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Reinforcement Learning

RL is a general purpose framework for decision making
oRL is for an agent with the capacity to act

o Each action influences the agent’s future state

oSuccess is measured by a scalar reward signal

Big three: action, state, reward
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Major Components in an RL Agent

An RL agent may include one or more of these components
> Value function: how good is each state and/or action
° Policy: agent’s behavior function
o Model: agent’s representation of the environment




Reinforcement Learning Approach

Value-based RL
o Estimate the optlmal value function Q (8 (I)

Q (8 a) is maximum value achievable under any pollcy

Policy-based RL
o Search directly for optimal policy 7T

7% is the policy achieving maximum future reward

Model-based RL
o Build a model of the environment
o Plan (e.g. by lookahead) using model



RL Agent Taxonomy

Model-Free

Learning a Critic Learning an Actor




Deep Reinforcement Learning

|dea: deep learning for reinforcement learning

o Use deep neural networks to represent
* Value function
* Policy
* Model

o Optimize loss function by SGD




Value-Based Approach

LEARNING A CRITIC




Critic = Value Function

Idea: how good the actor is

State value function: when using actor m, the expected total
reward after seeing observation (state) s

V™ (s) Vs =E[G; | s; = s

larger
V7 (s)

. o, A

) » v smaller a i
V7T (s)

A critic does not determine the action
An actor can be found from a critic




Monte-Carlo for Estimating V'™ (s)
Monte-Carlo (MC)

o The critic watches i playing the game
o MC learns directly from complete episodes: no bootstrapping

~ |dea: value = empirical mean return

After seeing s,

until the end of the episode, VT =V (sq)+> G
the cumulated reward is G, ¢

After seeing sy,
until the end of the episode,
the cumulated reward is G,

Issue: long episodes delay learning |



Temporal-Difference for Estimating V'™ (s)

Temporal-difference (TD)
o The critic watches i playing the game
> TD learns directly from incomplete episodes by bootstrapping
o TD updates a guess towards a guess

|Idea: update value toward estimated return
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Monte-Carlo (MC) Temporal-Difference (TD)
o Large variance o Small variance

> Unbiased ° Biased

> No Markov property o Markov property

Sg— VT =V (s)4h G, St— VT =V (s;)

3

ret VT(spp1 )= VT «—Stt1

smaller  may be
variance  biased
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V'™ (s) V'™ (s¢)

= V™ (s;) + a(Gy — V™ (s¢)) = V7™ (st) + a(reer + YV (st41) — V7 (s¢))

MCv.s. TD




Critic = Value Function

State-action value function: when using actor m, the
expected total reward after seeing observation (state) s and
taking action a

Q™ (s,a) Vs,a = E|G; | st = s,a; = al

— Q7 (s,a = left)

Q" Q—W(f’a)g» QT — Q7(s,a =right)

scalar ——— Q"(s,a = fire)

for discrete action only



Q-Learning

Given Q™ (s, a), find a new actor ' “better” than 7
V™ (s) > V™(s) Vs
m'(s) = argmax Q™ (s, a)
a

T interacts with

n' does not have extra parameters the environment
(depending on value function)

not suitable for continuous action T =T TD or MC

Learning

Q" (s,a)




Q-Learning

Goal: estimate optimal Q-values
o Optimal Q-values obey a Bellman equation

Q" (s,a) = ES/[T + 7 max Q" (s, a')] | s, al

a

learning target

o Value iteration algorithms solve the Bellman equation

Qri(s, a) = Eg[r + ymax Qgfs’, a') | s, q




Deep Q-Networks (DQN)

Estimate value functionby TD - - - , 8¢, Q¢, T, Se4-1,
i Q7 (st,a¢) QT (St41,7(St+1))
QT — Q" (s, at) 4_i_H
Q= T
t re + QT (St41, T(Se11)) @ -
m(st+1)

Represent value function by deep Q-network with weights w

Q(s,a,w) = Q(s,a)

Objective is to minimize MSE loss by SGD )
L(w) = E{ (r +ymaxQ(s’,a’,w) — Q(s,a,w)) }



Deep Q-Networks (DQN)

Objective is to minimize MSE loss by SGD
2
L(w) = E[ (r +ymaxQ(s’,a’,w) — Q(s,a,w)) }

Leading to the following Q-learning gradient

0L(w)
ow

0Q (s, a, 'w)}

A A L

Issue: naive Q-learning oscillates or diverges using NN due to:
1) correlations between samples 2) non-stationary targets




Stability Issues with Deep RL

Naive Q-learning oscillates or diverges with neural nets
1. Data is sequential

o Successive samples are correlated, non-iid (independent and
identically distributed)

2. Policy changes rapidly with slight changes to Q-values
o Policy may oscillate
o Distribution of data can swing from one extreme to another
3. Scale of rewards and Q-values is unknown
> Naive Q-learning gradients can be unstable when backpropagated



Stable Solutions for DQN

DQN provides a stable solutions to deep value-based RL
1. Use experience replay

o Break correlations in data, bring us back to iid setting
o Learn from all past policies
2. Freeze target Q-network
> Avoid oscillation
° Break correlations between Q-network and target
3. Clip rewards or normalize network adaptively to sensible range
o Robust gradients



Stable Solution 1: Experience Replay

To remove correlations, build a dataset from agent’s experience
o Take action at according to e-greedy policy  small prob for exploration
o Store transition (St, Aty Te41, 8t+1) in replay memory D
>Sample random mini-batch of transitions (s, a, r, s') from D

51,41, 2, 52
!/
52,42, 13,53 — s,a,rs

53,43, 14, 54

Sty Aty Me+155t+1  —7 | Sty @ty Mt+15 St+1

o Optimize MSE between Q-network and Q-learning targets

L(w) =Eg.q.rs~D [ (r + Y max Q(s',a',w) — Q(s,a, w))q



Stable Solution 2: Fixed Target Q-Network

To avoid oscillations, fix parameters used in Q-learning target

i QT —> Q™ (sy,a) > 1t + Q7 (8¢11, T(S¢41))*+— QT HH

_ \ fre\gze j 4_71(875_‘_1 )
—freeze

o Compute Q-learning targets w.r.t. old, fixed parameters w
r+ymaxQ(s’,a’,w™)

o Optimize MSE betweenaQ-network and Q-learning targets ,

L(w) =Eg.qrs~D { (r + 7y max Q(s',a',w™) — Q(s,a, w)) }

o Periodically update fixed parameters w < w



Stable Solution 3: Reward / Value Range

To avoid oscillations, control the reward / value range
cDQN clips the rewards to [-1, +1]
"Prevents too large Q-values
" Ensures gradients are well-conditioned
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Deep RL in Atari Games
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o~
DQN in Atari

Goal: end-to-end learning of values Q(S, a) from pixels

L(w) =Egq4rs~bD [ ('r + ’)/H;E}X Q(s',d ,w™) — Q(s,a, w))z}

o [nput: state is stack of raw pixels from last 4 frames
o Qutput: Q(s, a) for all joystick/button positions a
o Reward is the score change for that step

32 4x4 filcers 256 hidden units Fully-connected linear
output layer
16 8x8 filters
4xB84x84
Stack of 4 previous ‘ Fully-connec ted layer
frames Cenvolutional layer Convolutional layer of rectified linear units
of rectified linear units of rectified linear units
DQN Nature Paper|[ ]| ] 26



http://www.nature.com/articles/nature14236
https://sites.google.com/a/deepmind.com/dqn/

DQN in Atarli
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http://www.nature.com/articles/nature14236
https://sites.google.com/a/deepmind.com/dqn/

Other Improvements: Double DQON

Nature DQN Q(Sta at) «— 7't +7yMax Q(St_|_1, a)
a

& &

£(w) = Eq g | (r+ymaxQ(s'sd'sw7) — Qs,aw) |

Issue: tend to select the action that is over-estimated

Hasselt et al., “Deep Reinforcement Learning with Double Q-learning”, AAAI 2016.



Other Improvements: Double DQON
Nature DQN

L(w) =Es 4rs~D [ ('r + g Q(s',a,w™) — Q(s,a, ’w))z}

Double DQN: remove upward bias caused by max Q(s,a,w)
2
L(w) =Eg4ps~D [ (7“ +7Q(s', argmax Q(s', o', w), w™) — Q(s, a, w)) ]

o Current Q-network W is used to select actions
o Older Q-network w is used to evaluate actions

Hasselt et al., “Deep Reinforcement Learning with Double Q-learning”, AAAI 2016.



Other Improvements: Prioritized Replay

Prioritized Replay: weight experience based on surprise
o Store experience in priority queue according to DQN error

r+ymax Qs a',w) — Q(s, a,w)

a




Other Improvements: Dueling Network

Dueling Network: split Q-network into two channels
Q(s,a) =V(s) + A(s, a)

> Action-independent value function V' (s)
=Value function estimates how good the state is

o Action-dependent advantage function A(s, a)
= Advantage function estimates the additional benefit

Wang et al., “Dueling Network Architectures for Deep Reinforcement Learning”, arXiv preprint, 2015.



Other Improvements: Dueling Network

7

State s

=

State s

2\

Action a Q(s,a)

Actiona Q(s,a)

A(s,a) = Q(s,a) — V(s)

Wang et al., “Dueling Network Architectures for Deep Reinforcement Learning”, arXiv preprint, 2015. 32



Policy-Based Approach

LEARNING AN ACTOR
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On-Policy v.s. Off-Policy

On-policy: The agent learned and the agent interacting with
the environment is the same

Off-policy: The agent learned and the agent interacting with
the environment is different




Goodness of Actor

An episode is considered as a trajectory
° T =1{81,a1,71,82,02,T2, "+ ,ST,4T,TT}
o . _ T t—1

Reward: R(7)=>,_, " 'r

P(r|0) =

p(s1)p(ar | s1,0)p(r1,s2 | s1,a1)p(az | s2,0)p(ra, s3 | s2,a2) -

a left
= p(s1) Hp(at | 5¢,0)p(Te, St+1 | St, ar) — 0.1

= Actor right
\>< U g —— 02
fire

not related to your actor | control by your actor —_ 0.7

pla; = fire | s¢,0) = 0.7




Goodness of Actor

An episode is considered as a trajectory
° T =1{81,a1,71,82,02,T2, "+ ,ST,4T,TT}
o . _ T t—1

Reward: R(7)=>,_, " 'r

We define R(6) as the expected value of reward
o |f you use an actor to play game, each 1 has P(T|8) to be sampled

R(6) = ZR P(r|0)~ ZR

* Use 1y to play the game N times, obtain {t!,72,---, 7"}
* Sampling T from P(t|0) N times

sum over all possible trajectory




Deep Policy Networks

Represent policy by deep network with weights

Objective is to maximize total discounted reward by SGD

R(O) = E|r1 +yra + 5+« | (-, 0)]

Update the model parameters iteratively

6" = arg max R(6)

0"+ 6+ nVR()



Policy Gradient R(9) = 2., R(m)P(7 | 0)

Gradient assent to maximize the expected reward VP( | 0)
VR(0) = 3 R@VP(r|0) = 3 RTIP(r|6) Per 1)

do not have to be differentiable
can even be a black box

—ZR P(t | 0)Vlog P(T | 0)

dlog f(x) _ 1_df
dx f(z) dx

use 1y to play the game N times, obtain {t}, 2, -, "}

N
]‘ n n
~~ D R(r)Viog P(r" | 6)

n=1



Policy Gradient VlegP(r|6)

An episode trajectory 7' = {s1,a1,71, 82,092,720, , ST,a7,TT}
P(7 | 8) =p(s1) H (at | st,0)p(re, St+1 | 8¢, ar)
log P(7 | 0)

— logp(sl) Zlogp(a’t ‘ St 9) + logp(rta St+1 | St a’t)
t=1

T
V log P(T ] 9) — Z V]ng(at | S¢, 9) :rgeT;creedt:\otherms not
t=1



Policy Gradient

Gradient assent for iteratively updating the parameters
0" < 60 +nVR(H)

N
Z R(t")Vlog P(t" | 0)

1
N
1 N T,
= S )V homptar |70

oIf ™ machine takes al when seeing s/
R(™) >0 mmm) Tuning 6 to increase p(ay | s})
R(7™) < 0 mmmm) Tuning 0 to decrease p(ay’ | s}')

Important: use cumulative reward R(t™) of the whole trajectory t"

- instead of immediate reward r/* n




Policy Gradient

Given actor parameter 6
P shal) R 7 () R
(s3.a3) R(T") (s3.a3) R(T?)
data collection model update
0 < 0 +nVR(0)
| N T
R(0) =+ D_ > R(")Viogp(a; | s}',6)
n=1t=1




Improvement: Adding Baseline

0" < 0 +nVR(
VR(6) = (R(r")C YV logp(al' | s7,0)
it is probability
Ideally - I I I
pled
sample
Sampling p -

Issue: the probability of the actions not sampled will decrease




Actor-Critic Approach

LEARNING AN ACTOR & A CRITIC
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Actor-Critic (Value-Based + Policy-Based)

Estimate value function Q™ (s, a), V™(s)

Update policy based on the value function evaluation

m'(s) = argmax Q™ (s, a)
a

7T interacts with

the environment

1T is a actual function that
maximizes the value

may works for continuous action mT=T TD or MC

Update actor from :
m — 1 based on - Learmn%
0™ (s,a), V*(s) Q™(s,a),V™(s)




T interacts with
the environment
T=m TD or MC
_ 1+1 Update actor Learning
Advantage Actor-Critic
Learning the policy (actor) using the value evaluated by critic

0™ +— 0™ + nVR(H™)

N T
1 mn
VR(OT) = N E E Vlogp(a,? | 53, 07) baseline is added

n=1 t=1

evaluated by critic

Advantage function: 73" — (V™ (s') — V™ (s} ,))

the reward r* we truly obtain expected reward 7{* we obtain
when taking action al’ if we use actor 7t

o Positive advantage function <> increasing the prob. of action af*
> Negative advantage function <= decreasing the prob. of action a}'



Advantage Actor-Critic

Tips
°The parameters of actor w(s) and critic V™(s) can be shared

—> |eft

—» right

—» fire

I

Network —V7(s)

oUse output entropy as regularization for (s)
oLarger entropy is preferred — exploration



Asynchronous Advantage Actor-Critic (A3C)

Async hronous Global Network
. - 61 +nA6
1. Copy global parameters Policy r(s) || V(s) |
2. Sampling some data
] Network
3. Compute gradients
4. Update global models AB 'nput(s)LJ
(other workers also update models) 91
w = = o
A6 Y5 b )
Worker 1 Worker 2 Worker 3 Worker n
} } } }
Environment 1 Environment 2 Environment3 ... Environmentn

Mnih et al., “Asynchronous Methods for Deep Reinforcement Learning,” in JMLR, 2016.



Pathwise Derivative Policy Gradient

Original actor-critic tells that a given action is good or bad

Pathwise derivative policy gradient tells that which action is
good




Pathwise Derivative Policy Gradient

7'(s) = argmax Q™ (s, a) 4@ an actor’s output
a

Gradient ascent: Fixed

0™ «— 0™ + nVR(H™)
T — 7
QW _'QW(Sa CL)
i— Actor —» (1 a —>
T

\ J
Y

This is a large network

Silver et al., “Deterministic Policy Gradient Algorithms”, ICML, 2014.

Lillicrap et al., “Continuous Control with Deep Reinforcement Learning”, ICLR, 2016.



Deep Deterministic Policy Gradient (DDPG)

e
o Critic estimates value the environment - Buffer
of current policy by add noise
DQN —> exploration
°Actor updates oJollla"A Update actorm — 7’ Learnmg l

improves Q

Critic provides loss : 97r — 97 + nVR(H”)
function for actor

T — 7

Actor —» @ =i
s T :




DDPG Algorithm

Initialize critic network 89 and actor network 87

Initialize target critic network 89 = 69 and target actor network 8% = @7"
Initialize replay buffer R

In each iteration

> Use (s) + noise to interact with the environment, collect a set of
{s¢, as, 1¢, S¢41}, put themin R

o Sample N examples {s,,, a,,, 3, S, +1} from R
> Update critic Q to minimize > (9, — Q(8n, an))?
Un = Tn + Q'(Sn+1, ™ (Sn+1)) using target networks
o Update actor  to maximize) = Q(sp, 7(sn))
o Update target networks: qu’ — ml™ + (1 . m)@vr’ the target networks

09" — me? + (1— m)QQI update slower

Lillicrap et al., “Continuous Control with Deep Reinforcement Learning,” ICLR, 2016.



DDPG in Simulated Physics

Goal: end-to-end learning of control policy from pixels
o [nput: state is stack of raw pixels from last 4 frames
o Qutput: two separate CNNs for Qand

32 4t fikers 256 hidden units

16 Bx8 filters
4xB4xB4 Q( s.a)
m [T 0
Stack of 4 previous Fully-connecte d layer
frames Cenvalutional layer Convelutional layer of rectified linear units
of rectified linear units of rectified linear units
32 4x4 filkers 256 hidden units Fully-connected linear
output layer
16 BxB filters
4xB4xBA JT(S)

A

F—

Stack of 4 previous Fully-connecte d layer
frames Convolutional layer Convolutional layer of rectified linear units
of rectified linear unics of rectified linear units.

Lillicrap et al., “Continuous Control with Deep Reinforcement Learning,” ICLR, 2016.



Model-Based

Agent’s Representation of the Environment
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Model-Based Deep RL

Goal: learn a transition model of the environment and plan
based on the transition model

n(r,s' | s, a
(r,s' | s,a)

Objective is to maximize the measured
goodness of model

Model-based deep RL is challenging, and so far has failed in Atari




Issues for Model-Based Deep RL

Compounding errors
°Errors in the transition model compound over the trajectory
o A long trajectory may result in totally wrong rewards

Deep networks of value/policy can “plan” implicitly
o Each layer of network performs arbitrary computational step
o n-layer network can “lookahead” n steps




Model-Based Deep RL in Go

Monte-Carlo tree search (MCTS)

o MCTS simulates future trajectories

o Builds large lookahead search tree with millions of positions
o State-of-the-art Go programs use MCTS

Convolutional Networks

o12-layer CNN trained to predict expert moves

> Raw CNN (looking at 1 position, no search at all) equals performance
of MoGo with 105 position search tree

THE ULTIMATE GO CHALLENGE
GAME 10F 5

9 MARCH 2016

1st strong Go program

AlphaGo Lee Sedol

NUMBER

Silver, et al., “Mastering the game of Go with deep neural networks and tree search,” Nature, 2016.




OpenAl Universe

Software platform for measuring and training an Al's general
intelligence via the OpenAl gym environment



https://universe.openai.com/
https://gym.openai.com/

Concluding Remarks

RL is a general purpose framework for decision making
under interactions between agent and environment

An RL agent may include one or more of these components

> Value function: how good is each state
and/or action

o Policy: agent’s behavior function

o Model: agent’s representation of the

environment .
Learning Learning

3 Critic Actor-Critic n Actor

RL problems can be solved by end-to-end deep learning

Reinforcement Learning + Deep Learning = Al
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