Deep Reinforcement Learning ADL x MLDS YUN-NUNG (VIVIAN) CHEN HTTP://ADL.MIULAB.TW HTTP://MLDS.MIULAB.TW

Slides credited from Dr. David Silver & Hung-Yi Lee

(2) Dec 4th & 7th, 2017

Review

Reinforcement Learning

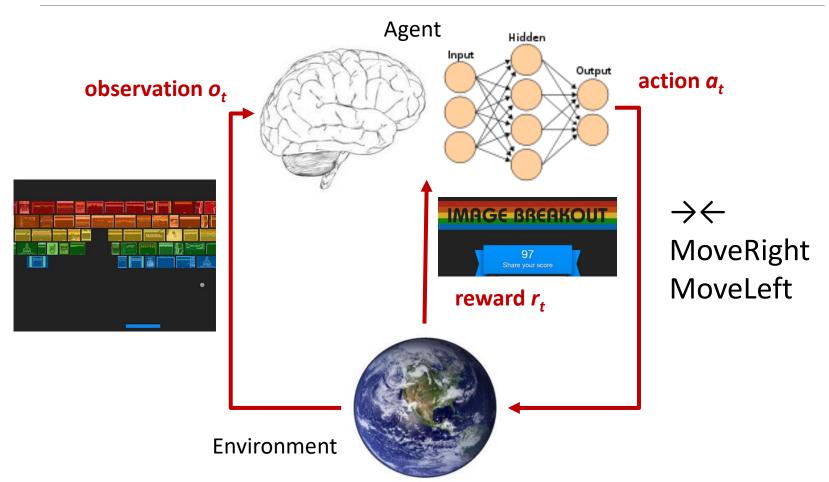
Reinforcement Learning

RL is a general purpose framework for decision making

- RL is for an *agent* with the capacity to *act*
- Each action influences the agent's future state
- Success is measured by a scalar *reward* signal

Big three: action, state, reward

Agent and Environment



Major Components in an RL Agent

An RL agent may include one or more of these components

- Value function: how good is each state and/or action
- **Policy**: agent's behavior function
- Model: agent's representation of the environment

Reinforcement Learning Approach

- Value-based RL
- $\,{}^{
 m \circ}\,$ Estimate the optimal value function $\,Q^*(s,a)\,$

 $Q^{\ast}(s,a)\,$ is maximum value achievable under any policy

Policy-based RL

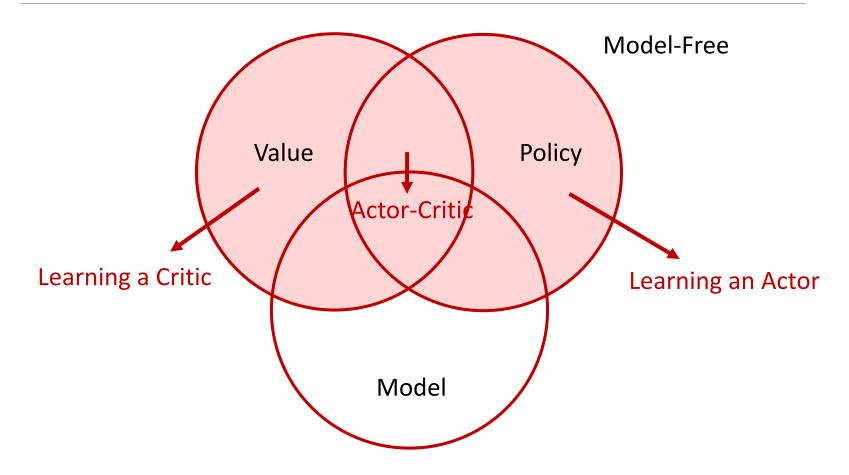
 \circ Search directly for optimal policy π^*

 π^* is the policy achieving maximum future reward

Model-based RL

- Build a model of the environment
- Plan (e.g. by lookahead) using model

RL Agent Taxonomy



Deep Reinforcement Learning

Idea: deep learning for reinforcement learning

- Use deep neural networks to represent
 - Value function
 - Policy
 - Model
- Optimize loss function by SGD

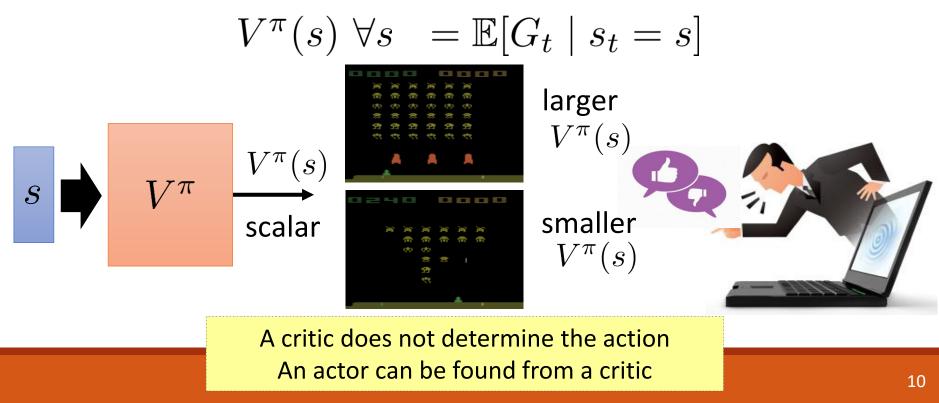
Value-Based Approach

LEARNING A CRITIC

Critic = Value Function

Idea: how good the actor is

State value function: when using actor π , the *expected total* reward after seeing observation (state) s



Monte-Carlo for Estimating $V^{\pi}(s)$

Monte-Carlo (MC)

- $^{\rm o}$ The critic watches π playing the game
- MC learns directly from complete episodes: no bootstrapping

Idea: value = *empirical mean* return

After seeing s_a , until the end of the episode, the cumulated reward is G_a

After seeing s_b , until the end of the episode, the cumulated reward is G_b

$$s_a \rightarrow V^{\pi} \rightarrow V^{\pi}(s_a) \leftrightarrow G_a$$
$$s_b \rightarrow V^{\pi} \rightarrow V^{\pi}(s_b) \leftrightarrow G_b$$

Issue: long episodes delay learning

Temporal-Difference for Estimating $V^{\pi}(s)$

Temporal-difference (TD)

- $^{\rm o}$ The critic watches π playing the game
- TD learns directly from incomplete episodes by bootstrapping
- TD updates a guess towards a guess

Idea: update value toward estimated return

$$s_{t} \rightarrow V^{\pi} \rightarrow V^{\pi}(s_{t}) \qquad \cdots \qquad s_{t}, a_{t}, r_{t}, s_{t+1}, \cdots \\ V^{\pi}(s_{t}) \qquad V^{\pi}(s_{t+1}) \rightarrow V^{\pi}(s_{t}) - V^{\pi}(s_{t+1}) \leftrightarrow r_{t}$$

$$s_{t+1} \rightarrow V^{\pi}(s_{t+1}) \qquad \rightarrow V^{\pi}(s_{t+1}) \qquad \rightarrow V^{\pi}(s_{t+1}) \rightarrow V^$$

Monte-Carlo (MC)

• Large variance

MC v.s. TD

- Unbiased
- No Markov property

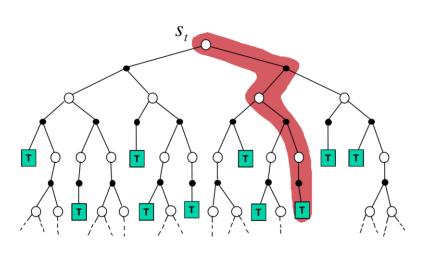
Temporal-Difference (TD)

- Small variance
- Biased
- Markov property

$$s_{t} \rightarrow V^{\pi} \rightarrow V^{\pi}(s_{t}) \spadesuit G_{t} \qquad s_{t} \rightarrow V^{\pi} \rightarrow V^{\pi}(s_{t})$$

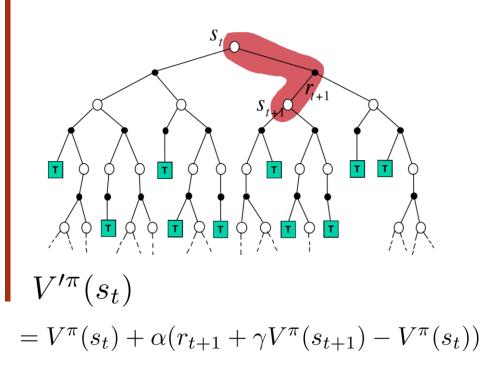
$$r_{t} + V^{\pi}(s_{t+1}) \leftarrow V^{\pi} \leftarrow s_{t+1}$$

$$smaller \qquad may be$$
variance biased



 $V'^{\pi}(s_t)$

$$= V^{\pi}(s_t) + \alpha(G_t - V^{\pi}(s_t))$$

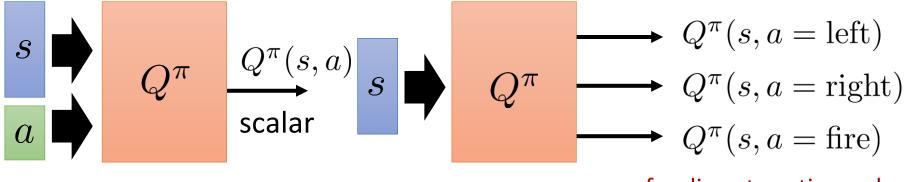


MC v.s. TD

Critic = Value Function

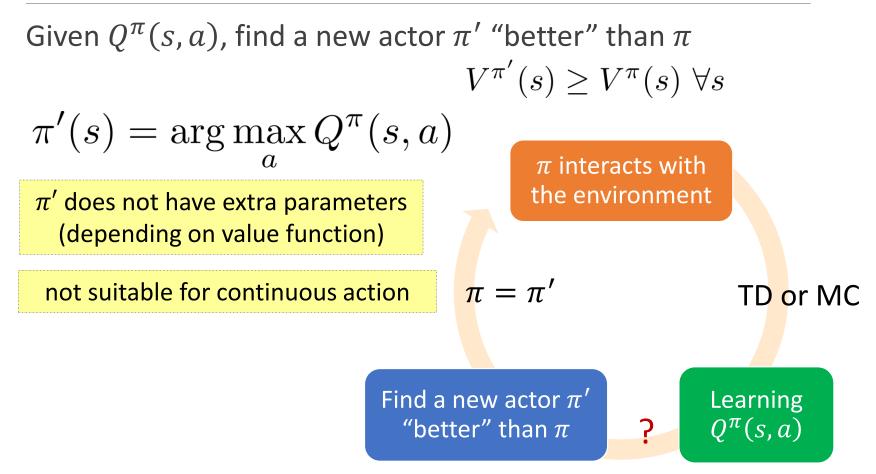
State-action value function: when using actor π , the expected total reward after seeing observation (state) s and taking action a

$$Q^{\pi}(s,a) \; \forall s,a = \mathbb{E}[G_t \mid s_t = s, a_t = a]$$



for discrete action only

Q-Learning



Q-Learning

Goal: estimate optimal Q-values

Optimal Q-values obey a Bellman equation

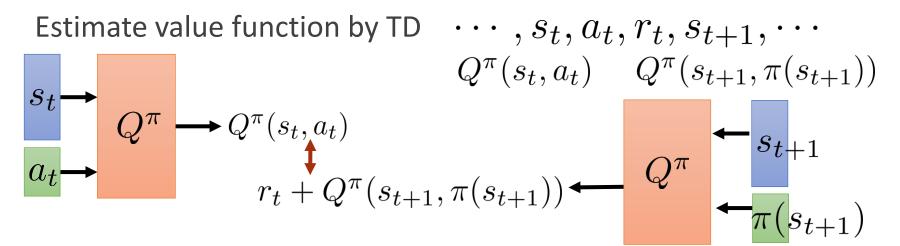
$$Q^*(s, a) = \mathbb{E}_{s'} r + \gamma \max_{a'} Q^*(s', a') | s, a]$$

learning target

• Value iteration algorithms solve the Bellman equation

$$Q_{i+1}(s,a) = \mathbb{E}_{s'}[r + \gamma \max_{a'} Q_i(s',a') \mid s,a]$$

Deep Q-Networks (DQN)



Represent value function by deep Q-network with weights w

$$Q(s, a, \mathbf{w}) \approx Q^*(s, a)$$

Objective is to minimize MSE loss by SGD

$$\mathcal{L}(w) = \mathbb{E}\left[\left(r + \gamma \max_{a'} Q(s', a', w) - Q(s, a, w)\right)^2\right]$$

Deep Q-Networks (DQN)

Objective is to minimize MSE loss by SGD

$$\mathcal{L}(w) = \mathbb{E}\left[\left(r + \gamma \max_{a'} Q(s', a', w) - Q(s, a, w)\right)^2\right]$$

Leading to the following Q-learning gradient

$$\frac{\partial \mathcal{L}(w)}{\partial w} = \mathbb{E}\Big[\left(r + \gamma \max_{a'} Q(s', a', w) - Q(s, a, w)\right) \frac{\partial Q(s, a, w)}{\partial w}\Big]$$

Issue: naïve Q-learning oscillates or diverges using NN due to: 1) correlations between samples 2) non-stationary targets

Stability Issues with Deep RL

Naive Q-learning oscillates or diverges with neural nets

- 1. Data is sequential
 - Successive samples are correlated, non-iid (independent and identically distributed)
- Policy changes rapidly with slight changes to Q-values
 Policy may oscillate
 - Distribution of data can swing from one extreme to another
- 3. Scale of rewards and Q-values is unknown
 - Naive Q-learning gradients can be unstable when backpropagated

Stable Solutions for DQN

DQN provides a stable solutions to deep value-based RL

- 1. Use experience replay
 - Break correlations in data, bring us back to iid setting

Learn from all past policies

- 2. Freeze target Q-network
 - Avoid oscillation

Break correlations between Q-network and target

Clip rewards or normalize network adaptively to sensible range
 Robust gradients

Stable Solution 1: Experience Replay

- To remove correlations, build a dataset from agent's experience • Take action at according to ϵ -greedy policy small prob for exploration
- Store transition $(s_t, a_t, r_{t+1}, s_{t+1})$ in replay memory D• Sample random mini-batch of transitions (s, a, r, s') from D

$$\begin{array}{c|c} \hline s_{1}, a_{1}, r_{2}, s_{2} \\ \hline s_{2}, a_{2}, r_{3}, s_{3} \\ \hline s_{3}, a_{3}, r_{4}, s_{4} \\ \hline \\ \hline \\ s_{t}, a_{t}, r_{t+1}, s_{t+1} \end{array} \rightarrow \begin{array}{c} s, a, r, s \\ \hline s_{t}, a_{t}, r_{t+1}, s_{t+1} \\ \hline \end{array}$$

Optimize MSE between Q-network and Q-learning targets

$$\mathcal{L}(w) = \mathbb{E}_{s,a,r,s'\sim D} \left[\left(r + \gamma \max_{a'} Q(s',a',w) - Q(s,a,w) \right)^2 \right]$$

Stable Solution 2: Fixed Target Q-Network

To avoid oscillations, fix parameters used in Q-learning target

$$s_{t} \rightarrow Q^{\pi} \rightarrow Q^{\pi}(s_{t}, a_{t}) \leftrightarrow r_{t} + Q^{\pi}(s_{t+1}, \pi(s_{t+1})) \leftarrow Q^{\pi} \leftarrow s_{t+1}$$

$$a_{t} \rightarrow freeze$$

 \circ Compute Q-learning targets w.r.t. old, fixed parameters $w^{-{\rm freeze}}$

$$r + \gamma \max_{a'} Q(s', a', w^{-})$$

Optimize MSE between Q-network and Q-learning targets

$$\mathcal{L}(w) = \mathbb{E}_{s,a,r,s'\sim D} \left[\left(r + \gamma \max_{a'} Q(s',a',w^-) - Q(s,a,w) \right)^2 \right]$$

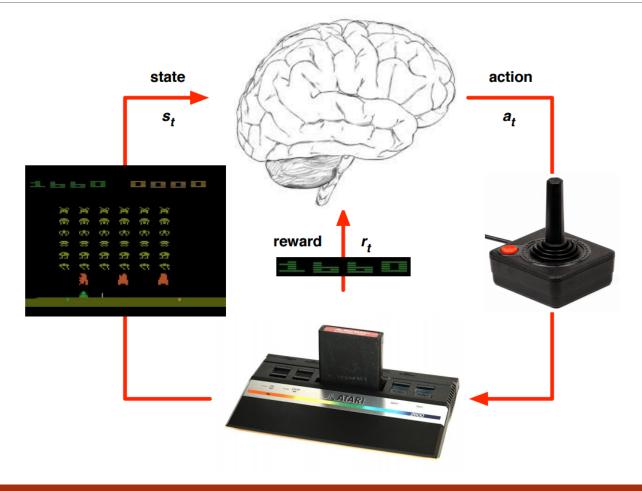
• Periodically update fixed parameters $w^- \leftarrow w$

Stable Solution 3: Reward / Value Range

To avoid oscillations, control the reward / value range

- DQN clips the rewards to [-1, +1]
 - Prevents too large Q-values
 - Ensures gradients are well-conditioned

Deep RL in Atari Games

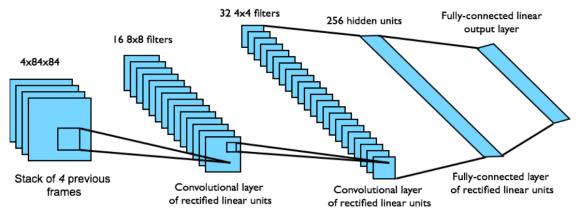


DQN in Atari

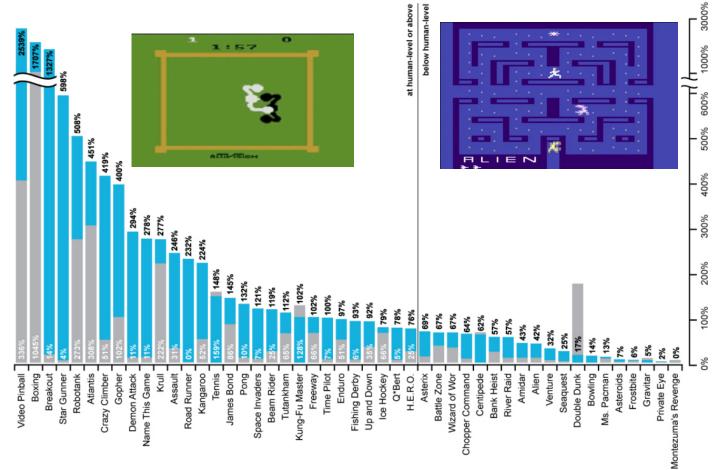
Goal: end-to-end learning of values Q(s, a) from pixels

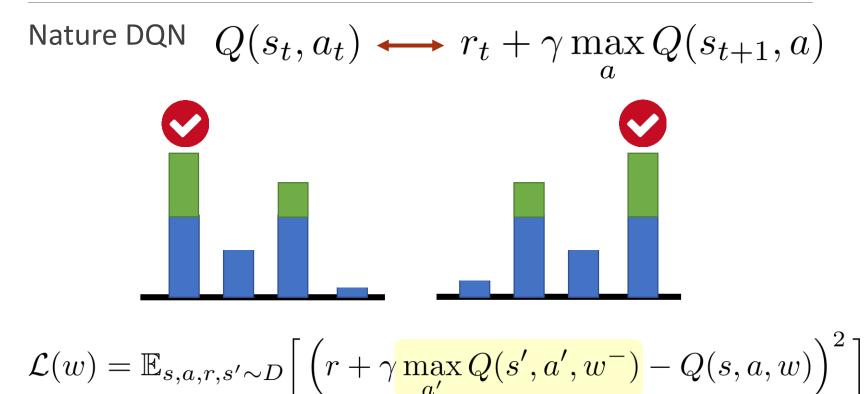
$$\mathcal{L}(w) = \mathbb{E}_{s,a,r,s'\sim D} \left[\left(r + \gamma \max_{a'} Q(s',a',w^{-}) - Q(s,a,w) \right)^2 \right]$$

- Input: state is stack of raw pixels from last 4 frames
- Output: Q(s, a) for all joystick/button positions a
- Reward is the score change for that step



DQN in Atari





Issue: tend to select the action that is over-estimated

Other Improvements: Double DQN

Nature DQN

$$\mathcal{L}(w) = \mathbb{E}_{s,a,r,s'\sim D} \left[\left(r + \gamma \max_{a'} Q(s',a',w^{-}) - Q(s,a,w) \right)^2 \right]$$

Double DQN: remove upward bias caused by $\max_{a} Q(s, a, w)$ $\mathcal{L}(w) = \mathbb{E}_{s,a,r,s'\sim D} \left[\left(r + \gamma \frac{Q(s', \arg\max_{a'} Q(s', a', w), w^{-})}{q(s, a, w)} - Q(s, a, w) \right)^{2} \right]$

 $^{\circ}$ Current Q-network w is used to select actions

 \circ Older Q-network w^- is used to evaluate actions

Other Improvements: Prioritized Replay

Prioritized Replay: weight experience based on surpriseStore experience in priority queue according to DQN error

Т

$$\left| r + \gamma \max_{a'} Q(s', a', w^{-}) - Q(s, a, w) \right|$$

Т

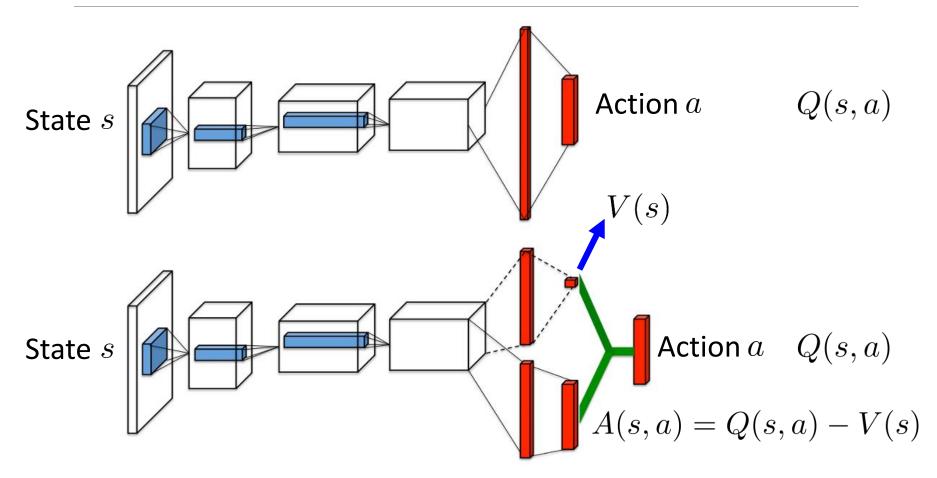
Other Improvements: Dueling Network

Dueling Network: split Q-network into two channels

$$Q(s,a) = V(s) + A(s,a)$$

- $^{\circ}$ Action-independent value function V(s)
 - Value function estimates how good the state is
- $^{
 m o}$ Action-dependent advantage function A(s,a)
 - Advantage function estimates the additional benefit

Other Improvements: Dueling Network



Wang et al., "Dueling Network Architectures for Deep Reinforcement Learning", arXiv preprint, 2015. 32

Policy-Based Approach

LEARNING AN ACTOR

On-Policy v.s. Off-Policy

On-policy: The agent learned and the agent interacting with the environment is the same

Off-policy: The agent learned and the agent interacting with the environment is different

Goodness of Actor

An episode is considered as a trajectory τ • $\tau = \{s_1, a_1, r_1, s_2, a_2, r_2, \cdots, s_T, a_T, r_T\}$ • Reward: $R(\tau) = \sum_{t=1}^{T} \gamma^{t-1} r_t$ $P(\tau \mid \theta) =$ $p(s_1)p(a_1 \mid s_1, \theta)p(r_1, s_2 \mid s_1, a_1)p(a_2 \mid s_2, \theta)p(r_2, s_3 \mid s_2, a_2)\cdots$ 'I'left → 0.1 $= p(s_1) \prod p(a_t \mid s_t, \theta) p(r_t, s_{t+1} \mid s_t, a_t)$ Actor right t=1 S_{t} **→** 0.2 fire control by your actor not related to your actor $p(a_t = \text{fire} \mid s_t, \theta) = 0.7$

Goodness of Actor

An episode is considered as a trajectory τ

•
$$\tau = \{s_1, a_1, r_1, s_2, a_2, r_2, \cdots, s_T, a_T, r_T\}$$

• Reward:
$$R(\tau) = \sum_{t=1}^{T} \gamma^{t-1} r_t$$

We define $\mathcal{R}(\theta)$ as the *expected value* of reward

• If you use an actor to play game, each τ has $P(\tau|\theta)$ to be sampled

$$\mathcal{R}(\theta) = \sum_{\tau} R(\tau) P(\tau \mid \theta) \approx \frac{1}{N} \sum_{n=1}^{N} R(\tau^n)$$

• Use π_{θ} to play the game N times, obtain $\{\tau^1, \tau^2, \cdots, \tau^N\}$

• Sampling τ from $P(\tau|\theta)$ N times

sum over all possible trajectory

Deep Policy Networks

Represent policy by deep network with weights Objective is to maximize total discounted reward by SGD $\mathcal{R}(\theta) = \mathbb{E} \Big[r_1 + \gamma r_2 + \gamma^2 r_3 + \cdots \mid \pi(\cdot, \theta) \Big]$

Update the model parameters iteratively

$$\theta^* = \arg \max_{\theta} \mathcal{R}(\theta)$$
$$\theta' \leftarrow \theta + \eta \nabla \mathcal{R}(\theta)$$

Policy Gradient $\mathcal{R}(\theta) = \sum_{\tau} R(\tau) P(\tau \mid \theta)$

Gradient assent to maximize the expected reward

$$\nabla \mathcal{R}(\theta) = \sum_{\tau} R(\tau) \nabla P(\tau \mid \theta) = \sum_{\tau} R(\tau) P(\tau \mid \theta) \frac{\nabla P(\tau \mid \theta)}{P(\tau \mid \theta)}$$
do not have to be differentiable
can even be a black box

$$= \sum_{\tau} R(\tau) P(\tau \mid \theta) \nabla \log P(\tau \mid \theta) \frac{d \log f(x)}{dx} = \frac{1}{f(x)} \frac{df(x)}{dx}$$
use π_{θ} to play the game N times, obtain $\{\tau^{1}, \tau^{2}, \cdots, \tau^{N}\}$
 $\approx \frac{1}{N} \sum_{n=1}^{N} R(\tau^{n}) \nabla \log P(\tau^{n} \mid \theta)$

$$\frac{\text{Policy Gradient}}{\text{An episode trajectory } \tau = \{s_1, a_1, r_1, s_2, a_2, r_2, \cdots, s_T, a_T, r_T\}}$$

$$P(\tau \mid \theta) = p(s_1) \prod_{t=1}^{T} p(a_t \mid s_t, \theta) p(r_t, s_{t+1} \mid s_t, a_t)$$

$$\log P(\tau \mid \theta)$$

$$= \log p(s_1) \sum_{t=1}^{T} \log p(a_t \mid s_t, \theta) + \log p(r_t, s_{t+1} \mid s_t, a_t)$$

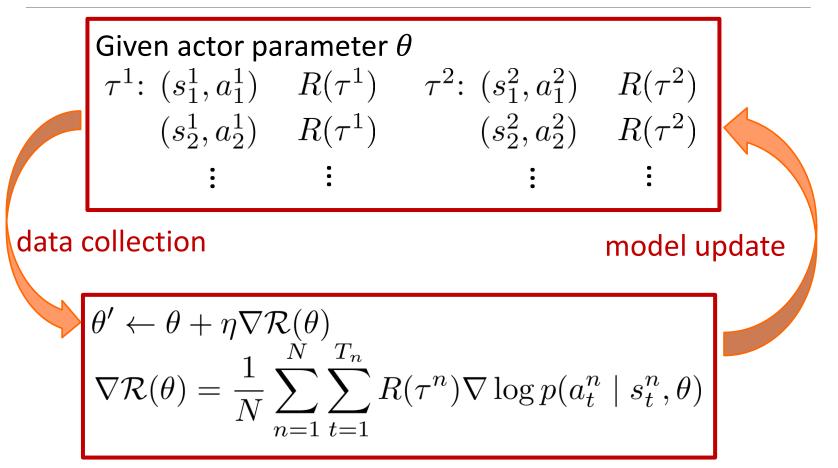
$$\nabla \log P(\tau \mid \theta) = \sum_{t=1}^{T} \nabla \log p(a_t \mid s_t, \theta) \text{ ignore the terms not}$$
related to θ

Policy Gradient

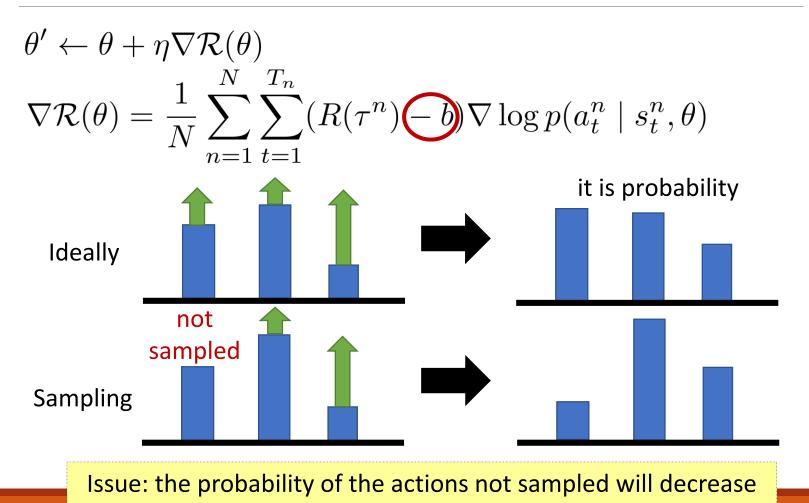
Gradient assent for iteratively updating the parameters $\theta' \leftarrow \theta + \eta \nabla \mathcal{R}(\theta)$ $\nabla \mathcal{R}(\theta) \approx \frac{1}{N} \sum_{n=1}^{N} R(\tau^n) \nabla \log P(\tau^n \mid \theta)$ n=1 $= \frac{1}{N} \sum_{n=1}^{N} \sum_{n=1}^{T_n} R(\tau^n) \nabla \log p(a_t^n \mid s_t^n, \theta)$ • If τ^n machine takes a_t^n when seeing s_t^n $R(\tau^n) > 0$ **multiply** Tuning θ to increase $p(a_t^n \mid s_t^n)$ $R(\tau^n) < 0$ **multiply** Tuning θ to decrease $p(a_t^n \mid s_t^n)$ Important: use cumulative reward $R(\tau^n)$ of the whole trajectory τ^n

instead of immediate reward r_t^n

Policy Gradient



Improvement: Adding Baseline



Actor-Critic Approach

LEARNING AN ACTOR & A CRITIC

Actor-Critic (Value-Based + Policy-Based)

Estimate value function $Q^{\pi}(s, a), V^{\pi}(s)$

Update policy based on the value function evaluation π

$$\pi'(s) = \arg \max_{a} Q^{\pi}(s, a)$$

$$\pi \text{ interacts with the environment}$$

$$\pi \text{ is a actual function that maximizes the value}$$

$$\pi = \pi' \qquad \text{TD or MC}$$

$$\begin{array}{c} \text{Update actor from} \\ \pi \to \pi' \text{ based on} \\ Q^{\pi}(s, a), V^{\pi}(s) \end{array}$$

$$\pi \text{ interacts with the environment}$$

$$\pi = \pi' \qquad \text{TD or MC}$$
Advantage Actor-Critic Update actor Update actor Learning $V^{\pi}(s)$

Learning the policy (actor) using the value evaluated by critic

$$\begin{split} \theta^{\pi'} &\leftarrow \theta^{\pi} + \eta \nabla \mathcal{R}(\theta^{\pi}) \\ \nabla \mathcal{R}(\theta^{\pi}) &= \frac{1}{N} \sum_{n=1}^{N} \sum_{t=1}^{T_n} R(\tau^n) \nabla \log p(a_t^n \mid s_t^n, \theta^{\pi}) \text{ baseline is added} \\ &\text{evaluated by critic} \end{split}$$

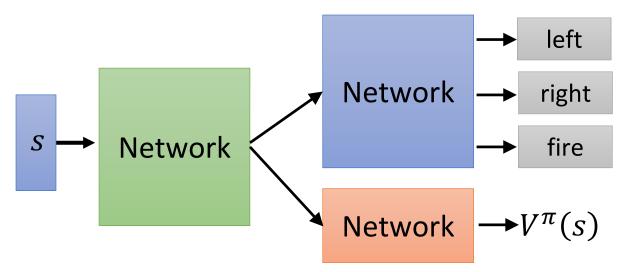
$$\begin{aligned} \text{Advantage function: } r_t^n - \left(V^{\pi}(s_t^n) - V^{\pi}(s_{t+1}^n) \right) \\ &\text{the reward } r_t^n \text{ we truly obtain expected reward } r_t^n \text{ we obtain} \\ &\text{when taking action } a_t^n \end{aligned}$$

- Positive advantage function \leftrightarrow increasing the prob. of action a_t^n
- Negative advantage function \leftrightarrow decreasing the prob. of action a_t^n

Advantage Actor-Critic

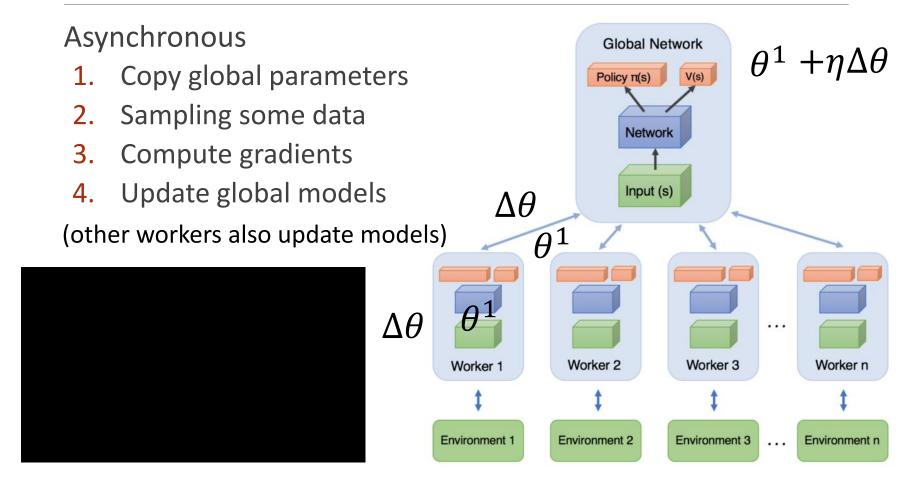
Tips

• The parameters of actor $\pi(s)$ and critic $V^{\pi}(s)$ can be shared



• Use output entropy as regularization for $\pi(s)$ • Larger entropy is preferred \rightarrow exploration

Asynchronous Advantage Actor-Critic (A3C)



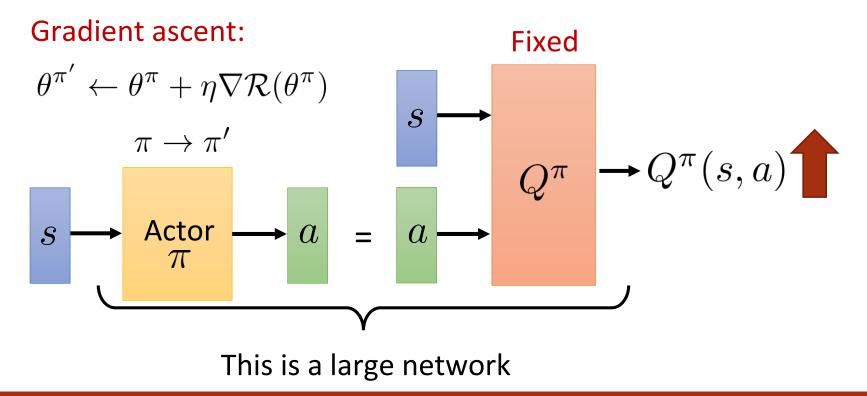
Mnih et al., "Asynchronous Methods for Deep Reinforcement Learning," in JMLR, 2016. 47

Pathwise Derivative Policy Gradient

Original actor-critic tells that a given action is good or bad Pathwise derivative policy gradient tells that which action is good

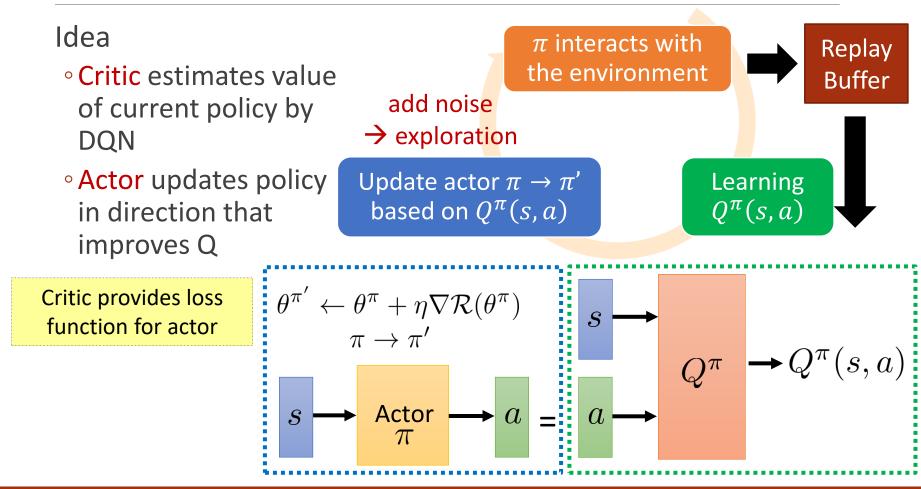
Pathwise Derivative Policy Gradient

$$\pi'(s) = rg\max_a Q^\pi(s,a)$$
 \blacklozenge an actor's output



Silver et al., "Deterministic Policy Gradient Algorithms", ICML, 2014. Lillicrap et al., "Continuous Control with Deep Reinforcement Learning", ICLR, 2016.

Deep Deterministic Policy Gradient (DDPG)



Lillicrap et al., "Continuous Control with Deep Reinforcement Learning," ICLR, 2016.

DDPG Algorithm

Initialize critic network θ^Q and actor network θ^π

Initialize target critic network $\theta^{Q'} = \theta^Q$ and target actor network $\theta^{\pi'} = \theta^{\pi}$ Initialize replay buffer R

In each iteration

- Use $\pi(s)$ + noise to interact with the environment, collect a set of $\{s_t, a_t, r_t, s_{t+1}\}$, put them in R
- Sample N examples $\{s_n, a_n, r_n, s_{n+1}\}$ from R
- $^{
 m o}$ Update critic ${\it Q}$ to minimize $\sum_n (\hat{y}_n Q(s_n,a_n))^2$

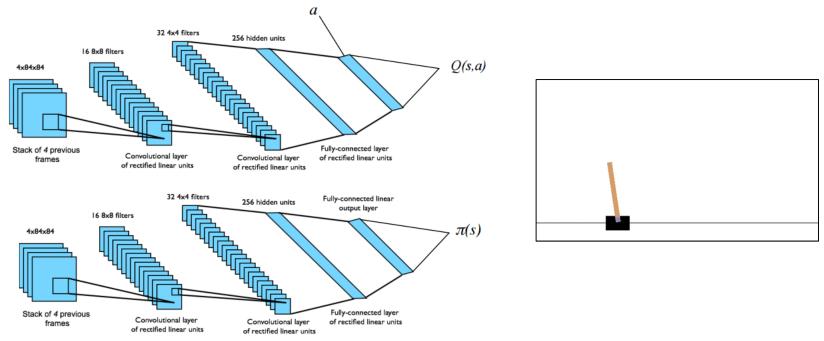
 $\hat{y}_n = r_n + Q'(s_{n+1}, \pi'(s_{n+1}))$ using target networks

- $^{
 m o}$ Update actor π to maximize $\sum_n Q(s_n,\pi(s_n))$
- Update target networks: $\theta^{\pi'} \leftarrow m\theta^{\pi} + (1-m)\theta^{\pi'}$ the target networks $\theta^{Q'} \leftarrow m\theta^Q + (1-m)\theta^{Q'}$ update slower

DDPG in Simulated Physics

Goal: end-to-end learning of control policy from pixels

- Input: state is stack of raw pixels from last 4 frames
- ° Output: two separate CNNs for Q and π



Model-Based

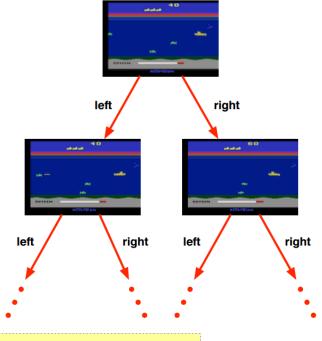
Agent's Representation of the Environment

Model-Based Deep RL

Goal: learn a transition model of the environment and plan based on the transition model

$$p(r,s' \mid s,a)$$

Objective is to maximize the measured goodness of model



Model-based deep RL is challenging, and so far has failed in Atari

Issues for Model-Based Deep RL

Compounding errors

Errors in the transition model compound over the trajectory

A long trajectory may result in totally wrong rewards

Deep networks of value/policy can "plan" implicitly

Each layer of network performs arbitrary computational step

• n-layer network can "lookahead" n steps

Model-Based Deep RL in Go

Monte-Carlo tree search (MCTS)

- MCTS simulates future trajectories
- Builds large lookahead search tree with millions of positions
- State-of-the-art Go programs use MCTS

Convolutional Networks

- 12-layer CNN trained to predict expert moves
 - Raw CNN (looking at 1 position, no search at all) equals performance of MoGo with 105 position search tree

1st strong Go program

56

OpenAl Universe

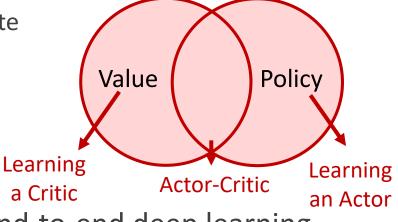
Software platform for measuring and training an Al's general intelligence via the <u>OpenAl gym</u> environment

Concluding Remarks

RL is a general purpose framework for **decision making** under interactions between agent and environment

An RL agent may include one or more of these components

- Value function: how good is each state and/or action
- Policy: agent's behavior function
- Model: agent's representation of the environment



RL problems can be solved by end-to-end deep learning

Reinforcement Learning + Deep Learning = AI

References

Course materials by David Silver: <u>http://www0.cs.ucl.ac.uk/staff/D.Silver/web/Teaching.html</u> ICLR 2015 Tutorial: <u>http://www.iclr.cc/lib/exe/fetch.php?media=iclr2015:silver-iclr2015.pdf</u> ICML 2016 Tutorial: <u>http://icml.cc/2016/tutorials/deep_rl_tutorial.pdf</u>