
Slides credited from Dr. David Silver & Hung-Yi Lee



Review
Reinforcement Learning

2



Reinforcement Learning
RL is a general purpose framework for decision making
◦ RL is for an agent with the capacity to act

◦ Each action influences the agent’s future state

◦ Success is measured by a scalar reward signal

3

Big three: action, state, reward



Agent and Environment

4

→←
MoveRight
MoveLeft

observation ot
action at

reward rt

Agent

Environment



Major Components in an RL Agent
An RL agent may include one or more of these components
◦ Value function: how good is each state and/or action

◦ Policy: agent’s behavior function

◦ Model: agent’s representation of the environment

5



Reinforcement Learning Approach
Value-based RL
◦ Estimate the optimal value function

Policy-based RL
◦ Search directly for optimal policy

Model-based RL
◦ Build a model of the environment

◦ Plan (e.g. by lookahead) using model

6

is the policy achieving maximum future reward 

is maximum value achievable under any policy



RL Agent Taxonomy

7

Model-Free

Model

Value Policy

Learning a Critic

Actor-Critic

Learning an Actor



Deep Reinforcement Learning
Idea: deep learning for reinforcement learning
◦ Use deep neural networks to represent
• Value function

• Policy

• Model

◦ Optimize loss function by SGD

8



Value-Based Approach
LEARNING A CRITIC

9



Critic = Value Function
Idea: how good the actor is

State value function: when using actor 𝜋, the expected total 
reward after seeing observation (state) s 

A critic does not determine the action
An actor can be found from a critic

scalar

larger

smaller

10



Monte-Carlo for Estimating
Monte-Carlo (MC)
◦ The critic watches 𝜋 playing the game

◦ MC learns directly from complete episodes: no bootstrapping 

11

After seeing 𝑠𝑎,
until the end of the episode, 
the cumulated reward is 𝐺𝑎

After seeing 𝑠𝑏,
until the end of the episode, 
the cumulated reward is 𝐺𝑏

Idea: value = empirical mean return 

Issue: long episodes delay learning



Temporal-Difference for Estimating
Temporal-difference (TD)
◦ The critic watches 𝜋 playing the game

◦ TD learns directly from incomplete episodes by bootstrapping 

◦ TD updates a guess towards a guess 

12

-

Idea: update value toward estimated return 



MC v.s. TD
Monte-Carlo (MC)
◦ Large variance

◦ Unbiased

◦ No Markov property

Temporal-Difference (TD)
◦ Small variance

◦ Biased

◦ Markov property

13

smaller 
variance

may be 
biased

…



MC v.s. TD

14



Critic = Value Function
State-action value function: when using actor 𝜋, the 
expected total reward after seeing observation (state) 𝑠 and 
taking action 𝑎

scalar

for discrete action only

15



Q-Learning
Given 𝑄𝜋 𝑠, 𝑎 , find a new actor 𝜋′ “better” than 𝜋

16

𝜋 interacts with 
the environment

Learning 
𝑄𝜋 𝑠, 𝑎

Find a new actor 𝜋′

“better” than 𝜋

TD or MC

?

𝜋 = 𝜋′

𝜋′ does not have extra parameters 
(depending on value function)

not suitable for continuous action



Q-Learning
Goal: estimate optimal Q-values
◦ Optimal Q-values obey a Bellman equation

◦ Value iteration algorithms solve the Bellman equation

17

learning target



Deep Q-Networks (DQN)
Estimate value function by TD

Represent value function by deep Q-network with weights  

Objective is to minimize MSE loss by SGD

18



Deep Q-Networks (DQN)
Objective is to minimize MSE loss by SGD

Leading to the following Q-learning gradient

19

Issue: naïve Q-learning oscillates or diverges using NN due to:
1) correlations between samples 2) non-stationary targets



Stability Issues with Deep RL
Naive Q-learning oscillates or diverges with neural nets
1. Data is sequential

◦ Successive samples are correlated, non-iid (independent and 
identically distributed)

2. Policy changes rapidly with slight changes to Q-values
◦ Policy may oscillate

◦ Distribution of data can swing from one extreme to another

3. Scale of rewards and Q-values is unknown
◦ Naive Q-learning gradients can be unstable when backpropagated

20



Stable Solutions for DQN

21

DQN provides a stable solutions to deep value-based RL
1. Use experience replay

◦ Break correlations in data, bring us back to iid setting

◦ Learn from all past policies

2. Freeze target Q-network
◦ Avoid oscillation

◦ Break correlations between Q-network and target

3. Clip rewards or normalize network adaptively to sensible range
◦ Robust gradients



Stable Solution 1: Experience Replay
To remove correlations, build a dataset from agent’s experience
◦ Take action at according to 𝜖-greedy policy

◦ Store transition                                        in replay memory D

◦ Sample random mini-batch of transitions from D

◦ Optimize MSE between Q-network and Q-learning targets

22

small prob for exploration



Stable Solution 2: Fixed Target Q-Network
To avoid oscillations, fix parameters used in Q-learning target

◦ Compute Q-learning targets w.r.t. old, fixed parameters

◦ Optimize MSE between Q-network and Q-learning targets

◦ Periodically update fixed parameters 

23

freeze

freeze



Stable Solution 3: Reward / Value Range
To avoid oscillations, control the reward / value range
◦DQN clips the rewards to [−1, +1]
Prevents too large Q-values

Ensures gradients are well-conditioned

24



Deep RL in Atari Games

25



DQN in Atari
Goal: end-to-end learning of values Q(s, a) from pixels

◦ Input: state is stack of raw pixels from last 4 frames

◦ Output: Q(s, a) for all joystick/button positions a

◦ Reward is the score change for that step

26DQN Nature Paper [link] [code]

http://www.nature.com/articles/nature14236
https://sites.google.com/a/deepmind.com/dqn/


DQN in Atari

27DQN Nature Paper [link] [code]

http://www.nature.com/articles/nature14236
https://sites.google.com/a/deepmind.com/dqn/


Other Improvements: Double DQN
Nature DQN

28

Issue: tend to select the action that is over-estimated

Hasselt et al., “Deep Reinforcement Learning with Double Q-learning”, AAAI 2016.



Other Improvements: Double DQN
Nature DQN

Double DQN: remove upward bias caused by

◦ Current Q-network      is used to select actions

◦ Older Q-network        is used to evaluate actions

29Hasselt et al., “Deep Reinforcement Learning with Double Q-learning”, AAAI 2016.



Other Improvements: Prioritized Replay
Prioritized Replay: weight experience based on surprise
◦ Store experience in priority queue according to DQN error

30



Other Improvements: Dueling Network
Dueling Network: split Q-network into two channels

◦ Action-independent value function
Value function estimates how good the state is

◦ Action-dependent advantage function
Advantage function estimates the additional benefit

31Wang et al., “Dueling Network Architectures for Deep Reinforcement Learning”, arXiv preprint, 2015.



Other Improvements: Dueling Network

32

Action

Action
State

State

Wang et al., “Dueling Network Architectures for Deep Reinforcement Learning”, arXiv preprint, 2015.



Policy-Based Approach
LEARNING AN ACTOR

33



On-Policy v.s. Off-Policy
On-policy: The agent learned and the agent interacting with 
the environment is the same

Off-policy: The agent learned and the agent interacting with 
the environment is different

34



Goodness of Actor
An episode is considered as a trajectory 𝜏
◦

◦ Reward:

35

control by your actornot related to your actor

Actor

left

right

fire

0.1

0.2

0.7



Goodness of Actor
An episode is considered as a trajectory 𝜏
◦

◦ Reward:

We define            as the expected value of reward
◦ If you use an actor to play game, each 𝜏 has 𝑃 𝜏|𝜃 to be sampled

•Use 𝜋𝜃 to play the game N times, obtain 𝜏1, 𝜏2, ⋯ , 𝜏𝑁

• Sampling 𝜏 from 𝑃 𝜏|𝜃 N times 

36

sum over all possible trajectory 



Deep Policy Networks
Represent policy by deep network with weights 

Objective is to maximize total discounted reward by SGD

Update the model parameters iteratively

37



Policy Gradient
Gradient assent to maximize the expected reward

38

do not have to be differentiable
can even be a black box 

use 𝜋𝜃 to play the game N times, obtain 𝜏1, 𝜏2, ⋯ , 𝜏𝑁



Policy Gradient
An episode trajectory

39

ignore the terms not 
related to 𝜃



Policy Gradient
Gradient assent for iteratively updating the parameters

◦ If 𝜏𝑛 machine takes 𝑎𝑡
𝑛 when seeing 𝑠𝑡

𝑛

40

Important: use cumulative reward 𝑅 𝜏𝑛 of the whole trajectory 𝜏𝑛

instead of immediate reward 𝑟𝑡
𝑛

Tuning 𝜃 to increase

Tuning 𝜃 to decrease



Policy Gradient

41

Given actor parameter 𝜃

model updatedata collection

… … … …



Improvement: Adding Baseline

42

Ideally

Sampling

it is probability

not 
sampled

Issue: the probability of the actions not sampled will decrease 



Actor-Critic Approach
LEARNING AN ACTOR & A CRITIC

43



Actor-Critic (Value-Based + Policy-Based)
Estimate value function 𝑄𝜋 𝑠, 𝑎 , 𝑉𝜋 𝑠

Update policy based on the value function evaluation 𝜋

44

𝜋 interacts with 
the environment

Learning 
𝑄𝜋 𝑠, 𝑎 , 𝑉𝜋 𝑠

Update actor from 
𝜋 → 𝜋’ based on 
𝑄𝜋 𝑠, 𝑎 , 𝑉𝜋 𝑠

TD or MC𝜋 = 𝜋′

𝜋 is a actual function that 
maximizes the value

may works for continuous action



Advantage Actor-Critic
Learning the policy (actor) using the value evaluated by critic

◦ Positive advantage function ↔ increasing the prob. of action 𝑎𝑡
𝑛

◦ Negative advantage function ↔ decreasing the prob. of action 𝑎𝑡
𝑛

45

𝜋 interacts with 
the environment

Learning 
𝑉𝜋 𝑠

Update actor
based on 𝑉𝜋 𝑠

TD or MC𝜋 = 𝜋′

evaluated by critic

Advantage function:

expected reward 𝑟𝑡
𝑛 we obtain 

if we use actor 𝜋
the reward 𝑟𝑡

𝑛 we truly obtain 

when taking action 𝑎𝑡
𝑛

baseline is added



Advantage Actor-Critic
Tips
◦The parameters of actor 𝜋 𝑠 and critic 𝑉𝜋 𝑠 can be shared

◦Use output entropy as regularization for 𝜋 𝑠

◦Larger entropy is preferred → exploration 

46

Network𝑠

Network

fire

right

left

Network

𝑉𝜋 𝑠



Asynchronous Advantage Actor-Critic (A3C)
Asynchronous
1. Copy global parameters 

2. Sampling some data

3. Compute gradients

4. Update global models

47

𝜃1∆𝜃

∆𝜃
𝜃1

+𝜂∆𝜃𝜃1

(other workers also update models)

Mnih et al., “Asynchronous Methods for Deep Reinforcement Learning,” in JMLR, 2016.



Pathwise Derivative Policy Gradient
Original actor-critic tells that a given action is good or bad

Pathwise derivative policy gradient tells that which action is 
good 

48



Pathwise Derivative Policy Gradient

49

=

This is a large network

FixedGradient ascent:

an actor’s output

Actor

Silver et al., “Deterministic Policy Gradient Algorithms”, ICML, 2014.
Lillicrap et al., “Continuous Control with Deep Reinforcement Learning”, ICLR, 2016.



Deep Deterministic Policy Gradient (DDPG)
Idea
◦ Critic estimates value 

of current policy by 
DQN

◦ Actor updates policy 
in direction that 
improves Q

50

=Actor

𝜋 interacts with 
the environment

Learning 
𝑄𝜋 𝑠, 𝑎

Update actor 𝜋 → 𝜋’
based on 𝑄𝜋 𝑠, 𝑎

Replay 
Buffer

add noise 
 exploration

Lillicrap et al., “Continuous Control with Deep Reinforcement Learning,” ICLR, 2016.

Critic provides loss 
function for actor



DDPG Algorithm
Initialize critic network 𝜃𝑄 and actor network 𝜃𝜋

Initialize target critic network 𝜃𝑄
′
= 𝜃𝑄 and target actor network 𝜃𝜋

′
= 𝜃𝜋

Initialize replay buffer R

In each iteration
◦ Use 𝜋 𝑠 + noise to interact with the environment, collect a set of 
𝑠𝑡 , 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1 , put them in R

◦ Sample N examples 𝑠𝑛, 𝑎𝑛, 𝑟𝑛, 𝑠𝑛+1 from R

◦ Update critic 𝑄 to minimize

◦ Update actor 𝜋 to maximize

◦ Update target networks:

51

the target networks 
update slower

using target networks

Lillicrap et al., “Continuous Control with Deep Reinforcement Learning,” ICLR, 2016.



DDPG in Simulated Physics
Goal: end-to-end learning of control policy from pixels
◦ Input: state is stack of raw pixels from last 4 frames

◦ Output: two separate CNNs for Q and 𝜋

52Lillicrap et al., “Continuous Control with Deep Reinforcement Learning,” ICLR, 2016.



Model-Based
Agent ’s Representation of the Environment

53



Model-Based Deep RL
Goal: learn a transition model of the environment and plan
based on the transition model

54

Objective is to maximize the measured 
goodness of model

Model-based deep RL is challenging, and so far has failed in Atari



Issues for Model-Based Deep RL
Compounding errors
◦ Errors in the transition model compound over the trajectory

◦ A long trajectory may result in totally wrong rewards

Deep networks of value/policy can “plan” implicitly
◦ Each layer of network performs arbitrary computational step

◦ n-layer network can “lookahead” n steps

55



Model-Based Deep RL in Go
Monte-Carlo tree search (MCTS)
◦ MCTS simulates future trajectories

◦ Builds large lookahead search tree with millions of positions

◦ State-of-the-art Go programs use MCTS

Convolutional Networks
◦ 12-layer CNN trained to predict expert moves

◦ Raw CNN (looking at 1 position, no search at all) equals performance 
of MoGo with 105 position search tree

56

1st strong Go program

https://deepmind.com/alphago/
Silver, et al., “Mastering the game of Go with deep neural networks and tree search,” Nature, 2016.



OpenAI Universe
Software platform for measuring and training an AI's general 
intelligence via the OpenAI gym environment

57

https://universe.openai.com/
https://gym.openai.com/


Concluding Remarks
RL is a general purpose framework for decision making 
under interactions between agent and environment

An RL agent may include one or more of these components

RL problems can be solved by end-to-end deep learning

Reinforcement Learning + Deep Learning = AI

58

Value Policy

Learning 
a Critic Actor-Critic

Learning 
an Actor

◦ Value function: how good is each state 
and/or action

◦ Policy: agent’s behavior function

◦ Model: agent’s representation of the 
environment



References
Course materials by David Silver: http://www0.cs.ucl.ac.uk/staff/D.Silver/web/Teaching.html

ICLR 2015 Tutorial: http://www.iclr.cc/lib/exe/fetch.php?media=iclr2015:silver-iclr2015.pdf

ICML 2016 Tutorial: http://icml.cc/2016/tutorials/deep_rl_tutorial.pdf

59

http://www0.cs.ucl.ac.uk/staff/D.Silver/web/Teaching.html
http://www.iclr.cc/lib/exe/fetch.php?media=iclr2015:silver-iclr2015.pdf
http://icml.cc/2016/tutorials/deep_rl_tutorial.pdf

