
Slides credited from Prof. Hsueh-I Lu & Hsu-Chun Hsiao



▪ Any question should be sent via email
▪ Please use [ADA2018] in the subject

▪ Please write your 學號 姓名 in the email

▪ Registration codes were sent out
▪ Register (or drop?) the course ASAP

▪ Slides are available before the lecture starts

▪ Mini-HW 1 released
▪ Due on 9/27 (Thu) 14:20

▪ Submit to NTU COOL

▪ Judge system available
▪ Programming part: submit to Online Judge – http://ada18-judge.csie.org
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http://ada-judge.csie.org/
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教過

我早就會了!



▪ Terminology
▪ Problem (問題)
▪ Problem instance (個例)
▪ Computation model (計算模型)
▪ Algorithm (演算法)
▪ The hardness of a problem (難度)

▪Algorithm Design & Analysis Process

▪ Review: Asymptotic Analysis

▪Algorithm Complexity

▪ Problem Complexity
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▪ Why we care?
▪ Computers may be fast, but they are not infinitely fast

▪ Memory may be inexpensive, but it is not free
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Textbook Ch. 1 – The Role of Algorithms in Computing
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▪ An instance of the champion problem
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7 4 2 9 8

A[1] A[2] A[3] A[4] A[5]



Computation Model (

▪ Each problem must have its rule (遊戲規則)

▪ Computation model (計算模型) = rule (遊戲規則)

▪ The problems with different rules have different hardness levels
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▪ How difficult to solve a problem
▪ Example: how hard is the champion problem?

▪ Following the comparison-based rule
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What does “solve (解)” mean?

What does “difficult (難)” mean?



▪ Definition of “solving” a problem
▪ Giving an algorithm (演算法)  that produces a correct output for any

instance of the problem.
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Algorithm (演算法)

▪ Algorithm: a detailed step-by-step instruction
▪ Must follow the game rules

▪ Like a step-by-step recipe

▪ Programming language doesn’t matter

→ problem-solving recipe (technology)

▪ If an algorithm produces a correct output for any instance 
of the problem 

→ this algorithm “solves” the problem
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“A well-defined computational procedure 
that transforms some input to some output”



Hardness (難度)

▪ Hardness of the problem
▪ How much effort the best algorithm needs to solve any problem instance

▪防禦力
▪ 看看最厲害的賽亞人要花多少攻擊力才能打贏對手
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防禦力 100000攻擊力 50000
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1) Formulate a problem

2) Develop an algorithm

3) Prove the correctness

4) Analyze running time/space requirement
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Design Step

Analysis Step
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2. Algorithm Design

▪ Create a detailed recipe for solving the problem
▪ Follow the comparison-based rule

▪ 不准偷看信封的內容

▪ 請別人幫忙「比大小」

▪ Algorithm: 擂台法
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1. int i, j;

2. j = 1;

3. for (i = 2;  i <= n;  i++)

4. if (A[i] > A[j])

5. j = i;

6. return j;

Q1: Is this a comparison-based algorithm?

Q2: Does it solve the champion problem?



▪ Prove by contradiction (反證法)
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1. int i, j;

2. j = 1;

3. for (i = 2;  i <= n;  i++)

4. if (A[i] > A[j])

5. j = i;

6. return j;



Hardness of The Champion Problem

▪ How much effort the best algorithm needs to solve any 
problem instance
▪ Follow the comparison-based rule

▪ 不准偷看信封的內容

▪ 請別人幫忙「比大小」

▪ Effort: we first use the times of comparison for measurement
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1. int i, j;

2. j = 1;

3. for (i = 2;  i <= n;  i++)

4. if (A[i] > A[j])

5. j = i;

6. return j;

(n - 1) comparisons



Hardness of The Champion Problem

▪ The hardness of the champion problem is (n - 1) comparisons
a) There is an algorithm that can solve the problem using at most (n – 1) 

comparisons

▪ This can be proved by 擂臺法, which uses (n – 1) comparisons for any 
problem instance

b) For any algorithm, there exists a problem instance that requires (n - 1) 
comparisons

▪ Why?
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Hardness of The Champion Problem

▪ Q: Is there an algorithm that only needs (n - 2) comparisons?

▪ A: Impossible!

▪ Reason
▪ A single comparison only decides a loser

▪ If there are only (n - 2) comparisons, the most number of losers is 
(n - 2)

▪ There exists a least 2 integers that did not lose

→ any algorithm cannot tell who the champion is
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▪ Use the upper bound and the lower bound

▪ When they meet each other, we know the hardness of the 
problem
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Upper bound

Lower bound

Upper bound

Lower bound



Hardness of The Champion Problem

▪ Upper bound
▪ how many comparisons are 

sufficient to solve the 
champion problem 

▪ Each algorithm provides an 
upper bound

▪ The smarter algorithm 
provides tighter, lower, and 
better upper bound

▪ Lower bound
▪ how many comparisons in 

the worst case are necessary
to solve the champion 
problem

▪ Some arguments provide 
different lower bounds

▪ Higher lower bound is better
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多此一舉擂臺法

1. int i, j;

2. j = 1;

3. for (i = 2;  i <= n;  i++)

4. if ((A[i] > A[j]) && (A[j] < A[i]))

5. j = i;

6. return j;

Every integer needs to be in the 
comparison once 
→ (n/2) comparisons

→ (2n - 2) comparisons

When upper bound = lower bound, the problem is solved.
→ We figure out the hardness of the problem
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▪ The majority of researchers in algorithms studies the time
and space required for solving problems in two directions
▪ Upper bounds: designing and analyzing algorithms

▪ Lower bounds: providing arguments

▪ When the upper and lower bounds match, we have an 
optimal algorithm and the problem is completely resolved
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Edmund Landau
(1877-1938)

Donald E. Knuth
(1938-)

教過

我早就會了!
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▪ The hardness of the champion problem is exactly 𝑛 − 1
comparisons

▪ Different problems may have different 「難度量尺」
▪ cannot be interchangeable

▪ Focus on the standard growth of the function to ignore the 
unit and coefficient effects



▪ For a problem P, we want to figure out
▪ The hardness (complexity) of this problem P is Θ 𝑓 𝑛

▪ 𝑛 is the instance size of this problem P

▪ 𝑓 𝑛 is a function

▪ Θ 𝑓 𝑛 means that “it exactly equals to the growth of the function”

▪ Then we can argue that under the comparison-based 
computation model
▪ The hardness of the champion problem is Θ 𝑛

▪ The hardness of the sorting problem is Θ 𝑛 log𝑛
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upper bound is 𝑂 ℎ 𝑛 & lower bound is Ω ℎ 𝑛

→ the problem complexity is exactly Θ ℎ 𝑛

▪ Use the upper bound and the lower bound

▪ When they match, we know the hardness of the problem
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Upper bound

Lower bound

Upper bound

Lower bound

use Ω 𝑔 𝑛 and 𝜔 𝑔 𝑛

use 𝑂 𝑓 𝑛 and 𝑜 𝑓 𝑛



▪ First learn how to analyze / measure the effort an algorithm 
needs
▪ Time complexity

▪ Space complexity

▪ Focus on worst-case complexity
▪ “average-case” analysis requires the assumption about the 

probability distribution of problem instances
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Types Description

Worst Case Maximum running time for any instance of size n

Average Case Expected running time for a random instance of size n

Amortized Worse-case running time for a series of operations



▪ 𝑓 𝑛 = time or space of an algorithm for an input of size 𝑛

▪ Asymptotic analysis: focus on the growth of 𝑓 𝑛 as 𝑛 → ∞
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▪ 𝑓 𝑛 = time or space of an algorithm for an input of size 𝑛

▪ Asymptotic analysis: focus on the growth of 𝑓 𝑛 as 𝑛 → ∞

▪ Ο, or Big-Oh: upper bounding function

▪ Ω, or Big-Omega: lower bounding function

▪ Θ, or Big-Theta: tightly bounding function
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▪ For any two functions 𝑓 𝑛 and 𝑔 𝑛 ,

if there exist positive constants 𝑛0 and 𝑐 s.t.

for all 𝑛 ≥ 𝑛0.
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𝑔 𝑛 的某個常數倍𝑐 ∙ 𝑔 𝑛 可以在𝑛夠大時壓得住𝑓 𝑛



▪ Intuitive interpretation
▪ 𝑓 𝑛 does not grow faster than 𝑔 𝑛

▪ Comments
1) 𝑓 𝑛 = 𝑂 𝑔 𝑛 roughly means 𝑓 𝑛 ≤ 𝑔 𝑛 in terms of rate of growth

2) “=” is not “equality”, it is like “ϵ (belong to)”

The equality is 𝑓 𝑛 ⊆ 𝑂 𝑔 𝑛

3) We do not write 𝑂 𝑔 𝑛 = 𝑓 𝑛

▪ Note
▪ 𝑓 𝑛 and 𝑔 𝑛 can be negative for some integers 𝑛

▪ In order to compare using asymptotic notation 𝑂, both have to be non-
negative for sufficiently large 𝑛

▪ This requirement holds for other notations, i.e. Ω, Θ, 𝑜, 𝜔
33



▪ Benefit
▪ Ignore the low-order terms, units, and coefficients

▪ Simplify the analysis

▪ Example: 𝑓 𝑛 = 5𝑛3 + 7𝑛2 − 8
▪ Upper bound: f(n) = O(n3), f(n) = O(n4), f(n) = O(n3log2n)

▪ Lower bound: f(n) = Ω(n3), f(n) = Ω(n2), f(n) = Ω(nlog2n)

▪ Tight bound: f(n) = Θ(n3)

▪ Q: 𝑓 𝑛 = 𝑂 𝑛3 and 𝑓 𝑛 = 𝑂 𝑛4 , so 𝑂 𝑛3 = 𝑂 𝑛4 ?
▪ 𝑂 𝑛3 represents a set of functions that are upper bounded by c𝑛3

for some constant c when n is large enough

▪ In asymptotic analysis, “=” means “ϵ (belong to)”
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“=” doesn’t mean 
“equal to”



▪ Draft.

▪ Let 𝑛0 = 2 and 𝑐 = 100

holds for 𝑛 ≥ 2
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▪ Disproof.
▪ Assume for a contradiction that there exist positive constants 𝑐 and 𝑛0 s.t.

holds for any integer 𝑛 with 𝑛 ≥ 𝑛0.

▪ Assume

and because , it follows that 

▪ Due to contradiction, we know that
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▪ First learn how to analyze / measure the effort an algorithm 
needs
▪ Time complexity

▪ Space complexity

▪ Focus on worst-case complexity
▪ “average-case” analysis requires the assumption about the 

probability distribution of problem instances
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Using 𝑂 to give upper bounds on the worst-case time complexity of algorithms



▪ 擂台法 ▪ The worst-case time complexity is
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1. int i, j;

2. j = 1;

3. for (i = 2;  i <= n;  i++)

4. if (A[i] > A[j])

5. j = i;

6. return j;

Adding everything together
→ an upper bound on the 

worst-case time complexity

Rule 2

Rule 4

1 = 𝑂 𝑛 & Rule 3

Rule 2

O 1 time

O 1 time

O 𝑛 iterations

O 1 time

O 1 time

O 1 time
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▪ Bubble-Sort Algorithm
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𝑂 1 time

𝑓 𝑛 iterations

𝑂 1 time

𝑂 𝑛 iterations

𝑂 1 time

𝑂 1 time

𝑂 1 time

1. int i, done;

2. do {

3. done = 1;

4. for (i = 1; i < n; i ++) {

5. if (A[i] > A[i + 1]) {

6. exchange A[i] and A[i + 1];

7. done = 0;

8. }

9. }

10. } while (done == 0)

prove by induction
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7 3 1 4 6 2 5

73 1 4 6 2 5

731 4 62 5

1 4 62 5 73

1 4 62 5 73



▪ First learn how to analyze / measure the effort an algorithm 
needs
▪ Time complexity

▪ Space complexity

▪ Focus on worst-case complexity
▪ “average-case” analysis requires the assumption about the 

probability distribution of problem instances
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Using 𝑂 to give upper bounds on the worst-case time complexity of algorithms

Using Ω to give lower bounds on the worst-case time complexity of algorithms
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▪ 擂台法

1. int i;

2. int m = A[1];

3. for (i = 2; i <= n; i ++) {

4. if (A[i] > m)

5. m = A[i];

6. }

7. return m;

Adding everything together
→ a lower bound on the worst-

case time complexity?

Ω 1 time

Ω 1 time

Ω 𝑛 iterations

Ω 1 time

Ω 1 time

Ω 1 time
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▪ 百般無聊擂台法

1. int i;

2. int m = A[1];

3. for (i = 2; i <= n; i ++) {

4. if (A[i] > m)

5. m = A[i];

6. if (i == n)

7. do i++ n times

8. }

9. return m;

Adding together may result in errors.
The safe way is to analyze using problem instances.

e.g. try A[i] = i or A[i]=2(n – i) to check the time complexity → Ω 1

Ω 1 time

Ω 1 time

Ω 𝑛 iterations

Ω 1 time

Ω 1 time

Ω 1 time

Ω 𝑛 time

Ω 1 time



▪ Bubble-Sort Algorithm
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𝑓 𝑛 iterations

Ω 𝑛 time

1. int i, done;

2. do {

3. done = 1;

4. for (i = 1; i < n; i ++) {

5. if (A[i] > A[i + 1]) {

6. exchange A[i] and A[i + 1];

7. done = 0;

8. }

9. }

10. } while (done == 0)

When A is decreasing, 𝑓 𝑛 = Ω 𝑛 . 
Therefore, the worst-case time 

complexity of Bubble-Sort is 
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7 6 5 4 3 2 1

76 5 4 3 2 1

765 4 3 2 1

54 3 2 1 76

n iterations



In the worst case, what is the growth of function an algorithm takes
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Algorithm

▪ We say that the (worst-case) time complexity of Algorithm A is Θ 𝑓 𝑛 if 

1. Algorithm A runs in time 𝑂 𝑓 𝑛 &

2. Algorithm A runs in time Ω 𝑓 𝑛 (in the worst case)

o An input instance 𝐼 𝑛 s.t. Algorithm A runs in Ω 𝑓 𝑛 for each 𝑛
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▪ If we say that the time complexity analysis about 𝑂 𝑓 𝑛 is tight

▪ = the algorithm runs in time Ω 𝑓 𝑛 in the worst case

▪ = (worst-case) time complexity of the algorithm is Θ 𝑓 𝑛
▪ Not over-estimate the worst-case time complexity of the algorithm

▪ If we say that the time complexity analysis of Bubble-Sort algorithm 
about 𝑂 𝑛2 is tight

▪ = Time complexity of Bubble-Sort algorithm is Ω 𝑛2

▪ = Time complexity of Bubble-Sort algorithm is Θ 𝑛2
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▪ 百般無聊擂台法 non-tight analysis

tight analysis

Step 3 takes 𝑂 𝑛 iterations for the for-
loop, where only last iteration takes 𝑂 𝑛
time and the rest take 𝑂 1 time.
The steps 3-8 take time

The same analysis holds for Ω 𝑛The worst-case time complexity of 
「百般無聊擂臺法」is  Θ 𝑛 .

1. int i;

2. int m = A[1];

3. for (i = 2; i <= n; i ++) {

4. if (A[i] > m)

5. m = A[i];

6. if (i == n)

7. do i++ n times

8. }

9. return m;

𝑂 1 time

𝑂 1 time

𝑂 𝑛 iterations

𝑂 1 time

𝑂 1 time

𝑂 1 time

𝑂 𝑛 time

𝑂 1 time



▪ Q: can we say that Algorithm 1 is a better algorithm than 
Algorithm 2 if
▪ Algorithm 1 runs in 𝑂 𝑛 time

▪ Algorithm 2 runs in 𝑂 𝑛2 time

▪ A: No! The algorithm with a lower upper bound on its 
worst-case time does not necessarily have a lower time 
complexity.
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▪ Algorithm A is no worse than Algorithm B in terms of worst-case time 
complexity if there exists a positive function 𝑓 𝑛 s.t.

▪ Algorithm A runs in time 𝑂 𝑓 𝑛 &

▪ Algorithm B runs in time Ω 𝑓 𝑛 in the worst case

▪ Algorithm A is (strictly) better than Algorithm B in terms of worst-case time 
complexity if there exists a positive function 𝑓 𝑛 s.t.

▪ Algorithm A runs in time 𝑂 𝑓 𝑛 &

▪ Algorithm B runs in time 𝜔 𝑓 𝑛 in the worst case

or

▪ Algorithm A runs in time 𝑜 𝑓 𝑛 &

▪ Algorithm B runs in time Ω 𝑓 𝑛 in the worst case
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In the worst case, what is the growth of the function the optimal 
algorithm of the problem takes
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Problem

▪ We say that the (worst-case) time complexity of Problem P is Θ 𝑓 𝑛 if 

1. The time complexity of Problem P is 𝑂 𝑓 𝑛 &

o There exists an  𝑂 𝑓 𝑛 -time algorithm that solves Problem P

2. The time complexity of Problem P is Ω 𝑓 𝑛

o Any algorithm that solves Problem P requires Ω 𝑓 𝑛 time

▪ The time complexity of the champion problem is Θ 𝑛 because

1. The time complexity of the champion problem is 𝑂 𝑛 &
o 「擂臺法」is the 𝑂 𝑛 -time algorithm

2. The time complexity of the champion problem is Ω 𝑛
o Any algorithm requires Ω 𝑛 time to make each integer in comparison at least once
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▪ If Algorithm A is an optimal algorithm for Problem P in terms of 
worst-case time complexity
▪ Algorithm A runs in time 𝑂 𝑓 𝑛 &

▪ The time complexity of Problem P is Ω 𝑓 𝑛 in the worst case

▪ Examples (the champion problem)
▪ 擂台法

▪ It runs in 𝑂 𝑛 time &

▪ Any algorithm solving the problem requires time Ω 𝑛 in the worst case

▪ 百般無聊擂台法

▪ It runs in 𝑂 𝑛 time &

▪ Any algorithm solving the problem requires time Ω 𝑛 in the worst case
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→ optimal algorithm 

→ optimal algorithm 



▪ Problem P is no harder than Problem Q in terms of (worst-case) time 
complexity if there exists a function 𝑓 𝑛 s.t.

▪ The (worst-case) time complexity of Problem P is 𝑂 𝑓 𝑛 &

▪ The (worst-case) time complexity of Problem Q is Ω 𝑓 𝑛

▪ Problem P is (strictly) easier than Problem Q in terms of (worst-case) 
time complexity if there exists a function 𝑓 𝑛 s.t.

▪ The (worst-case) time complexity of Problem P is 𝑂 𝑓 𝑛 &

▪ The (worst-case) time complexity of Problem Q is 𝜔 𝑓 𝑛

or

▪ The (worst-case) time complexity of Problem P is 𝑜 𝑓 𝑛 &

▪ The (worst-case) time complexity of Problem Q is Ω 𝑓 𝑛
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▪ Algorithm Design and Analysis Process
1) Formulate a problem
2) Develop an algorithm
3) Prove the correctness
4) Analyze running time/space requirement

▪ Usually brute force (暴力法) is not very efficient

▪ Analysis Skills
▪ Prove by contradiction
▪ Induction
▪ Asymptotic analysis
▪ Problem instance

▪ Algorithm Complexity
▪ In the worst case, what is the growth of function an algorithm takes

▪ Problem Complexity
▪ In the worst case, what is the growth of the function the optimal algorithm of the 

problem takes 59

Design Step

Analysis Step



▪ Textbook Ch. 3 – Growth of Function
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Course Website: http://ada.miulab.org

Email: ada-ta@csie.ntu.edu.tw
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Important announcement will be sent to @ntu.edu.tw mailbox 
& post to the course website

http://ada17.csie.org/
mailto:ada-ta@csie.ntu.edu.tw

