ADLXMLDS Yun-Nung (Vivian) Chen HTTP://ADL.MIULAB.TW

Slides credited from Dr. David Silver & Hung-Yi Lee

Deep Reinforcement

Outline

Machine Learning

- Supervised Learning v.s. Reinforcement Learning
- Reinforcement Learning v.s. Deep Learning

Introduction to Reinforcement Learning

- Agent and Environment
- Action, State, and Reward

Markov Decision Process

Reinforcement Learning Approach

- Value-Based
- Policy-Based
- Model-Based

Problems within RL

- Learning and Planning
- Exploration and Exploitation

RL for Unsupervised Model

Outline

Machine Learning

- Supervised Learning v.s. Reinforcement Learning
- Reinforcement Learning v.s. Deep Learning

Introduction to Reinforcement Learning

- Agent and Environment
- Action, State, and Reward

Markov Decision Process

Reinforcement Learning Approach

- Value-Based
- Policy-Based
- Model-Based

Problems within RL

- Learning and Planning
- Exploration and Exploitation

RL for Unsupervised Model

Machine Learning

Supervised v.s. Reinforcement

Supervised Learning

- Training based on supervisor/label/annotation
- Feedback is instantaneous
- Time does not matter

Reinforcement Learning

- Training only based on reward signal
- Feedback is delayed
- Time matters
- Agent actions affect subsequent data

Supervised v.s. Reinforcement

Reinforcement Learning

- RL is a general purpose framework for decision making
- RL is for an *agent* with the capacity to *act*
- Each action influences the agent's future state
- Success is measured by a scalar *reward* signal
- Goal: select actions to maximize future reward

Deep Learning

DL is a general purpose framework for **representation learning** • Given an *objective*

- Learn *representation* that is required to achieve objective
- Directly from *raw inputs*

Use minimal domain knowledge

. . .

Deep Reinforcement Learning

Al is an agent that can solve human-level task

- RL defines the objective
- DL gives the mechanism
- RL + DL = general intelligence

Deep RL AI Examples

Play games: Atari, poker, Go, ...

Explore worlds: 3D worlds, ...

Control physical systems: manipulate, ...

Interact with users: recommend, optimize, personalize, ...

Introduction to RL

Reinforcement Learning

Outline

Machine Learning

- Supervised Learning v.s. Reinforcement Learning
- Reinforcement Learning v.s. Deep Learning

Introduction to Reinforcement Learning

- Agent and Environment
- Action, State, and Reward

Markov Decision Process

Reinforcement Learning Approach

- Value-Based
- Policy-Based
- Model-Based

Problems within RL

- Learning and Planning
- Exploration and Exploitation

RL for Unsupervised Model

Reinforcement Learning

RL is a general purpose framework for decision making

- RL is for an *agent* with the capacity to *act*
- Each action influences the agent's future state
- Success is measured by a scalar *reward* signal

Big three: action, state, reward

Agent and Environment

Agent and Environment

At time step t

- The agent
 - Executes action a_t
 - Receives observation o_t
 - Receives scalar reward r_t
- The environment
 - Receives action a_t
 - Emits observation o_{t+1}
 - Emits scalar reward r_{t+1}
- t increments at env. step

State

Experience is the sequence of observations, actions, rewards

$$o_1, r_1, a_1, \dots, a_{t-1}, o_t, r_t$$

State is the information used to determine what happens next • what happens depends on the history experience

- The agent selects actions
- The environment selects observations/rewards

The state is the function of the history experience

$$s_t = f(o_1, r_1, a_1, \dots, a_{t-1}, o_t, r_t)$$

Environment State

The environment state s^e_t is the environment's private representation
whether data the environment uses to pick the next observation/reward
may not be visible to the agent

• may contain irrelevant information

Agent State

The agent state s_t^a is the agent's *internal* representation

 • whether data the agent uses to pick the next action → information used by RL algorithms

• can be any function of experience

Information State

An information state (a.k.a. Markov state) contains all useful information from history

A state is Markov iff $P(s_{t+1} \mid s_t) = P(s_{t+1} \mid s_1, ..., s_t)$

The future is independent of the past given the present

$$H_{t} = \{o_{1}, r_{1}, a_{1}, \dots, a_{t-1}, o_{t}, r_{t}\}$$
$$H_{1:t} \to s_{t} \to H_{t+1:\infty}$$

Once the state is known, the history may be thrown away
The state is a sufficient statistics of the future

Fully Observable Environment

Full observability: agent *directly* observes environment state

$$o_t = s_t^a = s_t^e$$

information state = agent state = environment state

This is a Markov decision process (MDP)

Partially Observable Environment

Partial observability: agent *indirectly* observes environment

$$s_t^a \neq s_t^e$$

agent state ≠ environment state

This is partially observable Markov decision process (POMDP)

Agent must construct its own state representation s_t^a

- Complete history: $s_t^a = H_t$
- Beliefs of environment state: $s^a_t = \{P(s^e_t = s^1), ..., P(s^e_t = s^n)\}$
- Hidden state (from RNN): $s_t^a = \sigma(W_s \cdot s_{t-1}^a + W_o \cdot o_t)$

Reward

Reinforcement learning is based on reward hypothesis

A reward r_t is a scalar feedback signal

Indicates how well agent is doing at step t

Reward hypothesis: all agent goals can be desired by maximizing expected cumulative reward

Sequential Decision Making

Goal: select actions to maximize total future reward

- Actions may have long-term consequences
- Reward may be delayed
- It may be better to sacrifice immediate reward to gain more long-term reward

Scenario of Reinforcement Learning

Scenario of Reinforcement Learning

Agent learns to take actions maximizing expected reward.

Machine Learning ≈ Looking for a Function

Learning to Play Go

Learning to Play Go

Agent learns to take actions maximizing expected reward.

Learning to Play Go

Supervised Learning from teacher

Next move: "5-5"

Next move: "3-3"

AlphaGo uses supervised learning + reinforcement learning.

Learning a Chatbot

Machine obtains feedback from user

Chatbot learns to maximize the *expected reward*

Learning a Chatbot

Let two agents talk to each other (sometimes generate good dialogue, sometimes bad)

How old are you? See you.

How old are you?

l am 16.

I though you were 12.

See you.

What make you think so?

Learning a chat-bot

By this approach, we can generate a lot of dialogues.

Use pre-defined rules to evaluate the goodness of a dialogue

Machine learns from the evaluation as rewards

Learning to Play Video Game

Space invader: terminate when all aliens are killed, or your spaceship is destroyed

Play yourself: http://www.2600online.com/spaceinvaders.html How about machine: https://gym.openai.com/evaluations/eval_Eduozx4HRyqgTCVk9ltw

Learning to Play Video Game

Usually there is some randomness in the environment

Learning to Play Video Game

More applications

Flying Helicopter

• https://www.youtube.com/watch?v=0JL04JJjocc

Driving

• https://www.youtube.com/watch?v=0xo1Ldx3L5Q

Robot

• https://www.youtube.com/watch?v=370cT-OAzzM

Google Cuts Its Giant Electricity Bill With DeepMind-Powered AI

 http://www.bloomberg.com/news/articles/2016-07-19/google-cuts-its-giantelectricity-bill-with-deepmind-powered-ai

Text Generation

• https://www.youtube.com/watch?v=pbQ4qe8EwLo
Markov Decision Process

Fully Observable Environment

Outline

Machine Learning

- Supervised Learning v.s. Reinforcement Learning
- Reinforcement Learning v.s. Deep Learning

Introduction to Reinforcement Learning

- Agent and Environment
- Action, State, and Reward

Markov Decision Process

Reinforcement Learning Approach

- Value-Based
- Policy-Based
- Model-Based

Problems within RL

- Learning and Planning
- Exploration and Exploitation

RL for Unsupervised Model

Markov Process

Markov process is a memoryless random process

 \circ i.e. a sequence of random states S₁, S₂, ... with the Markov property

Sample episodes from S₁=C1

- C1 C2 C3 Pass Sleep
- C1 FB FB C1 C2 Sleep
- C1 C2 C3 Pub C2 C3 Pass Sleep
- C1 FB FB C1 C2 C3 Pub
- C1 FB FB FB C1 C2 C3 Pub C2 Sleep

Markov Reward Process (MRP)

Markov reward process is a Markov chain with values
The return *G_t* is the total discounted reward from time-step *t*

Markov Decision Process (MDP)

Markov decision process is a MRP with decisions
It is an environment in which all states are Markov

Markov Decision Process (MDP)

- S : finite set of states/observations
- A : finite set of actions
- P : transition probability
- R : immediate reward
- γ : discount factor

Goal is to choose policy π at time *t* that maximizes expected overall return: T

$$\sum_{t'=t} \gamma^{t'-t} r_{t'}$$

Reinforcement Learning

Outline

Machine Learning

- Supervised Learning v.s. Reinforcement Learning
- Reinforcement Learning v.s. Deep Learning

Introduction to Reinforcement Learning

- Agent and Environment
- Action, State, and Reward

Markov Decision Process

Reinforcement Learning

- Value-Based
- Policy-Based
- Model-Based

Problems within RL

- Learning and Planning
- Exploration and Exploitation

RL for Unsupervised Model

Major Components in an RL Agent

An RL agent may include one or more of these components

- Value function: how good is each state and/or action
- **Policy**: agent's behavior function
- Model: agent's representation of the environment

Value Function

A value function is a prediction of future reward (with action *a* in state *s*)

Q-value function gives expected total reward

- $^{\rm o}$ from state $S\,$ and action $Q\,$
- $^{\circ}$ under policy π
- $^{\circ}$ with discount factor γ

$$Q^{\pi}(s,a) = \mathbb{E}[r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \dots \mid s,a]$$

Value functions decompose into a Bellman equation

$$Q^{\pi}(s,a) = \mathbb{E}_{s',a'}[r + \gamma Q^{\pi}(s',a') \mid s,a]$$

Optimal Value Function

An optimal value function is the maximum achievable value

$$Q^*(s, a) = \max_{\pi} Q^{\pi}(s, a) = Q^{\pi^*}(s, a)$$

The optimal value function allows us act optimally

$$\pi^*(s) = \arg\max_a Q^*(s, a)$$

The optimal value informally maximizes over all decisions

$$Q^*(s, a) = r_{t+1} + \gamma \max_{a_{t+1}} r_{t+2} + \gamma^2 \max_{a_{t+2}} r_{t+3} + \dots$$

= $r_{t+1} + \gamma \max_{a_{t+1}} Q^*(s_{t+1}, a_{t+1})$

Optimal values decompose into a Bellman equation

$$Q^*(s,a) = \mathbb{E}_{s'}[r + \gamma \max_{a'} Q^*(s',a') \mid s,a]$$

Value Function Approximation

Value functions are represented by a *lookup table*

$$Q(s,a) \quad \forall s,a$$

• too many states and/or actions to store

• too slow to learn the value of each entry individually

Values can be estimated with *function approximation*

Q-Networks

 $\operatorname{\mathbf{Q-networks}}$ represent value functions with weights w

$$Q(s,a,w) \approx Q^*(s,a)$$

 $^{\rm o}$ generalize from seen states to unseen states $^{\rm o}$ update parameter w for function approximation

Q-Learning

Goal: estimate optimal Q-values

Optimal Q-values obey a Bellman equation

$$Q^*(s, a) = \mathbb{E}_{s'} r + \gamma \max_{a'} Q^*(s', a') | s, a]$$

learning target

• Value iteration algorithms solve the Bellman equation

$$Q_{i+1}(s,a) = \mathbb{E}_{s'}[r + \gamma \max_{a'} Q_i(s',a') \mid s,a]$$

Policy

A policy is the agent's behavior

A policy maps from state to action

- $\,{}^{\rm o}\,{\rm Deterministic}$ policy: $a=\pi(s)$
- \circ Stochastic policy: $\pi(a) = P(a \mid s)$

Policy Networks

Represent policy by a network with weights ${\it u}$

$$a = \pi(a \mid s, u) \qquad a = \pi(s, u)$$

stochastic policy

deterministic policy

Objective is to maximize total discounted reward by SGD

$$L(u) = \mathbb{E}\left[r_1 + \gamma r_2 + \gamma^2 r_3 + \cdots \mid \pi(\cdot, u)\right]$$

Policy Gradient

The gradient of a stochastic policy $\pi(a \mid s, u)$ is given by

$$\frac{\partial L(u)}{\partial u} = \mathbb{E}_s \left[\frac{\partial \log \pi(a \mid s, u)}{\partial u} Q^{\pi}(s, a) \right]$$

The gradient of a deterministic policy $\pi(s,u)$ is given by

$$\frac{\partial L(u)}{\partial u} = \mathbb{E}_s \left[\frac{\partial Q^{\pi}(s, a)}{\partial a} \frac{\partial a}{\partial u} \right] \qquad a = \pi(s, u)$$

How to deal with continuous actions

Model

A model predicts what the environment will do next

• P predicts the next state

$$P_{ss'}^{a} = \mathbb{P}[s_{t+1} = s' \mid s_t = s, a_t = a]$$

• R predicts the next immediate reward

$$R_s^a = \mathbb{E}[r_{t+1} \mid s_t = s, a_t = a]$$

Reinforcement Learning Approach

- Value-based RL
- $\,{}^{
 m \circ}\,$ Estimate the optimal value function $\,Q^*(s,a)\,$

 $Q^{\ast}(s,a)\,$ is maximum value achievable under any policy

Policy-based RL

 \circ Search directly for optimal policy π^*

 π^* is the policy achieving maximum future reward

Model-based RL

- Build a model of the environment
- Plan (e.g. by lookahead) using model

Maze Example

Rewards: -1 per time-step Actions: N, E, S, W States: agent's location

Maze Example: Value Function

Rewards: -1 per time-step Actions: N, E, S, W States: agent's location

Numbers represent value $Q_{\pi}(s)$ of each state s

Maze Example: Policy

Rewards: -1 per time-step Actions: N, E, S, W States: agent's location

Arrows represent policy $\pi(s)$ for each state s

Maze Example: Value Function

Rewards: -1 per time-step Actions: N, E, S, W States: agent's location

Grid layout represents transition model *P* Numbers represent immediate reward *R* from each state *s* (same for all *a*)

Categorizing RL Agents

Value-Based

- No Policy (implicit)
- Value Function
- **Policy-Based**
 - Policy
- No Value Function

Actor-Critic

- Policy
- Value Function

Model-Free • Policy and/or Value Function • No Model

Model-Based • Policy and/or Value Function • Model

RL Agent Taxonomy

Problems within RL

Outline

Machine Learning

- Supervised Learning v.s. Reinforcement Learning
- Reinforcement Learning v.s. Deep Learning

Introduction to Reinforcement Learning

- Agent and Environment
- Action, State, and Reward

Markov Decision Process

Reinforcement Learning

- Value-Based
- Policy-Based
- Model-Based

Problems within RL

- Learning and Planning
- Exploration and Exploitation

RL for Unsupervised Model

Learning and Planning

In sequential decision making

- Reinforcement learning
 - The environment is initially unknown
 - The agent interacts with the environment
 - The agent improves its policy
- Planning
 - A model of the environment is known
 - The agent performs computations with its model (w/o any external interaction)
 - The agent improves its policy (a.k.a. deliberation, reasoning, introspection, pondering, thought, search)

Atari Example: Reinforcement Learning

Rules of the game are unknown Learn directly from interactive game-play Pick actions on joystick, see pixels and scores

Atari Example: Planning

Rules of the game are known

Query emulator based on the perfect model inside agent's brain

- If I take action a from state s:
 - what would the next state be?
 - what would the score be?

Exploration and Exploitation

Reinforcement learning is like trial-and-error learning

The agent should discover a good policy from the experience without losing too much reward along the way

When to try?

Exploration finds more information about the environment

Exploitation exploits known information to maximize reward

It is usually important to explore as well as exploit

Outline

Machine Learning

- Supervised Learning v.s. Reinforcement Learning
- Reinforcement Learning v.s. Deep Learning

Introduction to Reinforcement Learning

- Agent and Environment
- Action, State, and Reward

Markov Decision Process

Reinforcement Learning

- Policy-Based
- Value-Based
- Model-Based

Problems within RL

- Learning and Planning
- Exploration and Exploitation

RL for Unsupervised Model

RL for Unsupervised Model: Modularizing Unsupervised Sense Embeddings (MUSE)

Word2Vec Polysemy Issue

Words are polysemy

- An apple a day, keeps the doctor away.
- Smartphone companies including apple, ...

If words are polysemy, are their embeddings polysemy?

No (S)
 What's the problem?
 tree
 tree
 rocks
 rock

Modular Framework

Two key mechanisms

• Sense selection given a text context

• Sense representation to embed statistical characteristics of sense identity

Sense Selection Module

Input: a text context $\overline{C}_t = [C_{t-m}, \dots, C_t = w_i, \dots, C_{t+m}]$

Output: the fitness for each sense z_{i1} , ..., z_{i3}

Model architecture: Continuous Bag-of-Words (CBOW) for efficiency

Sense Selection Module
Sense Representation Module

Input: sense collocation z_{ik} , z_{jl}

Output: collocation likelihood estimation

Model architecture: skip-gram architecture

Sense representation learning

$$\log \bar{\mathcal{L}}(z_{jl} \mid z_{ik}) = \log \sigma(U_{z_{ik}}^T V_{z_{jl}}) + \sum_{v=1}^M \mathbb{E}_{z_{uv} \sim p_{neg}(z)} [\log \sigma(-U_{z_{ik}}^T V_{z_{uv}})]$$

Sense Representation Module

A Summary of MUSE

The first purely sense-level embedding learning with efficient sense selection.

Qualitative Analysis

Context	braves finish the season in tie with the los angeles dodgers	his later years proudly wore tie with the chinese characters for
k-NN	scoreless otl shootout 6- 6 hingis 3-3 7-7 0-0	pants trousers shirt juventus blazer socks anfield
Figure	ASTROS 8 1 3 0	

Qualitative Analysis

Context	of the mulberry or the blackberry and minos sent him to	of the large number of blackberry users in the us federal
k-NN	cranberries maple vaccinium apricot apple	smartphones sap microsoft ipv6 smartphone
Figure		

Search

Concluding Remarks

RL is a general purpose framework for **decision making** under interactions between *agent* and *environment*

- RL is for an *agent* with the capacity to *act*
- Each action influences the agent's future state
- Success is measured by a scalar *reward* signal
- Goal: select actions to maximize future reward

An RL agent may include one or more of these components

- Value function: how good is each state and/or act
- Policy: agent's behavior function
- Model: agent's representation of the environmen

References

Course materials by David Silver: <u>http://www0.cs.ucl.ac.uk/staff/D.Silver/web/Teaching.html</u> ICLR 2015 Tutorial: <u>http://www.iclr.cc/lib/exe/fetch.php?media=iclr2015:silver-iclr2015.pdf</u> ICML 2016 Tutorial: <u>http://icml.cc/2016/tutorials/deep_rl_tutorial.pdf</u>