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Introduction

Hand
Detector

input:
Raw image

output:
bounding-box coordinates and 
class (left hand, right hand)

left
hand

right
hand

In this project, your work is to train a hand detector. The input of this hand detector is an 
RGB image containing one hand or two hands. Your hand detector should output the 
bounding-box of each hand, and the label indicating that it is left hand or right hand.



Introduction

The input images may contain one hand or two hands. For each images, your hand 
detector should output the exact numbers of bounding-boxes and their corresponding 
labels.
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Egocentric View V.S 3rd Person View

User

Head 
Mounted 
Camera

1st person view (Egocentric view)

left
hand

right
hand

User Camera

3rd person view

left
hand

right
hand

What is the difference between egocentric view and 3rd person view? In egocentric 
view, the user is wearing the camera so that the camera view is the same as the 
what user can see. However, in 3rd person view, the camera is beside the user or in 
front of the user.



Egocentric Hand Detection

In this project, the hand detector should detect the hands of the person wearing 
the camera. However, the hands of other people should not be detected.

left
hand

Hand of the 
user should 
be detected.

Hands of 
other person 
(or people) 
should not 
be detected.



RGB V.S RGB-D Data

photo credit : 
http://resources.mpi-inf.mpg.de/handtracker/data/EgoDexter/data/Desk/

• Pros : High applicability
• Cons : More challenging for hand 

detection

• Pros : Low applicability 
• Cons : Less challenging for hand 

detection

RGB-D Image

Depth Image

RGB Image

What is the difference between RGB images and RGB-D images for the task of hand 
detection? The RGB images contain clutter background so RGB images is more 
challenging than RGB-D images for hand detection. However, RGB camera is more 
easily available. Hence, it has higher applicability.

http://resources.mpi-inf.mpg.de/handtracker/data/EgoDexter/data/Desk/


Why Using Synthetic Data?

Real Images

• Pros : Training data is much 
similar to testing data.

• Cons : Creating a large-size 
dataset size is hard.
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hand
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hand
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hand
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Synthetic Images

• Pros : Creating a large-size 
dataset is easy. 

• Cons : Training data is not 
similar to testing data.

In many applications, the number of real images is usually not enough to train a 
deep learning model. Since synthetic images can be easily generated, we use 
synthetic images to increase the size of training dataset.



Training a Egocentric RGB Hand 
Detector

In this project, we provide lots of labeled synthetic images and some real 
images Your hand detector is trained on these images, and tested on real 
images. 

Train the model by real & synthetic images simultaneously.

Class Label

Bounding-Box
Coordinate

synthetic images 
(large dataset)

Test the model by real images.

real 
images

Hand 
Detector

Hand 
Detector

Class Label

Bounding-Box
Coordinate

real images 
(small dataset)



Training Data 

The training dataset contains synthetic images and real images. The synthetic 
dataset is the DeepQ-Synth-Hand dataset, and the real dataset is DeepQ-
Vivepaper dataset. 

DeepQ-Synth-Hand Dataset 
10,0000 labeled images

DeepQ-VivePaper Dataset 
464 labeled images

6197 unlabeled images



Testing Data

The testing dataset contains only real images from DeepQ-Vivepaper dataset. 
We will not release these images until the end of this competition. However, 
you can running your model on these images by submitting your model to our 
website.

DeepQ-VivePaper
504 labeled images for testing
229 hand-with-book images
275 hand-in-the-air images

hand-with-book 
images

hand-in-the-air 
images



Methods for Training from Synthetic 
Images and real images

• There are some methods to train the object detector by synthetic images 
and real images.

• If the quality of synthetic images is good enough, we can directly train on 
synthetic images (without real images)
– 1. Transfer Learning from ImageNet to Synthetic image

• However, in this project, the quality of synthetic images is not good 
enough. To enhance the performance, we suggest you to add the real 
images into training dataset.
– 2. Transfer Learning from ImageNet to Synthetic and Real image

• If the training dataset contains real images, there are some advanced 
methods to improve the performance:
– 3. Transfer Learning from Synthetic images to Real images
– 4. Domain Adaptation in Image Space
– 5. Domain Adaptation in Feature Space

• You can choose any methods as you want, and you are welcome to invent 
your new method for this project.



Transfer Learning from ImageNet to 
Synthetic image

Feature
Extractor

Class Label

1. Pre-train the model by imageNet.

2. Train the model by real & synthetic images simultaneously.

Classifier

Class Label
Bounding-Box
Coordinate

synthetic 
images

3. Test the model by real images.

real 
images

Feature
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Transfer Learning from ImageNet to 
Synthetic and Real image

Pre-train the model by imageNet and train the model by real & 
synthetic images simultaneously.

Class Label
Bounding-Box
Coordinatereal images 

(small dataset)

synthetic images 
(large dataset) Feature

Extractor

Classifier

Regressor

In this project, the synthetic images are different from the real images. If you 
only train your model on synthetic images, the performance may not be good. 
Hence, we suggest you add some real images into your training dataset. The 
simplest method is train the model on both real and synthetic images 
simultaneously.



Transfer Learning from Synthetic 
images to Real images

1. Pre-train the model by imageNet and Train the model by synthetic 
images.

real 
images

Feature
Extractor

synthetic 
images
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2. Fine-tune the model by real images.

However, there are too many synthetic images and too few real images. If you 
mix them together. The performance on real image may not be good. A better 
solution is to train the model by synthetic image first, and then fine tune the 
model by real images.



Domain Adaptation in Feature Space

1. Train a conditional GAN to make the synthetic images look “real” .

GANsynthetic 
images 

2. Transfer all the synthetic images into real images by conditional GAN, 
and train the model by all the images. 

synthetic 
images

GAN

Class Labelreal 
images 

Feature
Extractor

Classifier

Regressor
Bounding-Box
Coordinate

Also, it is possible to “produce” more real images by synthetic images. If you 
know about generative model, you can apply conditional GAN to transfer the 
synthetic images into real images.

real images
generated by GAN

real images
generated by GAN



Domain Adaptation in feature space

synthetic 
images

real 
images

Feature
Extractor

(Generator 
of GAN)

Class LabelClassifier

Regressor
Bounding-Box
Coordinate

GAN can also be applied in the feature space. It can increasing the similarity 
between the feature vectors of synthetic images and the feature vectors of real 
images.

Discriminator 
of GAN

real or fake

feature vectors of 
synthetic images

feature vectors of 
real images



Rules of Competition

• Pre-trained Model

• Training Data

• Code of Your Implementation



Pre-trained Model

• The pre-trained model should only be trained by the 
ImageNet dataset for classification. 

• The pre-trained model should not be trained by the 
ImageNet dataset for object detection, or other tasks of 
ImageNet Challenge, or trained by other datasets such as 
Pascal-VOC or MS-COCO.

• You are allowed to download any available pre-trained 
model from the internet, but you should make sure that it 
is only trained by ImageNet dataset for classification.

• You are allowed to create your own pre-trained model by 
yourself from scratch, but it should be trained from 
randomly-initialized parameters.



Training Data

• We provide you both labeled data and unlabeled 
data.

• Data Augmentation and Data Cleaning are 
allowed, but they should be run by script. 

• Manually creating new data from existing data or 
manually deleting existing data are not allowed.

• Manually collect or create your own dataset are 
not allowed. 

• The rules of using labeled data and unlabeled 
data are given in the following two slides.



For Labeled Data

• You are only allowed to use the labeled data in the  given 
datasets (DEEPQ-Synth-Hand, DeepQ-Vivepaper) in 
addition to “ImageNet dataset for classification task”.

• You are allowed to use the label of keypoints and masks in 
DeepQ-Synth-Hand Dataset for multitask learning.

• Do not use any other labeled dataset (such as Pascal VOC, 
MS-coco, etc)

• Automatically create new labels or automatically adjusting 
the existing labels by running scripts are allowed. 

• Manually creating additional labels or manually adjusting 
the existing labels are not allowed.



For Unlabeld Data

• You are allowed to use the unlabeled data in 
the given dataset (DeepQ-Vivepaper).

• You are allowed to use any other dataset 
available from the internet as unlabeled data. 
If the dataset contains label, you should 
assume that it is unlabeled. 

• For domain adaptation algorithm, you are 
allowed to create the domain label (“real” or 
“synthetic”) for adversarial training. 



Code of Your Implementation

• Your algorithm should be implemented in python 
programming language.

• Your algorithm should be implemented in 
“tensorflow”, “pytorch”, “keras”, “CNTK” or 
“mxnet” packages. 

• Any other programming language or any other 
deep learning packages are not allowed.

• You are allowed to reuse any code available from 
the internet. However, you should be aware of its 
license.



Submission

• Submission for evaluating on testing data

– During this competition, you can submit your 
model to be evaluated on testing data.

• Final submission

– After you complete your project, you should 
submit your whole project so that we can verify 
your result.



Submission for Evaluating on Testing 
Data

• You must submit your “model” and “code to run your model” to our 
submission site for evaluating on testing data.

• Your code must include our python package, so that it can get the 
testing data and we can evaluate your result.

• There are three functions in our package:
– get_file_names()

Takes no argument, will return a list of file paths of the testing images.
– get_output_file_object()

Takes no argument, will return a file object for you to write your result.
– judge()

Takes no argument, will return a floating point number indicating your 
accuracy and a string to indicate the error encountered if any.
accuracy, err = judge()

• You can see your own accuracy on your testing data, but we will 
not provide ranking information.



Submission for Evaluating on Testing 
Data

The code to run your model consists of the followings:
1. Call get_file_names() to get the list of files.
2. Load your model.
3. For each image, inference the answer.
4. Call get_output_file_object() to get the output file 

object.
5. Write the output.
6. Call the judge() to get the result.

Note that the timestamp created when judge() is called is 
used for judging if the submission is on time.



Submission for Evaluating on Testing 
Data

• Submission will take plenty of time, especially if your 
model is large. The logged time in our accuracy log 
(which will be produced in our scoring function) will be 
used to judge if the submission is on time.

• There will be no limit on the number of submissions 
made per team. But our submission site will only allow 
each team to run a total of 10 hours.

• The submission deadline, the submission website and a 
python package for debug use will be announced later.



Return of get_file_names() 

After you calling the get_file_names(), it will 
return a list of file paths of the testing images. 
For example, if the testing set contains two 
images: “/data/image1.png” and 
“/data/image2.png”, this function will return: 

/data/image1.png

/data/image2.png

[“/data/image1.png”,”/data/image2.png”]



get_output_file_object()

image_path1 x0 y0 x1 y1 left_or_right score 

image_path1 x0 y0 x1 y1 left_or_right score 

image_path2 x0 y0 x1 y1 left_or_right score 

image_path2 x0 y0 x1 y1 left_or_right score 

image_path2 x0 y0 x1 y1 left_or_right score 

…

Your code should write the result to the file object. The format is at the following:
• image_path : the paths of images return from get_file_names() 
• x0, y0, x1,y1 : four integers representing the coordinates of the bounding box.
• left_or_right : an integer between 0 and 1. Left hand is 0, and right hand is 1.
• score : a floating number between 0~1, for calculating mean average precision.
Notice that (1) Each line represents a distinct bounding-box, different bounding boxes 
of a given image should be written in two separated lines. (2) The space between each 
token is white space, not tab.



get_output_file_object()

/data/image1.png 200 50 300 150 0 0.9
/data/image1.png 400 250 500 350 0 0.5  
/data/image2.png 300 50 400 150 1 0.8 

/data/image1.png

/data/image2.png

(200,50)

(300,150)

left hand
confidence : 0.9

(300,50)

(400,150)

right hand
confidence: 0.8

(400,250)

(500,350)
left hand

confidence : 0.5

For example, if your results are the same as the 
right images, your code should write the following 
lines to the output file object:  



Final Submission

• Your final submission should contain the 
following:

– Trained model & Whole Code

– Document & report



Trained Model & Whole Code

• You should submit your trained model of your final result as 
well as the related code that can inference on this model.

• Besides the code mentioned above, you should submit all 
the code that can reproduce your final result from scratch. 
If we fail to reproduce, we may consider you cheating, and 
you may be disqualified in this competition.

• You should not submit your pre-trained model or dataset. 
Your dataset should be available from the internet.

• If your pre-trained model is created by yourself, your code 
should be able to train your pre-trained model from 
randomly-initialized parameters. Otherwise, your pre-
trained model should be available from the internet.



Format of Document

• You should submit a document of your implementation. 

• The document is about how to run your code and 
reproduce your result. If we follow your document, 
your final result should be able to reproduce.

• This document should contain the following:
– Where to download your training data and pre-trained 

model

– How to set up the environment for your code.

– What is your final result, and how to run your code to 
reproduce your result.



Format of Report

• Besides document, you should submit a report to 
introduce the theoretical and experimental parts 
of your project.

• Your report should be written in one-column or
two-column conference paper style. 

• Your report should contain at least (but not 
restricted to) the following sections:
– Introduction
– Proposed Method
– Experiment
– Conclusion



Evaluation Criteria

• 60% : accuracy
– mean average precision (mAP)
– 0.5 * (mAP of hand-with-book images) + 0.5 * (mAP of hand-with-book 

images

• 0 % : Model Size
– Model size is not considered in our evaluation, However, your model should 

not be larger than 500 MB. Whose model larger than this size will be 
disqualified in this competition.

– You can use any data-compression method to reduce your model size. 
However, the compression algorithm must be run by your script automatically, 
and the decompressed model should be deleted automatically, too.

• 0 % : Runtime
– Runtime is not considered, too. However, our submission site will only allow 

each team to run a total of 10 hours.

• 40% : Document, Report & Oral Presentation 



Detected Bounding Box

• Detected: >=50% Intersection Over Union (IOU) 
between predicted bounding box(b-box) and 
ground truth b-box
– Intersection : b
– Union : a + b + c
– IOU : b/(a + b + c)
– Detected : IOU >= 50%
– Undetected : IOU < 50%

predicted b-box 
(left hand)

ground truth
b-box
(left hand)

a

b

c

detected undetected



Precision & Recall

• Precision : (Nums of detected b-box ) / ( Nums
of predicted b-box)

• Recall : (Nums of detected b-box) / (Nums of 
ground-truth b-box)

orange: predicted b-box of left hand
red: ground-truth b-box of left hand
green : ground-truth b-box of right hand
In this example, precision = 1/3, recall = 1/2, F-score:2/5

detected

undetected

undetected



Mean Average Precision

• Average Precision (AP) : Average the 
precisions from low recall to high recall.

• Mean Average precision (mAP) : 
– average the APs over all classes 
(left hand and right hand)

score : 0.9

score : 0.7

score : 0.8

score : 0.6

score precision recall max
precision

average
precision

>=0.9 1.0 0.33 1.0 0.7567

>=0.8 0.5 0.33 1.0

>=0.7 0.67 0.67 0.67

>=0.6 0.5 0.67 0.67

>=0.5 0.6 1.0 0.6

score : 0.5



Suggested Readings and Resources

• Suggested Readings for Object Detection or 
Hand Detection

• Suggested Readings for Training by 
Synthetic Data

• Suggested Source Code for Object Detection

• Suggested Unlabeled Dataset for Adversarial 
Training



Suggested Readings for Object 
Detection or Hand Detection

• Faster R-CNN
– https://arxiv.org/abs/1506.01497

• Mask R-CNN
– https://arxiv.org/abs/1703.06870

• YOLO2
– https://arxiv.org/abs/1612.08242

• Lending A Hand: Detecting Hands and Recognizing
– http://vision.soic.indiana.edu/papers/egohands2015iccv.pdf

• Robust Hand Detection and Classification in Vehicles and in 
the Wild
– http://adas.cvc.uab.es/cvvt2017/wp-

content/uploads/sites/14/2014/03/5.pdf

https://arxiv.org/abs/1506.01497
https://arxiv.org/abs/1703.06870
https://arxiv.org/abs/1612.08242
http://vision.soic.indiana.edu/papers/egohands2015iccv.pdf
http://adas.cvc.uab.es/cvvt2017/wp-content/uploads/sites/14/2014/03/5.pdf


Suggested Readings for Training by 
Synthetic Data

• Transfer Learning
– https://arxiv.org/abs/1310.1531
– https://arxiv.org/abs/1701.01370

• Domain Adaptation in Image Space
– https://arxiv.org/abs/1611.01331
– https://arxiv.org/abs/1612.07828
– https://arxiv.org/abs/1703.10593

• Domain Adaptation in Feature Space
– https://arxiv.org/abs/1409.7495
– https://arxiv.org/abs/1604.02703
– https://arxiv.org/abs/1702.05464

https://arxiv.org/abs/1310.1531
https://arxiv.org/abs/1701.01370
https://arxiv.org/abs/1611.01331
https://arxiv.org/abs/1612.07828
https://arxiv.org/abs/1703.10593
https://arxiv.org/abs/1409.7495
https://arxiv.org/abs/1604.02703
https://arxiv.org/abs/1702.05464


Suggested Source Code for Object 
Detection

• Faster-RCNN (tensorflow)
– https://github.com/endernewton/tf-faster-rcnn

• Faster-RCNN (pytorch)
– https://github.com/ruotianluo/pytorch-faster-rcnn

• Mask-RCNN (MxNet)
– https://github.com/TuSimple/mx-maskrcnn

• Deformable-ConvNets (MxNet)
– https://github.com/msracver/Deformable-ConvNets

• Darkflow (tensorflow)
– https://github.com/thtrieu/darkflow

https://github.com/endernewton/tf-faster-rcnn
https://github.com/ruotianluo/pytorch-faster-rcnn
https://github.com/TuSimple/mx-maskrcnn
https://github.com/msracver/Deformable-ConvNets
https://github.com/thtrieu/darkflow


Suggested Unlabeled Dataset for 
Adversarial Training

• SCUT-Ego-Finger Dataset (Ego, Real Images)
– http://www.hcii-lab.net/data/SCUTEgoFinger/index.htm

• Egohand Dataset (Ego, Real Images)
– http://vision.soic.indiana.edu/projects/egohands/

• GRASP UNDERSTANDING DATASET (Ego, Real 
Images)http://www.gregrogez.net/research/egovision4health/gun-71/

• CMU-EDSH Dataset (Ego, Real Images)
– http://www.cs.cmu.edu/~kkitani/datasets/

• EgoDexter Dataset (Ego, Real Images)
– http://handtracker.mpi-inf.mpg.de/projects/OccludedHands/EgoDexter.htm

• SynthHands Dataset (Ego, Synthetic Images)
– http://handtracker.mpi-inf.mpg.de/projects/OccludedHands/SynthHands.htm

• VIVA Dataset (Ego & 3rd , Real Images)
– http://cvrr.ucsd.edu/vivachallenge/

• Oxford Hand Dataset (3rd, Real Images)
– http://www.robots.ox.ac.uk/~vgg/data/hands/

• Hand3D Dataset (3rd, Synthetic Images)
– https://lmb.informatik.uni-freiburg.de/projects/hand3d/

http://www.hcii-lab.net/data/SCUTEgoFinger/index.htm
http://vision.soic.indiana.edu/projects/egohands/
http://www.gregrogez.net/research/egovision4health/gun-71/
http://www.cs.cmu.edu/~kkitani/datasets/
http://handtracker.mpi-inf.mpg.de/projects/OccludedHands/EgoDexter.htm
http://handtracker.mpi-inf.mpg.de/projects/OccludedHands/SynthHands.htm
http://cvrr.ucsd.edu/vivachallenge/
http://www.robots.ox.ac.uk/~vgg/data/hands/
https://lmb.informatik.uni-freiburg.de/projects/hand3d/


If you have any question about the rules, the dataset, or any 
other question about this competition, please send an email to 
Mark Chang mark.fc_chang@htc.com , thanks.

mailto:mark.fc_chang@htc.com

