
Egocentric RGB Hand Detection

2017/12/04

by Mark Chang
(mark.fc_chang@htc.com)

mailto:mark.fc_chang@htc.com

Outline

• Introduction

• Training a Egocentric RGB Hand Detector

• Rules of Competition

• Submission

• Evaluation Criteria

• Suggested Readings and Resources

Introduction

Hand
Detector

input:
Raw image

output:
bounding-box coordinates and
class (left hand, right hand)

left
hand

right
hand

In this project, your work is to train a hand detector. The input of this hand detector is an
RGB image containing one hand or two hands. Your hand detector should output the
bounding-box of each hand, and the label indicating that it is left hand or right hand.

Introduction

The input images may contain one hand or two hands. For each images, your hand
detector should output the exact numbers of bounding-boxes and their corresponding
labels.

Hand
Detector

left
hand

right
hand

Hand
Detector

right
hand

Egocentric View V.S 3rd Person View

User

Head
Mounted
Camera

1st person view (Egocentric view)

left
hand

right
hand

User Camera

3rd person view

left
hand

right
hand

What is the difference between egocentric view and 3rd person view? In egocentric
view, the user is wearing the camera so that the camera view is the same as the
what user can see. However, in 3rd person view, the camera is beside the user or in
front of the user.

Egocentric Hand Detection

In this project, the hand detector should detect the hands of the person wearing
the camera. However, the hands of other people should not be detected.

left
hand

Hand of the
user should
be detected.

Hands of
other person
(or people)
should not
be detected.

RGB V.S RGB-D Data

photo credit :
http://resources.mpi-inf.mpg.de/handtracker/data/EgoDexter/data/Desk/

• Pros : High applicability
• Cons : More challenging for hand

detection

• Pros : Low applicability
• Cons : Less challenging for hand

detection

RGB-D Image

Depth Image

RGB Image

What is the difference between RGB images and RGB-D images for the task of hand
detection? The RGB images contain clutter background so RGB images is more
challenging than RGB-D images for hand detection. However, RGB camera is more
easily available. Hence, it has higher applicability.

http://resources.mpi-inf.mpg.de/handtracker/data/EgoDexter/data/Desk/

Why Using Synthetic Data?

Real Images

• Pros : Training data is much
similar to testing data.

• Cons : Creating a large-size
dataset size is hard.

left
hand

right
hand

left
hand

right
hand

Synthetic Images

• Pros : Creating a large-size
dataset is easy.

• Cons : Training data is not
similar to testing data.

In many applications, the number of real images is usually not enough to train a
deep learning model. Since synthetic images can be easily generated, we use
synthetic images to increase the size of training dataset.

Training a Egocentric RGB Hand
Detector

In this project, we provide lots of labeled synthetic images and some real
images Your hand detector is trained on these images, and tested on real
images.

Train the model by real & synthetic images simultaneously.

Class Label

Bounding-Box
Coordinate

synthetic images
(large dataset)

Test the model by real images.

real
images

Hand
Detector

Hand
Detector

Class Label

Bounding-Box
Coordinate

real images
(small dataset)

Training Data

The training dataset contains synthetic images and real images. The synthetic
dataset is the DeepQ-Synth-Hand dataset, and the real dataset is DeepQ-
Vivepaper dataset.

DeepQ-Synth-Hand Dataset
10,0000 labeled images

DeepQ-VivePaper Dataset
464 labeled images

6197 unlabeled images

Testing Data

The testing dataset contains only real images from DeepQ-Vivepaper dataset.
We will not release these images until the end of this competition. However,
you can running your model on these images by submitting your model to our
website.

DeepQ-VivePaper
504 labeled images for testing
229 hand-with-book images
275 hand-in-the-air images

hand-with-book
images

hand-in-the-air
images

Methods for Training from Synthetic
Images and real images

• There are some methods to train the object detector by synthetic images
and real images.

• If the quality of synthetic images is good enough, we can directly train on
synthetic images (without real images)
– 1. Transfer Learning from ImageNet to Synthetic image

• However, in this project, the quality of synthetic images is not good
enough. To enhance the performance, we suggest you to add the real
images into training dataset.
– 2. Transfer Learning from ImageNet to Synthetic and Real image

• If the training dataset contains real images, there are some advanced
methods to improve the performance:
– 3. Transfer Learning from Synthetic images to Real images
– 4. Domain Adaptation in Image Space
– 5. Domain Adaptation in Feature Space

• You can choose any methods as you want, and you are welcome to invent
your new method for this project.

Transfer Learning from ImageNet to
Synthetic image

Feature
Extractor

Class Label

1. Pre-train the model by imageNet.

2. Train the model by real & synthetic images simultaneously.

Classifier

Class Label
Bounding-Box
Coordinate

synthetic
images

3. Test the model by real images.

real
images

Feature
Extractor

Feature
Extractor

Classifier

Regressor

Class Label
Bounding-Box
Coordinate

Classifier

Regressor

Transfer Learning from ImageNet to
Synthetic and Real image

Pre-train the model by imageNet and train the model by real &
synthetic images simultaneously.

Class Label
Bounding-Box
Coordinatereal images

(small dataset)

synthetic images
(large dataset) Feature

Extractor

Classifier

Regressor

In this project, the synthetic images are different from the real images. If you
only train your model on synthetic images, the performance may not be good.
Hence, we suggest you add some real images into your training dataset. The
simplest method is train the model on both real and synthetic images
simultaneously.

Transfer Learning from Synthetic
images to Real images

1. Pre-train the model by imageNet and Train the model by synthetic
images.

real
images

Feature
Extractor

synthetic
images

Feature
Extractor

Class Label
Bounding-Box
Coordinate

Classifier

Regressor

Class Label
Bounding-Box
Coordinate

Classifier

Regressor

2. Fine-tune the model by real images.

However, there are too many synthetic images and too few real images. If you
mix them together. The performance on real image may not be good. A better
solution is to train the model by synthetic image first, and then fine tune the
model by real images.

Domain Adaptation in Feature Space

1. Train a conditional GAN to make the synthetic images look “real” .

GANsynthetic
images

2. Transfer all the synthetic images into real images by conditional GAN,
and train the model by all the images.

synthetic
images

GAN

Class Labelreal
images

Feature
Extractor

Classifier

Regressor
Bounding-Box
Coordinate

Also, it is possible to “produce” more real images by synthetic images. If you
know about generative model, you can apply conditional GAN to transfer the
synthetic images into real images.

real images
generated by GAN

real images
generated by GAN

Domain Adaptation in feature space

synthetic
images

real
images

Feature
Extractor

(Generator
of GAN)

Class LabelClassifier

Regressor
Bounding-Box
Coordinate

GAN can also be applied in the feature space. It can increasing the similarity
between the feature vectors of synthetic images and the feature vectors of real
images.

Discriminator
of GAN

real or fake

feature vectors of
synthetic images

feature vectors of
real images

Rules of Competition

• Pre-trained Model

• Training Data

• Code of Your Implementation

Pre-trained Model

• The pre-trained model should only be trained by the
ImageNet dataset for classification.

• The pre-trained model should not be trained by the
ImageNet dataset for object detection, or other tasks of
ImageNet Challenge, or trained by other datasets such as
Pascal-VOC or MS-COCO.

• You are allowed to download any available pre-trained
model from the internet, but you should make sure that it
is only trained by ImageNet dataset for classification.

• You are allowed to create your own pre-trained model by
yourself from scratch, but it should be trained from
randomly-initialized parameters.

Training Data

• We provide you both labeled data and unlabeled
data.

• Data Augmentation and Data Cleaning are
allowed, but they should be run by script.

• Manually creating new data from existing data or
manually deleting existing data are not allowed.

• Manually collect or create your own dataset are
not allowed.

• The rules of using labeled data and unlabeled
data are given in the following two slides.

For Labeled Data

• You are only allowed to use the labeled data in the given
datasets (DEEPQ-Synth-Hand, DeepQ-Vivepaper) in
addition to “ImageNet dataset for classification task”.

• You are allowed to use the label of keypoints and masks in
DeepQ-Synth-Hand Dataset for multitask learning.

• Do not use any other labeled dataset (such as Pascal VOC,
MS-coco, etc)

• Automatically create new labels or automatically adjusting
the existing labels by running scripts are allowed.

• Manually creating additional labels or manually adjusting
the existing labels are not allowed.

For Unlabeld Data

• You are allowed to use the unlabeled data in
the given dataset (DeepQ-Vivepaper).

• You are allowed to use any other dataset
available from the internet as unlabeled data.
If the dataset contains label, you should
assume that it is unlabeled.

• For domain adaptation algorithm, you are
allowed to create the domain label (“real” or
“synthetic”) for adversarial training.

Code of Your Implementation

• Your algorithm should be implemented in python
programming language.

• Your algorithm should be implemented in
“tensorflow”, “pytorch”, “keras”, “CNTK” or
“mxnet” packages.

• Any other programming language or any other
deep learning packages are not allowed.

• You are allowed to reuse any code available from
the internet. However, you should be aware of its
license.

Submission

• Submission for evaluating on testing data

– During this competition, you can submit your
model to be evaluated on testing data.

• Final submission

– After you complete your project, you should
submit your whole project so that we can verify
your result.

Submission for Evaluating on Testing
Data

• You must submit your “model” and “code to run your model” to our
submission site for evaluating on testing data.

• Your code must include our python package, so that it can get the
testing data and we can evaluate your result.

• There are three functions in our package:
– get_file_names()

Takes no argument, will return a list of file paths of the testing images.
– get_output_file_object()

Takes no argument, will return a file object for you to write your result.
– judge()

Takes no argument, will return a floating point number indicating your
accuracy and a string to indicate the error encountered if any.
accuracy, err = judge()

• You can see your own accuracy on your testing data, but we will
not provide ranking information.

Submission for Evaluating on Testing
Data

The code to run your model consists of the followings:
1. Call get_file_names() to get the list of files.
2. Load your model.
3. For each image, inference the answer.
4. Call get_output_file_object() to get the output file

object.
5. Write the output.
6. Call the judge() to get the result.

Note that the timestamp created when judge() is called is
used for judging if the submission is on time.

Submission for Evaluating on Testing
Data

• Submission will take plenty of time, especially if your
model is large. The logged time in our accuracy log
(which will be produced in our scoring function) will be
used to judge if the submission is on time.

• There will be no limit on the number of submissions
made per team. But our submission site will only allow
each team to run a total of 10 hours.

• The submission deadline, the submission website and a
python package for debug use will be announced later.

Return of get_file_names()

After you calling the get_file_names(), it will
return a list of file paths of the testing images.
For example, if the testing set contains two
images: “/data/image1.png” and
“/data/image2.png”, this function will return:

/data/image1.png

/data/image2.png

[“/data/image1.png”,”/data/image2.png”]

get_output_file_object()

image_path1 x0 y0 x1 y1 left_or_right score

image_path1 x0 y0 x1 y1 left_or_right score

image_path2 x0 y0 x1 y1 left_or_right score

image_path2 x0 y0 x1 y1 left_or_right score

image_path2 x0 y0 x1 y1 left_or_right score

…

Your code should write the result to the file object. The format is at the following:
• image_path : the paths of images return from get_file_names()
• x0, y0, x1,y1 : four integers representing the coordinates of the bounding box.
• left_or_right : an integer between 0 and 1. Left hand is 0, and right hand is 1.
• score : a floating number between 0~1, for calculating mean average precision.
Notice that (1) Each line represents a distinct bounding-box, different bounding boxes
of a given image should be written in two separated lines. (2) The space between each
token is white space, not tab.

get_output_file_object()

/data/image1.png 200 50 300 150 0 0.9
/data/image1.png 400 250 500 350 0 0.5
/data/image2.png 300 50 400 150 1 0.8

/data/image1.png

/data/image2.png

(200,50)

(300,150)

left hand
confidence : 0.9

(300,50)

(400,150)

right hand
confidence: 0.8

(400,250)

(500,350)
left hand

confidence : 0.5

For example, if your results are the same as the
right images, your code should write the following
lines to the output file object:

Final Submission

• Your final submission should contain the
following:

– Trained model & Whole Code

– Document & report

Trained Model & Whole Code

• You should submit your trained model of your final result as
well as the related code that can inference on this model.

• Besides the code mentioned above, you should submit all
the code that can reproduce your final result from scratch.
If we fail to reproduce, we may consider you cheating, and
you may be disqualified in this competition.

• You should not submit your pre-trained model or dataset.
Your dataset should be available from the internet.

• If your pre-trained model is created by yourself, your code
should be able to train your pre-trained model from
randomly-initialized parameters. Otherwise, your pre-
trained model should be available from the internet.

Format of Document

• You should submit a document of your implementation.

• The document is about how to run your code and
reproduce your result. If we follow your document,
your final result should be able to reproduce.

• This document should contain the following:
– Where to download your training data and pre-trained

model

– How to set up the environment for your code.

– What is your final result, and how to run your code to
reproduce your result.

Format of Report

• Besides document, you should submit a report to
introduce the theoretical and experimental parts
of your project.

• Your report should be written in one-column or
two-column conference paper style.

• Your report should contain at least (but not
restricted to) the following sections:
– Introduction
– Proposed Method
– Experiment
– Conclusion

Evaluation Criteria

• 60% : accuracy
– mean average precision (mAP)
– 0.5 * (mAP of hand-with-book images) + 0.5 * (mAP of hand-with-book

images

• 0 % : Model Size
– Model size is not considered in our evaluation, However, your model should

not be larger than 500 MB. Whose model larger than this size will be
disqualified in this competition.

– You can use any data-compression method to reduce your model size.
However, the compression algorithm must be run by your script automatically,
and the decompressed model should be deleted automatically, too.

• 0 % : Runtime
– Runtime is not considered, too. However, our submission site will only allow

each team to run a total of 10 hours.

• 40% : Document, Report & Oral Presentation

Detected Bounding Box

• Detected: >=50% Intersection Over Union (IOU)
between predicted bounding box(b-box) and
ground truth b-box
– Intersection : b
– Union : a + b + c
– IOU : b/(a + b + c)
– Detected : IOU >= 50%
– Undetected : IOU < 50%

predicted b-box
(left hand)

ground truth
b-box
(left hand)

a

b

c

detected undetected

Precision & Recall

• Precision : (Nums of detected b-box) / (Nums
of predicted b-box)

• Recall : (Nums of detected b-box) / (Nums of
ground-truth b-box)

orange: predicted b-box of left hand
red: ground-truth b-box of left hand
green : ground-truth b-box of right hand
In this example, precision = 1/3, recall = 1/2, F-score:2/5

detected

undetected

undetected

Mean Average Precision

• Average Precision (AP) : Average the
precisions from low recall to high recall.

• Mean Average precision (mAP) :
– average the APs over all classes
(left hand and right hand)

score : 0.9

score : 0.7

score : 0.8

score : 0.6

score precision recall max
precision

average
precision

>=0.9 1.0 0.33 1.0 0.7567

>=0.8 0.5 0.33 1.0

>=0.7 0.67 0.67 0.67

>=0.6 0.5 0.67 0.67

>=0.5 0.6 1.0 0.6

score : 0.5

Suggested Readings and Resources

• Suggested Readings for Object Detection or
Hand Detection

• Suggested Readings for Training by
Synthetic Data

• Suggested Source Code for Object Detection

• Suggested Unlabeled Dataset for Adversarial
Training

Suggested Readings for Object
Detection or Hand Detection

• Faster R-CNN
– https://arxiv.org/abs/1506.01497

• Mask R-CNN
– https://arxiv.org/abs/1703.06870

• YOLO2
– https://arxiv.org/abs/1612.08242

• Lending A Hand: Detecting Hands and Recognizing
– http://vision.soic.indiana.edu/papers/egohands2015iccv.pdf

• Robust Hand Detection and Classification in Vehicles and in
the Wild
– http://adas.cvc.uab.es/cvvt2017/wp-

content/uploads/sites/14/2014/03/5.pdf

https://arxiv.org/abs/1506.01497
https://arxiv.org/abs/1703.06870
https://arxiv.org/abs/1612.08242
http://vision.soic.indiana.edu/papers/egohands2015iccv.pdf
http://adas.cvc.uab.es/cvvt2017/wp-content/uploads/sites/14/2014/03/5.pdf

Suggested Readings for Training by
Synthetic Data

• Transfer Learning
– https://arxiv.org/abs/1310.1531
– https://arxiv.org/abs/1701.01370

• Domain Adaptation in Image Space
– https://arxiv.org/abs/1611.01331
– https://arxiv.org/abs/1612.07828
– https://arxiv.org/abs/1703.10593

• Domain Adaptation in Feature Space
– https://arxiv.org/abs/1409.7495
– https://arxiv.org/abs/1604.02703
– https://arxiv.org/abs/1702.05464

https://arxiv.org/abs/1310.1531
https://arxiv.org/abs/1701.01370
https://arxiv.org/abs/1611.01331
https://arxiv.org/abs/1612.07828
https://arxiv.org/abs/1703.10593
https://arxiv.org/abs/1409.7495
https://arxiv.org/abs/1604.02703
https://arxiv.org/abs/1702.05464

Suggested Source Code for Object
Detection

• Faster-RCNN (tensorflow)
– https://github.com/endernewton/tf-faster-rcnn

• Faster-RCNN (pytorch)
– https://github.com/ruotianluo/pytorch-faster-rcnn

• Mask-RCNN (MxNet)
– https://github.com/TuSimple/mx-maskrcnn

• Deformable-ConvNets (MxNet)
– https://github.com/msracver/Deformable-ConvNets

• Darkflow (tensorflow)
– https://github.com/thtrieu/darkflow

https://github.com/endernewton/tf-faster-rcnn
https://github.com/ruotianluo/pytorch-faster-rcnn
https://github.com/TuSimple/mx-maskrcnn
https://github.com/msracver/Deformable-ConvNets
https://github.com/thtrieu/darkflow

Suggested Unlabeled Dataset for
Adversarial Training

• SCUT-Ego-Finger Dataset (Ego, Real Images)
– http://www.hcii-lab.net/data/SCUTEgoFinger/index.htm

• Egohand Dataset (Ego, Real Images)
– http://vision.soic.indiana.edu/projects/egohands/

• GRASP UNDERSTANDING DATASET (Ego, Real
Images)http://www.gregrogez.net/research/egovision4health/gun-71/

• CMU-EDSH Dataset (Ego, Real Images)
– http://www.cs.cmu.edu/~kkitani/datasets/

• EgoDexter Dataset (Ego, Real Images)
– http://handtracker.mpi-inf.mpg.de/projects/OccludedHands/EgoDexter.htm

• SynthHands Dataset (Ego, Synthetic Images)
– http://handtracker.mpi-inf.mpg.de/projects/OccludedHands/SynthHands.htm

• VIVA Dataset (Ego & 3rd , Real Images)
– http://cvrr.ucsd.edu/vivachallenge/

• Oxford Hand Dataset (3rd, Real Images)
– http://www.robots.ox.ac.uk/~vgg/data/hands/

• Hand3D Dataset (3rd, Synthetic Images)
– https://lmb.informatik.uni-freiburg.de/projects/hand3d/

http://www.hcii-lab.net/data/SCUTEgoFinger/index.htm
http://vision.soic.indiana.edu/projects/egohands/
http://www.gregrogez.net/research/egovision4health/gun-71/
http://www.cs.cmu.edu/~kkitani/datasets/
http://handtracker.mpi-inf.mpg.de/projects/OccludedHands/EgoDexter.htm
http://handtracker.mpi-inf.mpg.de/projects/OccludedHands/SynthHands.htm
http://cvrr.ucsd.edu/vivachallenge/
http://www.robots.ox.ac.uk/~vgg/data/hands/
https://lmb.informatik.uni-freiburg.de/projects/hand3d/

If you have any question about the rules, the dataset, or any
other question about this competition, please send an email to
Mark Chang mark.fc_chang@htc.com , thanks.

mailto:mark.fc_chang@htc.com

