d.z'ﬂc. ca
A+Brc= % 74| :Vg

:M—}?-flC" 195

\ntroduct\on

Announcement Algorithm Design and Analysis

National Taiwan University, Computer S

= Any question should be sent via email
= Please use [ADA2018] in the subject

= Please write your 5% ¥ in the email

<> ADA JUDEE
2078

= Registration codes were sent out
= Register (or drop?) the course ASAP

= Slides are available before the lecture starts

= Mini-HW 1 released
= Due on 9/27 (Thu) 14:20
= Submit to NTU COOL

Login to begin...

= Judge system available

http://ada-judge.csie.org/

g
ﬁ%ﬁz?@
Mini-HW #1 RO T

_

Mini HW #1

Due Time: 2018/9/27 (Thu.) 14:20

Contact TAs: ada-ta@csie.ntu.edu.tw

Problem 1

Let f(n) = g(n)—h(n). Given g(n) = O(F(n)) and h(n) = o(F(n)), prove or disprove f(n) = Q(F(n)).
(Use the definitions of ©, o0 and given in textbook.)

Outline

O e

= Terminology
= Problem ([7%8)
= Problem instance ({&)
= Computation model (T E1&E #Y)
= Algorithm ((E&%)
= The hardness of a problem (£t E)

= Algorithm Design & Analysis Process
= Review: Asymptotic Analysis

= Algorithm Complexity

= Problem Complexity

Efficiency Measurement = Speed

= Why we care?
= Computers may be fast, but they are not infinitely fast
= Memory may be inexpensive, but it is not free

Terminology

Textbook Ch. 1 — The Role of Algorithms in Computing

JIIH

Problem (&1 Z8)

The champion problem

e Input: n distinct integers A[1], A[2],..., A[n].
e Output: the index ¢ with 1 <17 < n such that

Ali] = max Alj].

Problem Instance ({& %))

= An instance of the champion problem

5 distinct integers 7,4, 2,9, 8.

7 4 2 9 8

All] Al2] A[3] Al4] A[5]

1)

Computation Model (51 &&= £Y)

= Each problem must have its rule (£ 8;#5 5l
= Computation model (5T E1E) = rule (L£EEFR 8Y)

= The problems with different rules have different hardness levels

S

()

Hardness (2 512 [E)

= How difficult to solve a problem
= Example: how hard is the champion problem?
= Following the comparison-based rule

__

__

B

Problem Solving (#% 28)

JIIH

= Definition of “solving” a problem

= Giving an algorithm (&5 ,%) that produces a correct output for any
instance of the problem.

_

Algorithm (/&

I

Y e
=
>t

%)

= Algorithm: a detailed step-by-step instruction
= Must follow the game rules

N7

= Like a step-by-step recipe
= Programming language doesn’t matter
— problem-solving recipe (technology)

= If an algorithm produces a correct output for any instance
of the problem

-2 this algorithm “solves” the problem

v Sl g
AL | s “A well-defined computational procedure
RN = that transforms some input to some output”
"\
°w,:k‘l).GDO RITHM S:’:; @

Hardness (£ E)

= Hardness of the problem
= How much effort the best algorithm needs to solve any problem instance

- fHE 7]
- BERBENERAZRESVDUENTEEN REF

22 17 50000 FH#2 7 100000 @

@ Algorithm Design &
= Analysis Process

Algorithm Design & Analysis Process

1)
2)
3)
4)

Formulate a problem
Develop an algorithm
Prove the correctness

Analyze running time/space requirement

-

Design Step

J

-

-

Analysis Step

~

J

1. Problem Formulation

The champion problem

e Input: n distinct integers A[1], A[2],..., A[n].
e Output: the index ¢ with 1 <17 < n such that

Ali] = max Alj].

2. Algorithm Design

= Create a detailed recipe for solving the problem
= Follow the comparison-based rule
- NEMEBEEHNAS
= BRIAZENT TEEAR/

. 3 - - . ?
R Q1: Is this a comparison-based algorithm?

= Algorithm: &5

int i, J; Q2: Does it solve the champion problem?

for (i=2; i<=n; i++)
if (A[i] > A[j])

J=1

1
2
3
4,
5
6. return;

3. Correctness of the Algorithm

= Prove by contradiction (278)%)

The algorithm solves the champion problem.

Proof Let j* be the correct answer. That is,

Alj*] = max{A[l],..., Aln]}.

e [f 7* =1, then Step 5 is never reached. There-
fore, 1 is correctly returned.

e If 5 > 1, then in the iteration of the for-loop
with 2 = j*, 7 becomes j*. By definition of j*,
Alj*] > A[i] holds for each i = j* +1,...,n.
Therefore, in the remaining iterations of the
for-loop, the value of j7 does not change. Hence,
at the end of the algorithm, j* is correctly re-
turned.

=

inti,J;
j=1
for(i=2; i<=n; i++)
if (A[i] > A[j])
J=1i

return j;

Hardness of The Champion Problem

= How much effort the best algorithm needs to solve any
problem instance
= Follow the comparison-based rule
- NERMBREINAS
= FBAIAZEIT "EEXR/

= Effort: we first use the times of comparison for measurement

1 inti, J; -

2. j=1

3 for (i=2; i<=n; i++) _

" if (AL7] > ALj]) >— (n - 1) comparisons
5 J=1i

6 return j; —

Hardness of The Champion Problem

= The hardness of the champion problem is (n - 1) comparisons

a) There is an algorithm that can solve the problem using at most (n—1)
comparisons

= This can be proved by #& =%, which uses (n — 1) comparisons for any
problem instance

b) For any algorithm, there exists a problem instance that requires (n - 1)
comparisons

= Why?

Hardness of The Champion Problem

= Q: Is there an algorithm that only needs (n - 2) comparisons?
= A: Impossible!

= Reason
= A single comparison only decides a loser

= |f there are only (n - 2) comparisons, the most number of losers is
(n-2)

= There exists a least 2 integers that did not lose

— any algorithm cannot tell who the champion is

©

Finding Hardness

= Use the upper bound and the lower bound

= When they meet each other, we know the hardness of the

problem
4"““‘1

DU A WN R W

Hardness of The Champion Problem

= Upper bound = Lower bound
= how many comparisons are = how many comparisons in
sufficient to solve the the worst case are necessary
champion problem to solve the champion
= Each algorithm provides an problem
upper bound = Some arguments provide

= The smarter algorithm different lower bounds

provides tighter, lower, and = Higher lower bound is better

better upper bound
s —BEEE

i.nt i j; > (2n - 2) comparisons Every |n.teger needs to be in the
j=1 comparison once

for(i=2; i<=n; i++) - (n/2) comparisons
if ((A[i] > A[j]) && (A[j] < Alil])
J=1 e e e !
return j; When upper bound = lower bound, the problem is solved. :
- = We figure out the hardness of the problem : @

4. Algorithm Analysis

= The majority of researchers in algorithms studies the time
and space required for solving problems in two directions
= Upper bounds: designing and analyzing algorithms
= Lower bounds: providing arguments

= When the upper and lower bounds match, we have an
optimal algorithm and the problem is completely resolved

K
oo

H%L
>

%kﬁiTT id

O Q) O o w

LRI, swemers Donald E. Knuth
Edmund Landau (1938-)
(1877-1938)

Motivation

= The hardness of the champion problem is exactlyn — 1
comparisons

= Different problems may have different " #HE =K |
= cannot be interchangeable

= Focus on the standard growth of the function to ignore the
unit and coefficient effects

Goal: Finding Hardness

= For a problem P, we want to figure out
= The hardness (complexity) of this problem Pis G)(f(n))

= 1 is the instance size of this problem P
= f(n) is a function

. @(f(n)) means that “it exactly equals to the growth of the function”

= Then we can argue that under the comparison-based
computation model
= The hardness of the champion problem is ©(n)
= The hardness of the sorting problem is ©(nlogn)

©

Goal: Finding Hardness

= Use the upper bound and the lower bound

= When they match, we know the hardness of the problem

use O(f(n)) and o(f(n))

bound

-E'Lj.};.;é}' bound is 0(h(n)) & lower bound is Q(h(n))

bound

use Q(g(n)) and w(g(n)) O
€

Goal: Finding Hardness

= First learn how to analyze / measure the effort an algorithm
needs
= Time complexity
= Space complexity

= Focus on worst-case complexity

= “average-case” analysis requires the assumption about the
probability distribution of problem instances

Worst Case Maximum running time for any instance of size n
Average Case Expected running time for a random instance of size n

Amortized Worse-case running time for a series of operations

Review of Asymptotic Notation
(Textbook Ch. 3.1)

= f(n) = time or space of an algorithm for an input of size n

= Asymptotic analysis: focus on the growth of f(n) asn — o

Review of Asymptotic Notation
(Textbook Ch. 3.1)

= f(n) = time or space of an algorithm for an input of size n

= Asymptotic analysis: focus on the growth of f(n) asn — o
= O, or Big-Oh: upper bounding function

= (), or Big-Omega: lower bounding function

= O, or Big-Theta: tightly bounding function

cg(n) c28(n)

fn)
J(n)

cglm) crg(n)

I
I 1
: | !

! |
! I
I
: | :
| ! i

1
I n | n n !e
no 0 Ry

J(n) = 0(gn)) " f) = s J(n) = 0(gm)

Formal Definition of Big-Oh
(Textbook Ch. 3.1)

= For any two functions f(n) and g(n),
f(n) =0(g(n))

if there exist positive constants ny and c¢ s.t.

0< f(n) <c-g(n)
foralln = n,.

f(n) =0(gn))

= |[ntuitive interpretation
= f(n) does not grow faster than g(n)

= Comments
1) f(n) = O(g(n)) roughly means f(n) < g(n) in terms of rate of growth
2) “="is not “equality”, it is like “e (belong to)”
The equality is {f(n)} S O(g(n))
3) We do not write O(g(n)) = f(n)
= Note

= f(n) and g(n) can be negative for some integers n

= |[n order to compare using asymptotic notation O, both have to be non-
negative for sufficiently large n
=)

= This requirement holds for other notations, i.e.), 0, 0, w

Review of Asymptotic Notation
(Textbook Ch. 3.1)

= Benefit
= |gnore the low-order terms, units, and coefficients

= Simplify the analysis

= Example: f(n) = 5n3 + 7n® — 8

= Upper bound: f(n) = O(n3), f(n) = O(n%), f(n) = O(n3log,n)

= Lower bound: f(n) = Q(n3), f(n) = Q(n?), f(n) = Q(nlog,n) s ’

= Tight bound: f(n) = ©(n3) - feoqe::I ::,‘,ea“
Q: f(n) = 0(n3) and f(n) = 0(n), so 0(n®) = 0(n*)?

= 0(n3) represents a set of functions that are upper bounded by cn3
for some constant c when n is large enough

= |n asymptotic analysis, “=” means “e (belong to)”

©

Exercise: 100n* = 0(n>® — n*4)?

= Draft.

100n* < 100(n° — n?)
«—200n° < 100n°
+—2<n

= Lletng = 2and ¢ = 100
100n* < 100(n® — n?)

holds forn = 2

100n° = O(n° — n?)

Exercise: n* = 0(n)?

= Disproof.
= Assume for a contradiction that there exist positive constants ¢ and n; s.t.

n? < cn

holds for any integer n with n = n,.

= Assume

n = 1+ [max(ng,c)]
and because 1 > ng,n > c , it follows that
n® > cn

= Due to contradiction, we know that

n? #+ O(n)

Rules
(Textbook Ch. 3.1)

The following statements hold for any real-valued functions f(n)
and g(n), where there is a constant ng such that f(n) and g(n)
are nonnegative for any integer n > ny.

e Rule 1: f(n) =0(f(n)).
e Rule 2: If cis a positive constant, then c-O(f(n)) = O(f(n)).
e Rule 3: If f(n) = O(g(n)), then O(f(n)) = O(g(n)).

)
e Rule 4: O(f(n)) - O(g(n)) = O(f(n) - g(n)).
e Rule 5: O(f(n) - g(n)) = f(n) - O(g(n)).

Other Notations
(Textbook Ch. 3.1)

n rate of growth
n rate of growth
n rate of growth
n rate of growth
n rate of growth

o p—{ o pu— o p{ o p—{ o p—

AN TN TN N N

S S S N N

N SN TN N N

N N N S SN

AN TN TN TN N
N TN TN N N

N S S N N

N e e S N

©

Goal: Finding Hardness

= First learn how to analyze / measure the effort an algorithm
needs
= Time complexity
= Space complexity

= Focus on worst-case complexity

= “average-case” analysis requires the assumption about the
probability distribution of problem instances

- BEE = The worst-case time complexity is

inti, J; 0(1) time
j=1,; 0(1) time
for (i=2; i<=n; i++) O(n) iterations
if (A[i] > A[j]) 0(1) time
j=1i 0(1) time
return j; 0(1) time

Adding everything together

— an upper bound on the
worst-case time complexity

O(1)+0(1)+0(n)-(0O1)+0(1)) +0(1)
3-0(1)+ O(n) - (20(1))

=0(1)+O(n)-O(1) Rule2

=0(1) + O(n) Rule 4

=0(n) + O(n) 1=0(n) &Rule 3
=2-0(n)

=0(n) Rule 2

Sorting Problem . —

e Input:
An array A of n distinct integers.

e Output:
Reorder A such that A[1]<A[2]<--- <A[n].

Algorithm Analysis

N
P@
= Bubble-Sort Algorithm
1. inti, done; 0(1) time
2. dof f(n) iterations
3. done = 1; 0(1) time
4. for(i=1;i<n;i++){ O(n) iterations
5. if (A[i] >A[i +1]){ 0(1) time
6. exchange A[i] and A[i+1]; 0(1) time
7. done = 0; 0(1) time
s) O(1) + f(n) - (O(1) + O(n) - O(1)
’ } }h ") =0(1) + f(n) - O(n)
10. [==0
wniie aone _ (n)) O(n) f(n) _ O(n)
— O(nQ) prove by induction @

Example lllustration

\

N
" 4

Goal: Finding Hardness

= First learn how to analyze / measure the effort an algorithm
needs
= Time complexity
= Space complexity

= Focus on worst-case complexity

= “average-case” analysis requires the assumption about the
probability distribution of problem instances

N o U e W DhRe

int i; Q(1) time
int m=A[1]; Q(1) time
for(i=2;i<=n;i++){ Q(n) iterations
if (A[i] >m) Q(1) time
m = Ali]; Q(1) time
}
return m; Q(1) time

Adding everything together

- a lower bound on the worst-
case time complexity?

3-Q(1)+Q(n)-(2-9(1))
=0(1) + Q(n) - Q1)
=Q(1) + Q(n)
=(n)

Algorithm Analysis

" E X/‘\\Hm] EEII:I/

O 00 N o Uk Wb PRE

int /; Q(1) time

int m=A[1]; Q(1) time
for(i=2;i<=n;i++){ Q(n) iterations

if (A[i] > m) Q(1) time

m = A[i]; Q(1) time

if (i == n) Q(1) time

do i++ n times Q(n) time

}
return m; Q(1) time

3-Q(1) +Q(n) - (3- Q1) + Q(n))
—Q(1) + Q(n) - Q(n)
=Q(1) + Q(n?)

=0(n?) @ @

Adding together may result in errors. :
The safe way is to analyze using problem instances. | @

__

e.g. try A[i] =i or A[i]=2(n — i) to check the time complexity 2 Q(1)

Algorithm Analysis

= Bubble-Sort Algorithm

O 0 N o U & W DN RE

[EEY
©

int i, done;
do { f(n) iterations

done =1;

for(i=1;i<n;i++){ Q(n) time

if (A[i] >A[i + 1]) {
exchange A[i] and A[i + 1];
done = 0;
}

}
} while (done == 0)

~ When Ais decreasing, f(n) = Q(n).
! Therefore, the worst-case time !
complexity of Bubble-Sort is

f(n)-Q(n) = Qn?)

Example lllustration

.&\

N
" 4

= n iterations

&) Algorithm Complexi

ty

In the worst case, what is the growth of function an algorithm takes

Time Complexity of an Algorithm

= We say that the (worst-case) time complexity of Algorithm A is G)(f(n)) if
1. Algorithm A runs in time O(f(n)) &

2. Algorithm A runs in time Q(f(n)) (in the worst case)
o An input instance I(n) s.t. Algorithm A runs in Q(f(n)) for each n

Tightness of the Complexity

If we say that the time complexity analysis about O(f(n)) is tight

= the algorithm runs in time Q(f(n)) in the worst case

= (worst-case) time complexity of the algorithm is @(f(n))
= Not over-estimate the worst-case time complexity of the algorithm

If we say that the time complexity analysis of Bubble-Sort algorithm
about 0(n?) is tight

= Time complexity of Bubble-Sort algorithm is Q(n?)

= Time complexity of Bubble-Sort algorithm is ®@(n?)

Algorithm Analysis

" E X/\\\Hm] EE||:|/

non-tight analysis

O o N o U bk W NP

int i; 0(1) time
intm=A[1]; 0(1) time
for(i=2;i<=n;i++){ O(n) iterations
if (A[i] > m) 0(1) time
m = A[i]; 0(1) time
if (i ==n) 0(1) time
do i++ n times O(n) time
}
return m; 0(1) time

The worst-case time complexity of

"EREIERE | is 0(n).

__

3-0(1)+0(n)-(3-0(1)+0O(n))
O(1) 4+ O(n) - O(n)

O(1) + O(n?)

=0(n?)

tight analysis

Step 3 takes O(n) iterations for the for-
loop, where only last iteration takes O(n)
time and the rest take 0(1) time.

The steps 3-8 take time

On)-0O(1)4+1-0(n) =0(n)

The same analysis holds for Q(n)

Algorithm Comparison

= Q: can we say that Algorithm 1 is a better algorithm than
Algorithm 2 if
= Algorithm 1 runs in O(n) time
= Algorithm 2 runs in 0(n?) time

= A: No! The algorithm with a lower upper bound on its
worst-case time does not necessarily have a lower time
complexity. 5 9 2
?ﬂ: : ? o

O€)
L0

Comparing A and B

= Algorithm A is no worse than Algorithm B in terms of worst-case time
complexity if there exists a positive function f(n) s.t.

= Algorithm A runs in time O(f(n)) &
= Algorithm B runs in time Q(f(n)) in the worst case

= Algorithm A is (strictly) better than Algorithm B in terms of worst-case time
complexity if there exists a positive function f(n) s.t.

= Algorithm A runs in time O(f(n)) &

= Algorithm B runs in time a)(f(n)) in the worst case
or

= Algorithm A runs in time o(f(n)) &

= Algorithm B runs in time Q(f(n)) in the worst case

Problem Complexity

In the worst case, what is the growth of the function the optimal
algorithm of the problem takes

Time Complexity of a Problem

= We say that the (worst-case) time complexity of Problem P is G)(f(n)) if

1. The time complexity of Problem Pis O(f(n)) &
o There exists an O(f(n))-time algorithm that solves Problem P

2. The time complexity of Problem P is Q(f(n))
o Any algorithm that solves Problem P requires Q(f(n)) time

= The time complexity of the champion problem is ®(n) because

1. The time complexity of the champion problem is 0(n) &
o TIE=)L . is the 0(n)-time algorithm

2. The time complexity of the champion problem is Q(n)
o Any algorithm requires Q(n) time to make each integer in comparison at least once

©

Optimal Algorithm

= If Algorithm A is an optimal algorithm for Problem P in terms of
worst-case time complexity

= Algorithm A runs in time O(f(n)) &
= The time complexity of Problem P is Q(f(n)) in the worst case

i Examples (the champion problem)
= E 5 5% > optimal algorithm

= It runs in O(n) time &
= Any algorithm solving the problem requires time Q(n) in the worst case

- EARIENIE &K - optimal algorithm
= It runs in 0(n) time &
= Any algorithm solving the problem requires time Q(n) in the worst case

©

Comparing P and Q

= Problem P is no harder than Problem Q in terms of (worst-case) time
complexity if there exists a function f(n) s.t.

= The (worst-case) time complexity of Problem P is O(f(n)) &
= The (worst-case) time complexity of Problem Q is Q(f(n))

= Problem P is (strictly) easier than Problem Q in terms of (worst-case)
time complexity if there exists a function f(n) s.t.

= The (worst-case) time complexity of Problem P is O(f(n)) &
= The (worst-case) time complexity of Problem Q is a)(f(n))
or

= The (worst-case) time complexity of Problem P is o(f(n)) &
= The (worst-case) time complexity of Problem Q is Q(f(n))

Concluding Remarks

= Algorithm Design and Analysis Process

1) Formulate a problem () N
2) Develop an algorithm L Design Step)
3) Prove the correctness - ~
4) Analyze running time/space requirement Analysis Step

J

= Usually brute force (& 71)%) is not very efficient
= Analysis Skills

= Prove by contradiction
= Induction

= Asymptotic analysis

= Problem instance

= Algorithm Complexity
= In the worst case, what is the growth of function an algorithm takes

= Problem Complexity

= In the worst case, what is the growth of the function the optimal algorithm of the
problem takes ;*@}

Reading Assignment

= Textbook Ch. 3 — Growth of Function

Question?

Important announcement will be sent to @ntu.edu.tw mailbox
& post to the course website

Course Website: http://ada.miulab.org

Email: ada-ta@csie.ntu.edu.tw

http://ada17.csie.org/
mailto:ada-ta@csie.ntu.edu.tw

