
Slides credited from Hsueh-I Lu, Hsu-Chun Hsiao, & Michael Tsai



 Dynamic Programming

 DP #1: Rod Cutting

 DP #2: Stamp Problem

 DP #3: Matrix-Chain Multiplication

 DP #4: Sequence Alignment Problem
 Longest Common Subsequence (LCS) / Edit Distance

 Viterbi Algorithm

 Space Efficient Algorithm

 DP #5: Weighted Interval Scheduling

 DP #6: Knapsack Problem
 0/1 Knapsack

 Unbounded Knapsack

 Multidimensional Knapsack

 Fractional Knapsack 2



 Do not focus on “specific algorithms”

 But “some strategies” to “design” algorithms

 First Skill: Divide-and-Conquer (各個擊破)

 Second Skill: Dynamic Programming (動態規劃)

3



Textbook Chapter 15 – Dynamic Programming

Textbook Chapter 15.3 – Elements of dynamic programming

4



 Dynamic programming, like the divide-and-conquer 
method, solves problems by combining the solutions to 
subproblems
用空間換取時間

讓走過的留下痕跡

 “Dynamic”: time-varying

 “Programming”: a tabular method

5

Dynamic Programming: planning over time



 Divide-and-Conquer
 partition the problem into 

independent or disjoint
subproblems

 repeatedly solving the common 
subsubproblems

 more work than necessary

 Dynamic Programming
 partition the problem into 

dependent or overlapping
subproblems

 avoid recomputation

 Top-down with memoization

 Bottom-up method

6



 Apply four steps
1. Characterize the structure of an optimal solution

2. Recursively define the value of an optimal solution

3. Compute the value of an optimal solution, typically in a bottom-
up fashion

4. Construct an optimal solution from computed information

7



 Fibonacci sequence (費波那契數列)
 Base case: F(0) = F(1) = 1

 Recursive case: F(n) = F(n-1) + F(n-2)

8

Fibonacci(n)

if n < 2 // base case

return 1

// recursive case

return Fibonacci(n-1)+Fibonacci(n-2)

F(5)

F(4) F(3)

F(3) F(2) F(2) F(1)

F(2) F(1) F(1) F(0) F(1) F(0)

F(1) F(0) Calling overlapping subproblems result in poor efficiency

F(3) was computed twice

F(2) was computed 3 times



 Solve the overlapping subproblems recursively with memoization
 Check the memo before making the calls

9

F(5)

F(4) F(3)

F(3) F(2)

F(2) F(1)

F(1) F(0)

備忘錄

n 0 1 2 3 4 5

F(n) 1 1 ? ? ? ?2 3 5 8

Avoid recomputation of the same subproblems using memo



10

Memoized-Fibonacci(n)

// initialize memo (array a[])

a[0] = 1

a[1] = 1

for i = 2 to n

a[i] = 0

return Memoized-Fibonacci-Aux(n, a)

Memoized-Fibonacci-Aux(n, a)

if a[n] > 0

return a[n]

// save the result to avoid recomputation

a[n] = Memoized-Fibonacci-Aux(n-1, a) + Memoized-Fibonacci-Aux(n-2, a)

return a[n] 



 Building up solutions to larger and larger subproblems

11

Bottom-Up-Fibonacci(n)

if n < 2

return 1

a[0] = 1

a[1] = 1

for i = 2 … n

a[i] = a[i-1] + a[i-2]

return a[n]

F(5)

F(4)

F(3)

F(2)

F(1)

F(0)

Avoid recomputation of the same subproblems



 Principle of Optimality
 Any subpolicy of an optimum policy must itself be an optimum policy with 

regard to the initial and terminal states of the subpolicy

 Two key properties of DP for optimization
 Overlapping subproblems

 Optimal substructure – an optimal solution can be constructed from optimal 
solutions to subproblems

 Reduce search space (ignore non-optimal solutions)

12

If the optimal substructure (principle of optimality) 
does not hold, then it is incorrect to use DP



 Shortest Path Problem
 Input: a graph where the edges have positive costs

 Output: a path from S to T with the smallest cost

13

Taipei (T)

Tainan (S)

M

CSM

CMT

C’SM < CSM?

The path costing CSM+ CMT is the shortest path from S to T 
 The path with the cost CSM must be a shortest path from S to M

Proof by “Cut-and-Paste” argument (proof by contradiction):
Suppose that it exists a path with smaller cost C’SM, then we can 
“cut” CSM and “paste” C’SM to make the original cost smaller



14



Course Website: http://ada.miulab.tw

Email: ada-ta@csie.ntu.edu.tw

15

Important announcement will be sent to @ntu.edu.tw mailbox 
& post to the course website

http://ada.miulab.tw/
mailto:ada-ta@csie.ntu.edu.tw

