
Slides credited from Hsueh-I Lu, Hsu-Chun Hsiao, & Michael Tsai



 Dynamic Programming

 DP #1: Rod Cutting

 DP #2: Stamp Problem

 DP #3: Matrix-Chain Multiplication

 DP #4: Sequence Alignment Problem
 Longest Common Subsequence (LCS) / Edit Distance

 Viterbi Algorithm

 Space Efficient Algorithm

 DP #5: Weighted Interval Scheduling

 DP #6: Knapsack Problem
 0/1 Knapsack

 Unbounded Knapsack

 Multidimensional Knapsack

 Fractional Knapsack 2



 Do not focus on “specific algorithms”

 But “some strategies” to “design” algorithms

 First Skill: Divide-and-Conquer (各個擊破)

 Second Skill: Dynamic Programming (動態規劃)

3



Textbook Chapter 15 – Dynamic Programming

Textbook Chapter 15.3 – Elements of dynamic programming

4



 Dynamic programming, like the divide-and-conquer 
method, solves problems by combining the solutions to 
subproblems
用空間換取時間

讓走過的留下痕跡

 “Dynamic”: time-varying

 “Programming”: a tabular method

5

Dynamic Programming: planning over time



 Divide-and-Conquer
 partition the problem into 

independent or disjoint
subproblems

 repeatedly solving the common 
subsubproblems

 more work than necessary

 Dynamic Programming
 partition the problem into 

dependent or overlapping
subproblems

 avoid recomputation

 Top-down with memoization

 Bottom-up method

6



 Apply four steps
1. Characterize the structure of an optimal solution

2. Recursively define the value of an optimal solution

3. Compute the value of an optimal solution, typically in a bottom-
up fashion

4. Construct an optimal solution from computed information

7



 Fibonacci sequence (費波那契數列)
 Base case: F(0) = F(1) = 1

 Recursive case: F(n) = F(n-1) + F(n-2)

8

Fibonacci(n)

if n < 2 // base case

return 1

// recursive case

return Fibonacci(n-1)+Fibonacci(n-2)

F(5)

F(4) F(3)

F(3) F(2) F(2) F(1)

F(2) F(1) F(1) F(0) F(1) F(0)

F(1) F(0) Calling overlapping subproblems result in poor efficiency

F(3) was computed twice

F(2) was computed 3 times



 Solve the overlapping subproblems recursively with memoization
 Check the memo before making the calls

9

F(5)

F(4) F(3)

F(3) F(2)

F(2) F(1)

F(1) F(0)

備忘錄

n 0 1 2 3 4 5

F(n) 1 1 ? ? ? ?2 3 5 8

Avoid recomputation of the same subproblems using memo



10

Memoized-Fibonacci(n)

// initialize memo (array a[])

a[0] = 1

a[1] = 1

for i = 2 to n

a[i] = 0

return Memoized-Fibonacci-Aux(n, a)

Memoized-Fibonacci-Aux(n, a)

if a[n] > 0

return a[n]

// save the result to avoid recomputation

a[n] = Memoized-Fibonacci-Aux(n-1, a) + Memoized-Fibonacci-Aux(n-2, a)

return a[n] 



 Building up solutions to larger and larger subproblems

11

Bottom-Up-Fibonacci(n)

if n < 2

return 1

a[0] = 1

a[1] = 1

for i = 2 … n

a[i] = a[i-1] + a[i-2]

return a[n]

F(5)

F(4)

F(3)

F(2)

F(1)

F(0)

Avoid recomputation of the same subproblems



 Principle of Optimality
 Any subpolicy of an optimum policy must itself be an optimum policy with 

regard to the initial and terminal states of the subpolicy

 Two key properties of DP for optimization
 Overlapping subproblems

 Optimal substructure – an optimal solution can be constructed from optimal 
solutions to subproblems

 Reduce search space (ignore non-optimal solutions)

12

If the optimal substructure (principle of optimality) 
does not hold, then it is incorrect to use DP



 Shortest Path Problem
 Input: a graph where the edges have positive costs

 Output: a path from S to T with the smallest cost

13

Taipei (T)

Tainan (S)

M

CSM

CMT

C’SM < CSM?

The path costing CSM+ CMT is the shortest path from S to T 
 The path with the cost CSM must be a shortest path from S to M

Proof by “Cut-and-Paste” argument (proof by contradiction):
Suppose that it exists a path with smaller cost C’SM, then we can 
“cut” CSM and “paste” C’SM to make the original cost smaller



14



Course Website: http://ada.miulab.tw

Email: ada-ta@csie.ntu.edu.tw

15

Important announcement will be sent to @ntu.edu.tw mailbox 
& post to the course website

http://ada.miulab.tw/
mailto:ada-ta@csie.ntu.edu.tw

