(y)dr (y) + freq(b)dr (b) — freq(y)dr (y) — freq(b)dr (b)
= freq(y)dr (y) + freq(b)dr (b) — freq(y)dr (b) — freq(b)dr (y)
= (freq(b) — freq(y))(dy (b) — dp(y)) > 0 . freq(y) < freq(b)

= Because T is OPT, T” must be another optimal solution.

Correctness and Optimality

= Theorem: Huffman algorithm generates an optimal prefix code

= Proof
= Use induction to prove: Huffman codes are optimal for n symbols
= n = 2, trivial
= For asetS withn + 1 symbols,

1. Based on the greedy choice property, two symbols with minimum
frequencies are siblings in T

2. Construct T’ by replacing these two symbols x and y with zs.t. S’ =
(S\{x,y}) U {z} and freq(z) = freq(x) + freq(y)
3. Assume T’ is the optimal tree for n symbols by inductive hypothesis

4. Based on the optimal substructure property, we know that when T’ is
optimal, T is optimal too (case n + 1 holds)
This induction proof framework can be applied to prove its optimality |
using the optimal substructure and the greedy choice property. ' @

Pseudo Code

Prefix Code Problem
Input: n positive integers wy, wo, ..., w,, indicating word frequency
Output: a binary tree of n leaves with minimal cost

Huffman (S)

n = |S]|

Q = Build-Priority-Queue(S)

for 1 =1 ton -1
allocate a new node =z
z.left = x = Extract-Min (Q)
z.right = y = Extract-Min (Q)
freg(z) = freg(x) + freqg(y)
Insert (Q, 2z)
Delete (Q, x)
Delete (Q, V)

return Extract-Min (Q) // return the prefix tree

T(n) =0O(nlogn)

Drawbacks of Huffman Codes

= Huffman’s algorithm is optimal for a symbol-by-symbol
coding with a known input probability distribution

= Huffman’s algorithm is sub-optimal when
= blending among symbols is allowed
= the probability distribution is unknown
= symbols are not independent

7 Scheduling to
=~ Minimize Lateness

Scheduling to Minimize Lateness

= Input: a finite set S = {a4, a,, ..., a,,} of n tasks, their processing time
t1,ty, ..., ty, and integer deadlines d{, d>, ..., d,,

Job 1 2 3 4
Processing Time (t;) 3 5 3
Deadline (d;) 4 6 7 8

= Qutput: a schedule that minimizes the maximum lateness

Lateness O 1 1 @

Scheduling to Minimize Lateness

Scheduling to Minimize Lateness Problem
Input: n tasks with their processing time t4, t,, ..., t,;, and deadlines d4, d>, ..., d,,
Output: the schedule that minimizes the maximum lateness

= Let a schedule H contains s(H,j) and f(H,j) as the start time and finish
time of job j

= f(H,j) —s(H,j) =t
= Lateness of jobjin His L(H,j) = maX{O,f(H,j) — dj}

= The goal is to minimize max L(H, j) = max{0, f(H,) — dj}
j]

Possible Greedy Choices

Scheduling to Minimize Lateness Problem

Input: n tasks with their processing time t4, t,, ..., t,;, and deadlines d4, d>, ..., d,,
Output: the schedule that minimizes the maximum lateness

= Greedy idea
= Shortest-processing-time-first w/o idle time?
= Earliest-deadline-first w/o idle time?

__

Possible Greedy Choices

Scheduling to Minimize Lateness Problem

Input: n tasks with their processing time t4, t,, ..., t,;, and deadlines d4,d>, ..., d,
Output: the schedule that minimizes the maximum lateness

= |dea
= Shortest-processing-time-first w/o idle time?

Q Lateness O Job 1
Processing Time (t;) 1
0 1 3 Deadline (d;) 10
O Lateness 0 ‘
az a;
2 3

0

Possible Greedy Choices

Scheduling to Minimize Lateness Problem
Input: n tasks with their processing time t4, t,,

..., ty, and deadlines d{, d,, ..., d,,

Output: the schedule that minimizes the maximum lateness

= |dea
= Earliest-deadline-first w/o idle time?

= Greedy algorithm

Min-Lateness(n, t[], d[])
sort tasks by deadlines s.t.
ct = 0 // current time
for J =1 ton
assign job j to interval
s[j] = ct
f(3] = s3] + tlJ]
ct = ct + t[7]
return s[], f[]

d[1]1=d[2]

(ct, ct + t[3])

< ...<d[n]

T(n) =0O(nlogn)

Prove Correctness
— Greedy-Choice Property

Scheduling to Minimize Lateness Problem

Input: n tasks with their processing time t4, t,, ..., t,;, and deadlines d{, d>, ...

Output: the schedule that minimizes the maximum lateness

= Greedy choice: first select the task with the earliest deadline

= Proof via contradiction
= Assume that there is no OPT including this greedy choice
= If OPT processes a, as the i-th task (ay), we can switch a, and a; into OPT’
= The maximum lateness must be equal or lower 2 L(OPT') < L(OPT)

exchange argument

Prove Correctness
— Greedy-Choice Property

Scheduling to Minimize Lateness Problem

Input: n tasks with their processing time t4, t,, ..., t,;, and deadlines d4, d>, ..., d,,
Output: the schedule that minimizes the maximum lateness

- L(OPT’) < L(OPT)
<= max(L(OPT", 1), L(OPT", k)) < max(L(OPT, k), L(OPT, 1))
< max(L(OPT’, 1), L(OPT’, k)) < L(OPT, 1)

« L(OPT’, k) < L(OPT,1) - L(OPT",1) < L(OPT, 1)

L(OPT, k) L(OPT, 1)

If a;, is not late in OPT’: If ay, is late in OPT’: OPT
L(OPT’ k) =0 L(OPT’, k) = f(OPT", k) — di L(OPT’, 1) L(OPT’, k)
= f(OPT,1) — d; OPT’
< f(OPT,1) — d4

— L(OPT, 1) ()

Prove Correctness
— No Inversicns

Scheduling to Minimize Lateness Problem

Input: n tasks with their processing time t4, t,, ..., t,;, and deadlines d4, d>, ..., d,,

Output: the schedule that minimizes the maximum lateness

= There is an optimal scheduling w/o inversions givend; < d, < -

= a; and q; are inverted if d; < d; but q; is scheduled before a;

= Proof via contradiction
= Assume that OPT has a; and a; that are inverted
= Let OPT’ = OPT but a; and a; are swapped
= OPT’ is equal or better than OPT = L(OPT’) < L(OPT)

<d,

Prove Correctness
— No Inversicns

Scheduling to Minimize Lateness Problem
Input: n tasks with their processing time t4, t,, ..., t,;, and deadlines d4,d>, ..., d,

Output: the schedule that minimizes the maximum lateness
= L(OPT’) < L(OPT)

<= max(L(OPT", i), L(OPT’, j)) < max(L(OPT,j), L(OPT,1))
<= max(L(OPT", i), L(OPT",5)) < L(OPT,i) "~ d; < d;
< L(OPT",j) < L(OPT,i) - L(OPT",i) < L(OPT,1)

L(OPT, j) L(OPT, i)
If a; is not late in OPT’: If g; is late in OPT’: OPT| o | “
L(OPT,5) =0 L(OPT",j) = OPT’,j) d; . .
= f (OPT, i) —d, L(OPT’, i) L(OPT’, j)
ot 4 o
Solution Choice Solution
= L OPT z)

@) Task-Scheduling

Textbook Chapter 16.5 — A task-scheduling problem as a matroid

Task-Scheduling Problem

= Input: a finite set S = {a4, a,, ..., a,,} of n unit-time tasks, their
corresponding integer deadlines d{, d>, ...,d,, (1 < d; < n), and

nonnegative penalties wy, w,, ..., w,, if a; is not finished by time d;

Job 1 2 3 4 5 6
Deadline (d;) 1 2 3 4 4 6

Penalty(w;) 30 60 50 20 70 10

= Qutput: a schedule that minimizes the total penalty

Penalty 20 30
A |43 |46 A5 | A4 | A7 A1
0 n

Task-Scheduling Problem

Task-Scheduling Problem

Input: n tasks with their deadlines d4, d>, ..., d,, and penalties wy, w,, ..., w,
Output: the schedule that minimizes the total penalty

= Let a schedule H is the OPT Task 1 2 3 4 5 6 7
= Atask q; isIajinHiff(H,i)>dj d; 1 2 3 4 4 4 6
= Atask a; isearly in H if f(H,i) < d; w; 30 60 40 20 50 70 10

= We can have an early-first schedule H' with the same total penalty (OPT)
H Penalty 20 30

a; jas jag jas a4 ga> gaq

w, If the late task proceeds the early task,

switching them makes the early one
H' Penalty 20 30 earlier and late one still late

Az a3 JGg JAG5 a7 1G4 QO
0

0

Possible Greedy Choices

Task-Scheduling Problem

Input: n tasks with their deadlines d4, d>, ..., d,, and penalties wy, w,, ..., w,
Output: the schedule that minimizes the total penalty

= Rethink the problem: “maximize the total penalty for the set of early tasks”

w; 30 60 40 20 50 70 10 0

= Greedy idea
= Largest-penalty-first w/o idle time?
= Earliest-deadline-first w/o idle time?

Task 1 2 3 4 5 6 7 Penalty |60 40 70 50 10 |20 30
d; 1 2 3 4 4 4 6 a, jas jae jas jay Qg a,

n

Prove Correctness

Task-Scheduling Problem

Input: n tasks with their deadlines d4, d,, ..., d,, and penalties wy, w,, ..., w,
Output: the schedule that minimizes the total penalty

= Greedy choice: select the largest-penalty task into the early set if feasible

= Proof via contradiction
= Assume that there is no OPT including this greedy choice

= If OPT processes a; after d;, we can switch a; and a; into OPT’

= The maximum penalty must be equal or lower, because w; = w;
Penalty w;

m w; = wy, for all a, in the early set
>
0 di n
Penalty w;

0 d; n> @

Prove Correctness

Task-Scheduling Problem

Input: n tasks with their deadlines d4, d,, ..., d,, and penalties wy, w,, ..., w,
Output: the schedule that minimizes the total penalty

= Greedy algorithm

Task-Scheduling(n, d[], w[])
sort tasks by penalties s.t. w[l] 2 w[2] 2 .. 2 w[n]

for 1 =1 ton
find the latest available index j <= d[i] jﬁ(ﬂ) ::()(n?)
it 3 >0
A =AU (i} “
mark index j unavailable / Can it be

return A // the set of early tasks

better?

Example lllustration

Job 1 2
Deadline (d;) 4 2 4 3 1 4 6

Penalty(w;) 70 60 50 40 30 20 10

, M
012f3f4567

Total penalty =30+ 20 =50

__

Concluding Remarks

= “Greedy”: always makes the choice that looks best at the moment in
the hope that this choice will lead to a globally optimal solution

= When to use greedy
= Whether the problem has optimal substructure

= Whether we can make a greedy choice and remain only one subproblem

= Common for optimization problem

Optimal g Greedy N
Solution | Choice

= Prove for correctness
= Optimal substructure

= Greedy choice property

Question?

Important announcement will be sent to @ntu.edu.tw mailbox
& post to the course website

Course Website:

Email:

http://ada17.csie.org/
mailto:ada-ta@csie.ntu.edu.tw

