


Announcement

= Mini-HW 2 released
= Due on 10/4 (Thu) 14:20
= Submit to NTU COOL before the lecture starts

= Homework 1 released
= Due on 10/18 (Thur) 14:20 (total 3 weeks)

= Writing: print out the A4 hard copy and submit to NTU COOL before the
lecture starts

= Programming: submit to Online Judge — http://adal8-judge.csie.org

= Account and password were sent

____________________________________________________
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http://ada-judge.csie.org/

Mini-HW 2

()



Homework 1

Homework #1

Due Time: 2018/10/18 (Thu.) 14:20
Contact TAs: ada-ta@csie.ntu.edu.tw

Instructions and Announcements

e There are three programming problems and two hand-written problems.

e Programming. The judge system is located at https://adal18-judge.csie.org. Please login
and submit your code for the programming problems (i.e., those containing “Programming” in

the problem title) by the deadline. NO LATE SUBMISSION IS ALLOWED.

e Hand-written. For other problems (also known as the “hand-written problems”), please turn
in a printed /written version of your answers to the instructor at the beginning of the class.
In case that your homework is lost during the grading, you can also upload your homework to

the NTU COOL system. NO LATE SUBMISSION IS ALLOWED.

e Collaboration policy. Discussions with others are strongly encouraged. However, you should
write down your solutions in your own words. In addition, for each and every problem
you have to specify the references (e.g., the Internet URL you consulted with or the people you
discussed with) on the first page of your solution to that problem. You may get zero point due

to the lack of references. @



Algorithm Design Strategy

= Do not focus on “specific algorithms”

= But “some strategies” to “design” algorithms

- First Skill: Divide-and-Conquer (% {EZ2%)

®



Outline
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= Recurrence ({E3E)

= Divide-and-Conquer

= D&C #1: Tower of Hanoi (i A &)
= D&C #2: Merge Sort

= D&C #3: Bitonic Champion

= D&C #4: Maximum Subarray

Divide-and-Conquer & 2

= Solving Recurrences
= Substitution Method

= Recursion-Tree Method
= Master Method

= D&C #5: Matrix Multiplication
= D&C #6: Selection Problem Divide-and-Conquer Z {8 &%
= D&C #7: Closest Pair of Points Problem @



What is Divide-and-Conquer?

= Solve a problem recursively

= Apply three steps at each level of the recursion

1. Divide the problem into a number of subproLbIems that are
smaller instances of the same problem (EEER/)\BY [G) 4 R B )

2. Conquer the subproblems by solving them recursively
If the subproblem sizes are small enough

= then solve the subproblems base case

= else recursively solve itself TeEUEiE EEEE

3. Combine the solutions to the subproblems into the solution for
the original problem



Divide-and-Conquer Benefits

(f
= Easy to solve difficult problems &

= Thinking: solve easiest case + combine smaller solutions into the
original solution

= Easy to find an efficient algorithm
= Better time complexity

= Suitable for parallel computing (multi-core systems)

= More efficient memory access

= Subprograms and their data can be put in cache in stead of accessing
main memory

©



) Recurrence |

'l LUD

=
rrmes”

T



Recurrence Relation

= Definition

A recurrence is an equation or inequality that descrlbes a functlon in
terms of its value on smaller inputs. = —

= Example

Fibonacci sequence (B BFZ22775))
= Base case: F(0) = F(1) =
= Recursive case: F(n) = F(n-1) + F(n-2)

F(n) 1




Recurrent Neural Network (RNN)

St = O'(WSt_l + U.CE't)
o; = softmax(V s;)



Recurrence Benefits

= Easy & Clear
C = Define base case and recursive case

= Define a long sequence

Base case F(0), F(1), F(2)...............
Recursive case unlimited sequence

a program for solving F(n)

Fibonacci(n) // recursive function: BINF=IEIYEHSAVKE
if n < 2 // base case: termination condition
return 1 important otherwise the program cannot stop
// recursive case: call itself for solving subproblems
return Fibonacci(n-1) + Fibonacci (n-2)

(s)



Recurrence v.s. Non-Recurrence

Fibonacci (n)
if n < 2 // base case
return 1
// recursive case
return Fibonacci (n-1)

+ Fibonacci (n-2)

Fibonacci (n)

if n < 2
return 1

al[0] <=1

all] <=1

for 1 = 2 .. n
ali] = a[i-1]

return al[n]

+ al[i-2]

Recursive function
* Clear structure ﬁ
* Poor efficiency iy

Non-recursive function

* Better efficiency &,
* Unclear structure ql

©



Recurrence Benefits

= Easy & Clear
C = Define base case and recursive case

= Define a long sequence

Base case F(0), F(1), F(2)...............
Recursive case unlimited sequence

a program for solving F(n)

If a problem can be simplified into a base case and a recursive case,
then we can find a algorithm that solves this problem.

__________________________________________________________________________________________________________

Hanoi(n) is not easy to solve.
_ v' Itis easy to solve when n is small
Recursive case v we can find the relation between Hanoi(n) & Hanoi(n-1)

_ a program for solving Hanoi(n) ()

Base case
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= Tower of Hanoi a ! |




Tower of Hanoi (J0] A1)

= Problem: move n disks from A to C

= Rules
= Move one disk at a time

= Cannot place a larger disk onto a smaller disk

Play online: https://www.mathsisfun.com/games/towerofhanoi.html



Hanoi(1)

= Move 1 from Ato C

- > 1movein total
' Base case |

©



Hanoi(2)

= Move 1 from Ato B
= Move 2 from Ato C
= Move 1 fromBto C




Hanoi(3)

= How to move 3 disks?

= How many moves in total?




Hanoi(n)

= How to move n disks?

= How many moves in total?

Disk n-2
Disk n-1
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Hanoi(n)

= To move n disks from A to C (for n > 1):

1.  Move Disk 1~n-1 from Ato B

Disk n-2
Disk n-1



Hanoi(n)

= To move n disks from A to C (for n > 1):
1.  Move Disk 1~n-1 from Ato B

Oy,

L —




Hanoi(n)

= To move n disks from A to C (for n > 1):
1.  Move Disk 1~n-1 from Ato B

2. Move Disk n from Ato C




Hanoi(n)

= To move n disks from A to C (for n > 1):

1.  Move Disk 1~n-1 from Ato B
2. Move Disk n from Ato C




Hanoi(n)

= To move n disks from A to C (for n > 1):
1.  Move Disk 1~*n-1 from Ato B

2. Move Disk n from Ato C
3.  Move Disk 1~*n-1 from B to C

Oy,




Hanoi(n)

= To move n disks from A to C (for n > 1):

1.  Move Disk 1¥n-1fromAtoB |~ L |
_ - = 2Hanoi(n-1) + 1 moves in total |
2. Move DisknfromAtoC | |

. | recursive case ;
3. Move Disk 1~*n-1 fromBtoC ‘- -

{’ -------------- \‘
| |
| |
| |
| |
| |
| |
| |
: :
: Disk n-2 ]
] Disk n-1 i
A B C



Pseudocode for Hanoi

Hanoi (n, src, dest, spare)
if n==1 // base case

Move disk from src to dest LR ORRSE :
else // recursive case - No need to combine the |

Hanoi (n-1, src, spare, dest) . results in this case
Move disk from src to dest | T

Hanoi (n-1, spare, dest, src)

= Call tree Hanoi (3, A, C, B)

T

Hanoi (2, A, B, C) Hanoi (2, B, C, A)

Hanoi (1,A,C,B) Hanoi(1l,C,B,A) Hanoi(1,B,2A,C) Hanoi(1l,2,C,B) {@)



Algorithm Time Complexity

Hanoi (n, src, dest, spare)
if n==1 // base case
Move disk from src to dest
else // recursive case
Hanoi (n-1, src, spare, dest)
Move disk from src to dest
Hanoi (n-1, spare, dest, src)

= T(n) = #moves with n disks
= Basecase:T(1) =1
= Recursivecase (n >1):T(n) =2T(n—1) + 1

= We will learn how to derive T'(n) later

___________________________________________



Further Questions

= Q1:1s 0(2™) tight for Hanoi? Can T(n) < 2™ — 17
= Q2: What about more than 3 pegs?

= Q3: Double-color Hanoi problem
= |Input: 2 interleaved-color towers

= Output: 2 same-color towers

()



D&C #2: ™ —

Merge Sort imm—.

Textbook Chapter 2.3.1 — The divide-and-conquer approach



Sorting Problem

Input: unsorted list of size n

Output: sorted list of size n

What are the base case
and recursive case?



Divide-and-Conquer

= Base case (n=1)
= Directly output the list

= Recursive case (n > 1)
= Divide the list into two sub-lists
= Sort each sub-list recursively
= Merge the two sorted lists How?

2 sublists of size n/2

_____________________________________________






Illustration for n = 10 N E—
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Pseudocode for Merge Sort

MergeSort (A, p, 1)
// base case

if p==r

return

// recursive case
// divide

q = [(p+tr-1)/2]

// conquer
MergeSort (A, p, 9)
MergeSort (A, gtl, r)
// combine

Merge (A, p, g, r)

2. Conquer

¥

3. Combine

Divide a list of size ninto 2

sublists of size n/2

Recursive case (n > 1)

= Sort 2 sublists recursively using

merge sort
Base case (n = 1)
= Return itself

Merge 2 sorted sublists into
one sorted list in linear time

€



Time Complexity for Merge Sort

MergeSort (A, p, 1)
// base case
if p==r
return
// recursive case
// divide
g = [(ptr-1)/2]
// conquer
MergeSort (A, p, 9)
MergeSort (A, gtl, r)
// combine

Merge (A, p, g, 1)

4
$

3. Combine

Divide a list of size ninto 2 ©(1)

sublists of size n/2

Recursive case (n > 1)

______________________

Merge 2 sorted sublists into O(n)

one sorted list in linear tim

= T(n) =time for running MergeSort (&, p, r) withr-p+1=n

T(n) = { o)

T([n/2]) +T([n/2]) +O(n)

ifn=1
if n>2



Time Complexity for Merge Sort

= Simplify recurrences
lgnore floors and ceilings (boundary conditions)

Assume base cases are constant (for small n)
| O(1) ifn=1
Tn) = { 2T(n)2) +O(n) ifn> 2

T(n) < 2T(g) +en
n n n .
< 2[2T(Z) + c§] +cn = 4T(Z) +2cn 1% expansion
< 4[2T(g) - cg] + 2¢en = 8T(%) +3cn 2" expansion

T(n)

VAN

nT' (1) 4+ cnlogyn
O(n) 4+ O(nlogn)

) ©
The expansion stops when 2k = n = O(nlogn)

. mn
2kT(2—k) + ken kth expansion

IA



Theorem 1

= Theorem

O(1) ifn=1
U= { T([n/2]) + T(|n/2]) + O(n) if n > 2™ T(n) =0O(nlogn)

= Proof _

a ifn=1
= There exists positive constant a, b s.t. T'(n) < { T(In/2)) + T(|n/2)) +b-n ifn>2
= Use induction to prove T'(n) < 2b-nlog,n+a-n

= n =1, trivial
= n> 1,|_%-| < %

Tn) < T([n/2])+T(|n/2])+b-n
Inductive < 2b- ([n/2]logy[n/2]) +a-[n/2] +2b- (|n/2|logy|n/2|) +a-|n/2] +b-n
hypothesis _

2 - ([n/2] log, %1)+a- /2] +2b- (|n/2] logz%)—i—a- n/2] +b-n
= 2b-n(logn —log, V2)+a-n+b-n=2b-nlogyn+a-n @



How to Solve Recurrence Relations?

1. Substitution Method (EX1{%)

= Guess a bound and then prove by induction

2. Recursion-Tree Method (& @15 %)

= Expand the recurrence into a tree and sum up the cost

3. Master Method (E' AT, KA/ AEMZE)

= Apply Master Theorem to a specific form of recurrences

Let’s see more examples first and come back to this later



= D&C #3: Bitonic
= Champion Probiem




Bitonic Champion Problem

The bitonic champion problem

e Input: A bitonic sequence A[l], A[2],..., A[n] of distinct positive
integers.

e Qutput: the index 7 with 1 < ¢ < n such that

Ali] = max Alj].

1<j<n

The bitonic sequence means “increasing before the champion and
decreasing after the champion” (& Z AIIEIS - & 2B IER)

eeo/@'Q@ee




Bitonic Champion Problem Complexity

Upper bound = O(n)

---------------------------

" Why not Q(n)?

Lower bound = Q(1) ~—
©




Bitonic Champion Problem Complexity

= When there are n inputs, any solution has n different outputs

= Any comparison-based algorithm needs (2(logn) time in the worst case

> Q(logn)




Bitonic Champion Problem Complexity

Upper bound = O(n)

@D

Lower bound = (logn)
Lower bound = Q(1)




Divide-and-Conquer

v
VLN

= |dea: divide A into two subproblems and then find the final champion

based on the champions from two subproblems

Output = Champion(l, n)

Champion (i, 7J)
if i==j // base case
return 1i
else // recursive case
k = floor ((i+])/2)
1 = Champion (i, k)
r = Champion (k+1, 7)
if A[1] > Alr]
return 1
if A[1l] < Alr]
return r




10

lllustration for n



Proof of Correctness /ﬁ//
/ AN SR

= Practice by yourself!

Output = Chamption (1, n)

Champion (i, 7J)
if i==j // base case
return 1i
else // recursive case
k = floor ((i+])/2)
1 = Champion (i, k)
r = Champion (k+1, 7)
if A[1] > Alr]
return 1
if A[1l] < Alr]
return r

Hint: use induction on (j—i) to
prove Champion (i, j) can return
' the champion from A[i ... ]



Algorithm Time Complexity

= Divide a list of size ninto 2

Champion (i, 3) sublists of size n/2 ' g (1)
if i==j // base case S

return 1i | . T([n/2]) +T(|n/2])
else // recursive case = Recursive case

k = floor ((i+])/2) = Find champions from 2

1 = Champion(i, k) 2. Conquer sublists recursively

r = Champion(k+1, 3) | BN T

= Base case - O(1) §
= Returnitself

if A[1] > Alr]
return 1

if A[1l] < Alr]
return r

9
liHHHHI

= Choose the final champion

= T(n) = time for running Champion (i, j) withj-i+ 1 =n

T(n):{ O(1) if n=1
T(In/2]) +T([n/2]) +0Q1) ifn =2 ©



Theorem 2

O(1) ifn=1
i) = { T([n)2]) + T(|n/2]) + O(1) ifn>2 = T(M) =00

= Proof
= There exists positive constant a, b s.t.
a ifn=1
<
Tin) < { T([n/2]) +T([n/2]) +b ifn=>2
* Useinductionto prove T'(n) <a-n-+b-(n—1)
= n =1, trivial

= n>1,
T(n) < T([n/2])+T(|n/2])+b
Inductive < g /2] +b- (In/2] = 1) +a- [n/2] +5- (n/2] = 1) +b
hypothesis < antb-(n—1) @



Bitonic Champion Problem Complexity

Upper bound = O(n)

@D

Can we have a better
algorithm by using the bitonic
sequence property?

Lower bound = Q(logn)



Improved Algorithm

Champion (i, 7J)
if i==3 // base case
return 1
else // recursive case
k = floor ((i+7)/2)
1 = Champion (i, k)
r = Champion (k+1, 7j)
if A[1] > Alr]
return 1
if A[l] < Alr]
return r

-

v
R 2N

Champion-2 (i, 7J)
if i==3 // base case
return 1
else // recursive case
k = floor ((i+7)/2)
if A[k] > Alk+1]
return Champion (i, k)
if A[k] < Alk+1]
return Champion (k+1, 7j)




R
N

Illustration for n = 10 A

000000000
0 0000




Correctness Proof L \/'/\
oV R\

= Practice by yourself!

Output = Champion-2(1, n)
Champion-2 (i, 3J) ' Two crucial observations:
if i==3 // base case ~* IfA[1...n] s bitonic, then so is
return 1 | . A[i,j] for any indices i and j with
else // recursive case l<i<j<n
k = floor ((i+3)/2) : - T, .
if A[K] > A[k+1] '+ Foranyindices i, j,and k with 1 <
return Champion (i, k) ; i <j <mn,weknow that A[k] >
if A[k] < A[k+1] ~ A[k + 1] if and only if the maximum
return Champion (k+1, 3J) of A[i ...j] liesin A[i ... k]. I




Algorithm Time Complexity

Champion-2 (1, 7J)
if i==j // base case
return 1
else // recursive case
k = floor ((i+7j)/2)
if A[k] > A[k+1]
return Champion (i, k)
if A[k] < A[k+1]
return Champion (k+1, 7J)

= Divide a list of size ninto 2

___________

. = Recursive case T([n/2'|)

= Find champions from 1
2. Conquer sublists recursively |
= Base case - O(1)
@ = Returnitself

= T(n) = time for running Champion (i, j) withj-i+ 1=n

O(1)

T(n) = { T([n/2]) + O(1)

ifn=1
ifn>2



Algorithm Time Complexity

Champion-2 (i, 7J)
if i==7 // base case
return 1
else // recursive case
k = floor ((i+7j)/2)
if Alk] > A[k+1]
return Champion (i, k)
if A[k] < A[k+1]
return Champion (k+1, 7)

______________________________________________________________

{ The algorithm time complexity is O(logn)

each recursive call reduces the size of
(j - i) into half

there are O(logn) levels

each level takes O(1)

= T(n) = time for running Champion (i, j) withj-i+ 1=n

O(1)

T(n) = { T([n/2]) + O(1)

ifn=1
if n > 2



Theorem 3

Theorem
O(1) if n=1
1) = { T([n/2]) +O(1) ifn>2
Proof

________________________________________________________________

(s)



Bitonic Champion Problem Complexity

Upper bound = O(n)

Upper bound = O(logn)

Lower bound = Q(logn)



D&C #4: Maximum
— Subarray Problem

Textbook Chapter 4.1 — The maximum-subarray problem



Coding Efficiency

= How can we find the most efficient time interval for continuous coding?

Coding power

8977 (K)
4
3
2
1
0

12am lam 2am

7pm-2:59am
Coding power= 8k



Maximum Subarray Problem

e Input: A sequence A[l], A[2],..., A[n] of integers.

e Output: Two indicex ¢z and j with 1 < ¢ < 5 < n that
maximize

lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll

lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll
lllllllllllllllllllllllllll

lllllllllllllllllllllllllll



O(n3) Brute Force Algorithm

MaxSubarray-1(i, Jj)
for i = 1,..,n
for § = 1,.,n O(n?)
] ]

L, 441, | | }(D(RS)
= A[i1] + A[i+1] + .. + A[]J]

return Champion (S) (D(nz)

(=)



O(n?) Brute Force Algorithm

MaxSubarray-2 (i, Jj)
for i = 1,..,n

return Champion (S) O(n?)

(=)



Max Subarray Problem Complexity

' Upper bound = O(n?)

Lower bound = Q(n



Divide-and-Conquer

= Base case (n=1)
= Return itself (maximum subarray)

= Recursive case (n > 1)
= Divide the array into two sub-arrays
= Find the maximum sub-array recursively
= Merge the results How?



Where is the Solution?

= The maX|mum subarray for any input must be in one of foIIowmg cases:

k k+1

Case 1: left

Case 2: right

Case 1: MaxSub (A, i, Jj) = MaxSub (A, i, k)
Case 2: MaxSub (A, i, Jj) = MaxSub (A, k+1, 73)
Case 3: MaxSub (A, 1, 7J) cannot be expressed using MaxSub!

€



Case 3: Cross the Middle

= Goal: find the maximum subarray that crosses the middle

(1) Start from the middle to find (2) Start from the middle to find
the left maximum subarray the right maximum subarray

_____________________________________________________________________________________

= Observation
= The sum of A[x ... k] must be the maximum among A[i ... k] (left: i < k)

= The sum of A[k + 1 ... y] must be the maximum among A[k + 1...j] (right: j > k)

= Solvable in linear time 2 0(n)

€



Divide-and-Conquer Algorithm

MaxCrossSubarray (A, i, k, 7J)
left sum = -0
sum=0
for p = k downto i ()(k-—-i4—1)“
sum = sum + A[p]
if sum > left sum
left sum = sum

max left = p >-::()Qj__i4_1)

right sum = -oo
sum=0
for g = k+1 to j ()(j——kﬂ —
sum = sum + A[q]
1f sum > right sum
right sum = sum
max right = g
return (max left, max right, left sum + right sum)

©



Divide-and-Conquer Algorithm

MaxSubarray (A, 1, 7J)
if i == j // base case
return (i, J, A[1])
else // recursive case
k = floor((1i + J) / 2)
. (L low, 1 high, 1 sum)
D“”de(r_low, r high, r sum)
(c_ low, ¢ high, c sum)

= MaxSubarray (A, 1, k)
= MaxSubarray (A, k+1,
= MaxCrossSubarray (A,

if 1 sum >= r sum and 1 sum >= ¢ sum // case 1

return (1 low, 1 high,

1 sum)

J)
i,

k,

else if r sum >= 1 sum and r sum >= c _sum // case 2

return (r low, r high,
else // case 3
return (c_low, c¢ high,

r sum)

C_sum)

Conquer

J)

Combine

©



Divide-and-Conquer Algorithm

MaxSubarray (A, 1, 7J)

if i == j // base case O(1)
return (i, J, A[1])

else // recursive case

k = floor((i + J) / 2

) :
(1 low, 1 high, 1 sum) = MaxSubarray (A, i, k) T(k—i+1)
(r:low, r:high, r:sum) = MaxSubarray (A, k+1, 7J) ITj“k)
(c_ low, ¢ high, ¢ sum) = MaxCrossSubarray (A, 1, k, 7J)
O —i+1)
if 1 sum >= r sum and 1 sum >= ¢ sum // case 1 0(1)

return (1 low, 1 high, 1 sum)

else if r sum >= 1 sum and r sum >= c sum // case 2 O(1)
return (r low, r high, r sum)

else // case 3 B B CKl)

return (c_low, c¢ high, c sum)

©



Algorithm Time Complexity

= Divide a list of size n into 2 subarrays of size n/2 O(1)
“ Recursivecase(n>1) T ( fn/ﬂ)—l—T(Ln/QJ)
= find MaxSub for each subarrays roeeenene
206 e[IIi8 - Base case (n = 1) o)

= Return itself

Find MaxCrossSub for the original list omn) 5

4

Pick the subarray with the maximum sum among 3 '@( )
subarrays et -

= T(n) = time for running MaxSubarray (A, i, j) withj-i+1=n
T(n) O(1) ifn=1
~\ T(In/2]) + T([n/2)) + O(n) it n > 2 ©




Theorem 1

= Theorem

O(1) ifn=1
U= { T([n/2]) + T(|n/2]) + O(n) if n > 2™ T(n) =0O(nlogn)

= Proof :
. . T <l a ifn=1
= There exists positive constant a, b s.t. T'(n) < T([n/2]) + T(|n/2]) +b-n ifn>?2

= Use induction to prove T(n) <2b-nlogyn+a-n

= n =1, trivial

- n>1,n_2H < \75

T(n) < T([n/2])+T([n/2])+b-n
Inductive 2. ([n/2]logy /2] + o [n/2) + 20+ (1n/2]oga[n/2] +a-[/2]) + b
ypothesis zb-((n/zuogz%wa-(n/21)+25-(m/2j1og2%+a-W2J)+b-n

2b-n(logn —log, V2) +a-n+b-n=2b-nlogy,n+a-n @



Theorem 1 (Simplified)

= Theorem

O(1)

if n =

Tn) = { 0T (n/2) + O(n) ifn>2 "™ T()=0(nlogn)

= Proof

= There exists positive constant a, b s.t.

ifn=1

a
<
Tn) < { 2T(n/2) +bn if n > 2
= Use induction to prove T(n) <b-nlogn+a-n

= n =1, trivial

- n>1, T(n)
Inductive
hypothesis

<

<

2T (n/2) + bn

n, n n
2[b-§log§+a~§]+b-n
b-nlogn—06-n+a-n+b-n

b-nlogn+a-n

©



Max Subarray Problem Complexity

Upper bound = O(n?)

Upper bound = O(nlogn)

@D

Lower bound = Q(n)



Max Subarray Problem Complexity

Upper bound = O(nlogn)
Upper bound = O(n)

___________

... Next topic!
Exercise 4.1-5

page 75 of textbook

1

\ 1
\ 7

N .
So .’
~ - - -
\~~‘ "” @ @
-

Lower bound = Q(n)



Solving Recurrences

Textbook Chapter 4.3 — The substitution method for solving recurrences
Textbook Chapter 4.4 — The recursion-tree method for solving recurrences



D&C Algorithm Time Complexity

= T(n): running time for input size n

= D(n): time of Divide for input size n

= C(n): time of Combine for input size n
= a: number of subproblems

= n/b: size of each subproblem

O(1) ifn<c
T(n)= { al(n/b) + D(n) 4+ C(n) otherwise

©



Solving Recurrences

1. Substitution Method (EX1{%)

= Guess a bound and then prove by induction

2. Recursion-Tree Method (& @15 %)

= Expand the recurrence into a tree and sum up the cost

3. Master Method (E AT KA/ KBTE)

= Apply Master Theorem to a specific form of recurrences

= Useful simplification tricks
= |gnore floors, ceilings, boundary conditions (proof in Ch. 4.6)
= Assume base cases are constant (for small n)




Review

= Time Complexity for Merge Sort

= Theorem

O(1 if n =
Tn) = { 2T((7)7,/2) +0(n) ifn>2 "™ T0)=0(nlogn)

= Proof

= There exists positive constant a, b s.t. T(n) < { it n =1

a
2T'(n/2) +bn ifn>2
= Use induction to prove T(n) <b-nlogn+a-n

* n=1, trivial Substitution Method (EX{{;%)
“n>1, T(n) < 2T(n/2)+bn guess a bound and then prove by induction
<

n., n n
2[b-§log§+a-§]+b-n

b-nlogn—bb-n+a-n+b-n @

b-nlogn+a-n



Review

= Time Complexity for Merge Sort

= Theorem

O(1 ifn=1
Tn) = { 22;(7)7,/2) +0(n) ifn>2 "™ T0)=0(nlogn)

* Proof n Recursion-Tree Method (#E 2 1)X)
T(n) < ZT(E) +cn Expand the recurrence into a tree and sum up the cost
n n n
< Q[QT(Z) + 65] +cn = 4T(Z) +2cn 15t expansion
< 4[2T(g) + cz] +2en = 8T(g) +3en 2™ expansion
: T(n) < nT(1)+cnlogyn
< 2’“T(2%) + ken k™ expansion = O(n)+ O(nlogn)

The expansion stops when 2k = n = O(nlogn)



&) To Be Continued...




Question?

Important announcement will be sent to @ntu.edu.tw mailbox
& post to the course website

Course Website: http://ada.miulab.tw

Email: ada-ta@csie.ntu.edu.tw



http://ada17.csie.org/
mailto:ada-ta@csie.ntu.edu.tw

